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Abstract. We show that continuous bilinear forms on spaces of continuous functions
can be approximated by norm attaining bilinear forms.

1. Introduction. In the early sixties E. Bishop and R. Phelps showed that the set of norm
attaining functionals on a Banach space is dense in the dual space. Shortly after, attention
was paid to possible extensions of this result to more general settings, especially bounded
linear operators between Banach spaces. Very recently the problem of the denseness of norm
attaining functions has moved to other types of mappings like multilinear forms or
polynomials.

The first results appeared in a joint work of R. Aron, C. Finet and E. Werner [2], where
they showed that the Radon-Nikodym property is sufficient for the denseness of norm
attaining multilinear forms. For spaces with a shrinking monotone basis the Dunford-Pettis
property is also sufficient (see [6]). The first example of a Banach space not satisfying the
denseness of the norm attaining multilinear forms, namely a predual of a Lorentz sequence
space, was found in [1] (see also [13]). Very recently the second author [5] furnished a more
appealing counterexample by showing that the norm attaining bilinear forms on L\[0, 1] are
not dense. The study of this kind of problem in "classical" Banach spaces is far from being
complete and we try to fill here one of the gaps by discussing spaces of continuous functions.

Recall that continuous bilinear forms on a Banach space can be identified with bounded
linear operators from the space into its dual. Under this identification norm attaining bilin-
ear forms become norm attaining operators, but easy examples show that an operator may
attain its norm while the corresponding bilinear form does not. Therefore, the denseness of
norm attaining operators is a necessary condition for the denseness of norm attaining bilin-
ear forms, but it is not sufficient (see [10]).

Concerning spaces of real valued continuous functions, W. Schachermayer [17] proved
that any weakly compact operator from a C(K) space to an arbitrary real Banach space can
be approximated by norm attaining operators. In particular, this applies when the range
space is the dual of C(K), but this time every bounded linear operator is weakly compact [11].
This is the first step towards our main result, the denseness of norm attaining bilinear forms
on spaces of continuous functions. Actually the proof is easy and consists of one further
application of Schachermayer's arguments. To get a formally more general result, we deal
with the space Co(L) of continuous functions vanishing at infinity on a locally compact
Hausdorff space L. Moreover, our proof works in the complex as well as in the real case. The
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arguments we use to deal with bilinear forms do not work in the AMinear case N > 2, unless
L is scattered. Thus, for scattered L we are able to show the denseness of norm attaining N-
linear forms on CQ(L). We conclude the paper with some remarks on norm attaining multi-
linear mappings between spaces of continuous functions and a short discussion of the
numerical radius of such mappings.

2. Main results. Throughout L will denote a locally compact Hausdorff space and CQ(L)
will be the Banach space of real or complex valued continuous functions on L vanishing at
infinity, with its natural supremum norm. We denote by M(L) the dual of CQ(L), that is, the
Banach space of real or complex regular Borel measures on L, endowed with the variation
norm. The following lemma was proved by W. Schachermayer [17, Lemma 3.1] in the real
case. We give an alternative proof which works in the complex case as well.

LEMMA 1. Let W be a weakly compact subset of M(L), iio 6 M{L) and e > 0. Then there is
a bounded linear operator S : M{L) -> M(L), \\S\\ < 1 such that

(1) there isf0 e C0(L), \\fo\\ = 1 with UMOII = Wo, Sno),
(2) \\SfM - IM\\ < s f o r all f i e W

Proof. By a well known characterization of weak compactness in M(L) (see [8, Lemma
VI.2.13] for example) the measures in Ware uniformly absolutely continuous with respect to some
positive regular Borel measure X, so there exists S > 0 such that, for any Borel set E c L,

X(E)<8=> |/i|(£) < e/2, V/i € W

where |/x| denotes the variation of the measure fM. Let us consider the polar decomposition
fj,Q = gol/u-ol, where go is the sign of/xo, a measureable real or complex function with |gol = 1-
By Lusin's Theorem (see [16, Theorem 2.23], for example) and the inner regularity of X, we
may find a compact set K c L such that the restriction of go to K is continuous and
X(L\K) < 8, so \/JL\(L\K) < e/2 for any \i e W.

Now take to e L\K and define the operator S by

(y e M(L)),

where V\K is the restriction of v to K, 8,0 is the Dirac measure at to and go denotes complex
conjugation (g0 = go in the real case).

It is easy to check that ||5|| < 1. Moreover, for //. € Wwt have

-M| | < || H\L\K || +

Finally, if/0 e C${L) with |[/o|| = 1 agrees with g0 on A^and satisfies /0O0) = 1. then

Wo, Sim,)) = j/o4io + \im\(L\K)fo«o) = IMOIW +
A:
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as required. Note that in case K = L the lemma is trivial; we simply take for 5 the identity
operator and/0 = go- •

As a consequence of the above lemma, the result in [17, Theorem B] can be extended to
our slightly more general context, with exactly the same proof.

THEOREM 2. Every weakly compact operator from CQ(L) into an arbitrary (real or com-
plex) Banach space can be approximated by norm attaining weakly compact operators.

Now we intend to apply the preceding results to obtain the denseness of norm attaining
bilinear forms on spaces of continuous functions. We shall use the following notation. Given
Banach spaces X and Y and a natural number TV, we denote by C(NX, Y) the space of all
continuous TV-linear mappings from XN into Y. We say that <p e C(NX, Y) attains its norm if
there is x0 e (BX)N (the cartesian product of TV-times the closed unit ball of X) such that

|rf*o)|| = |M| := sup{||rt*)| : x e {BX)N),

and we denote by AfA(NX, Y) the set of norm attaining TV-linear mappings. When Y is the
scalar field, we simply omit it. Thus £(NX) is the Banach space of all continuous TV-linear
forms on Xand AfA(NX) is the subset of norm attaining forms. Recall that C(N+lX) can be
identified with the space C(X, C^X)) of all bounded linear operators from A'into C(NX), the
(TV + 1)— linear form cp corresponding to the operator <p given by

[((>(x)](X\, X 2 , . . . , XN) = (p(x, X \ , X 2 , . . . , X N ) { x , X \ , X 2 , . . . , X N e X ) .

It is clear that <p attains its norm if <p does, but the converse is far from true, even in the case
TV = 1 (see [10]).

THEOREM 3. Every continuous bilinear form on Co(L) can be approximated by norm
attaining bilinear forms.

Proof. Let <p € £(2Co(L)) and e > 0 be given. Since every bounded linear operator from
CQ{L) into Co(Z-)* is weakly compact [11], we can use the above theorem to find ij/ e C(2Co(L))
such that ||i/r — ^|| < e/2 and the operator \jr attains its norm, that is ||i^|| = ||iK?o)ll for some
go e BCo(L)- Let W be the closure of ir(Bco(L)) in M(L). Then W is weakly compact and by
Lemma 1 there exists a bounded linear operator S : M{L) -> M{L), \\S\\ = 1 such that

(1) there i s / 0 e BCo{L) such that | | ^ 0 ) l l = (fo,
(2) IIS/z - ju,|| < e/2 for all ix&W.

It follows from (2) that \\SJr - i/\\ < e/2. Therefore, if / e C(2C0(L)) is such that
X = S\js, we have

||X - <P\\ = \\S* - V\\ < \\S* ~ n + U ~ V\\ < e,

and
lxfeo,/o)l = {fo, SHg0)) = | | ^ g o ) | | = ll^ll > | | 5 ^ | | = Hxll,

which shows that x attains its norm. •

In general, the denseness of norm attaining bilinear forms on a Banach space does not
imply the denseness of norm attaining TV-linear forms for TV > 2 (see [13]). Actually we do
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not know if the TV-linear version of the above theorem is also true. Nevertheless, our proof
for bilinear forms will work for TV-linear forms provided that the corresponding operators
are weakly compact. We next give a characterization of those locally compact spaces L such
that every bounded linear operator from Co(L) into C(NCo(LJ) is weakly compact. Recall
that L is said to be scattered if every nonempty subset of L has a (relatively) isolated point. If
L is scattered then M(L) can be identified with l\ (F) for some set P and CQ(L) is an Asplund
space (see [7, Lemma VI.8.1]). On the other hand, if L is not scattered, then CQ{L) contains
/i. Part of the following proposition may be known but we could not find a direct reference,
so we indicate a proof.

PROPOSITION 4. The following statements are equivalent.

(1) For some TV > 2, every bounded linear operator from Co(L) into C(NCo(L)) is weakly
compact.

(2) Every bounded linear operator from C0(L) into £(2C0(L)) is weakly compact.
(3) L is scattered.
(4) For all N € N, every bounded linear operator from Co(L) into £(ACo(L)) is compact.

Proof. (l)=>-(2). This follows from the fact that £(2X) can be isometrically embedded
into C(NX) for any Banach space X and any TV > 2.

(2)=>-(3). If L is infinite (otherwise there is nothing to prove) the identity operator from
co into loo factors through Co(L). Hence there is a (bounded linear) operator from CQ(L) into
loo which is not weakly compact and (2) implies that £(2Co(L)) — C(Co(L), M(L)) cannot
contain (an isomorphic copy of) lx. Then we can apply a result by G. Emmanuele [9, theo-
rem 4] to obtain that every operator from Q(L) into M{L) is compact. If follows that CQ{L)
cannot contain /) (see [12, Corollary 5], for example) so L is scattered.

(3)=>(4). If L is scattered, Co(L)*= l\(T) has the Schur property. Hence every operator
from CQ{L) into it is compact, which is (4) for TV = 1. Note also that CQ(L)* does not contain
co. Assume by induction that C{NCQ{L)) does not contain Co and that every operator from
CQ(L) into C(NCo(L)) is compact. By a theorem of N. Kalton [14, Theorem 4],
C(N+]Co(L)) = £(Co(L), C(NCQ(L))) does not contain /<*, and, being a dual space, it cannot
contain CQ. NOW we can use a theorem of Pelczynski (see [8, Theorem VI. 15]) to obtain that
every operator from Co(L) into C(N+lCo(L)) is weakly compact. By the Brace-Grothendieck
Theorem (see [8, pp. 177]) every such operator takes weakly Cauchy sequences into norm
convergent sequences. Since Q(L) does not contain l\, (4) follows from Rosenthal's l\ -theorem.

(4)=>(1). This is trivial. D

For t\, t2, • • •, tN e L, consider the TV-linear form

N

[5,, ® <5,2 ® ... ® SlN](fi ,/2,... ,fN) = \\fk{tk)
k=\

and let T be the linear subspace of C(NCo(L)) generated by these TV-linear forms. An easy
compactness argument shows that T c AfA(NCo(L)). Now, if L is scattered, it follows easily
from assertion (4) in the above proposition that T is dense in C(NCo(L)). Therefore, we have

COROLLARY 5. IfL is scattered, AfA(NCo(LJ) is dense in C(NC0(L))for every N eN.

The above results also give some information on norm attaining vector-valued multi-
linear mappings on spaces of continuous functions. Let us recall the definition of the
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so-called property (/S), which was introduced by J. Lindenstrauss [15] as a sufficient condition
on the range space for the denseness of norm attaining operators. A Banach space Y has
property (ft) if there are a set {(>><*,.}>*) : a e r} c Y x Y* and a constant X < 1 such that

(0 \\ya\\ = \\y*a\\ = y*a(ya) = 1 for every a e T,
00 W(y/i)l<^ f o r a g e r , a ,4)8.

(iii) Ĥ ll = sup{|j>*0)| : a G r ) for every y e Y.

It is easy to show that CQ(L) has property (0) if and only if L has a dense set of isolated
points, and this is clearly the case when L is scattered. Moreover, it was shown in [6, Theo-
rem 2.1] that AfA(NX, Y) is dense in C(NX, Y) whenever AfA(NX) is dense in C(NX) and Y
has property (/?). Therefore, from Theorem 3 and Corollary 5 we obtain.

COROLLARY 6. If L has a dense set of isolated points, then AfA(2Co(L), Co(L)) is dense in
C(2C0(L), C0(L)). IfL is scattered, then MA(NC0(L), C0(L)) is dense in C(NC0(L), C0(L))for
every N eN.

We conclude this paper with some observations on the numerical radius of a multilinear
mapping. For a wide discussion of the linear case we refer the reader to the books by F. F.
Bonsall and J. Duncan ([3], [4]). In [6] the numerical radius v(<p) of an ./V-linear mapping
<p e C(NX, X) is denned by

v(<p) = sup{|A-X*,, x2, ••-, xN))\ : ||x*|| = ||*t|| = **(**) = 1, V* = 1,. . . , iV},

and we say that cp attains its numerical radius if the above supremum is actually a maximum.
We will next show that in the case X = CQ{L) there is no difference between the norm and the
numerical radius (see [4, Theorem 32.5] for the linear case). We need the following elemen-
tary fact.

LEMMA 7. Given to € L, any function f & Bco(L) can be written as

where 0<ct<\,g,he BCO(Q and \g(to)\ = \h(to)\ = 1.

Proof. Assume that so :=f(to) satisfies l̂ ol < ' (otherwise there is nothing to prove).
Consider the unit ball D in the scalar field, and let p, q : D ->• D be continuous functions
satisfying that \p(so)\ = \q(so)\ = 1 and 5 = ap(s) + (1 - a)q(s) for every I G D and some fixed
a with 0 < a < 1. The construction of p and q is easy; note that a is uniquely determined by
so in the real case, while one can take a = 1/2 independently of s0 in the complex case. Now
let p : L -> [0, 1] be a continuous function with compact support and p(to) = 1. Then it is
enough to take g(t) = p{t)p(f{t)) + (1 - p{t))f{t) and h(t) = p{t)q(J{t)) + (1 - P( 'M0 for every
teL. D

PROPOSITION 8. For every <p e C(NCo(L), CQ{L)), we have v(<p) = \\cp\\. Moreover, <p attains
its numerical radius if and only if <p attains its norm.
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Proof. Assume without loss of generality that |M| = 1, fix s > 0 and let/i , / 2 , ...,fNe BCO(L)
be such that ||.F|| > 1 - e where F := (p(f\,fi,.. • , /#)• N O W choose to e L such that
l^"('o)l > 1 — e and apply the above lemma to decompose each function/^ in the form

fk = a k g k + {\ - a k ) h k

w h e r e 0 < a k < 1, g k , hk e BCO(D a n d \gk(to)\ = I for k = 1 , 2 , ...,N. T h e n w e c a n u s e t h e N-
linearity of q> to write F as a convex combination of the form

F = <p{fx ,/2,... ,fN) = J2 PMA 'A' • • • 'AN)
7=1

where / { e BCB(L) and [fJ
k(tq)\ = 1 for all k = 1, 2 , . . . , N and j = 1, 2 , . . . , 2N. We must

clearly have \[<p(f\,A2, • • • ,/w)](fo)l > 1 — e for some/ Thus, we may assume from the very

beginning that \fk(to)\ = \ for k = 1,2, ...,N. By rotations, we may actually arrange that

/* ( /o )= l .Then
() |

which shows that v(<p) > \\(p\\, the reverse inequality being clear.

For the second part of the statement, it is obvious that <p attains its norm if it attains its
numerical radius. For the converse, just note that, if cp attains its norm, the above argument
works with e = 0. •
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