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Abstract

We extend earlier work relating asphericity and Euler characteristics for finite complexes whose
fundamental groups have nontrivial torsion free abelian normal subgroups. In particular a
finitely presentable group which has a nontrivial elementary amenable subgroup whose finite
subgroups have bounded order and with no nontrivial finite normal subgroup must have defi-
ciency at most 1, and if it has a presentation of deficiency 1 then the corresponding 2-complex is
aspherical. Similarly if the fundamental group of a closed 4-manifold with Euler characteristic
0 is virtually torsion free and elementary amenable then it either has 2 ends or is virtually an
extension of Z by a subgroup of Q, or the manifold is aspherical and the group is virtually
poly- Z of Hirsch length 4.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 57 N 13;
secondary 57 M 20, 20 F 99.
Keywords and phrases: asphericity, deficiency, elementary amenable group, Euler characteristic,
4-manifold.

Rosset has shown that if a group G has a nontrivial torsion free abelian
normal subgroup A then the group ring C[G] may be localized with re-
spect to the multiplicative system C[A] - {0}, and that nontrivial stably free
modules over the localization have well denned, strictly positive rank [23]
(this was first proven for the unlocalized group ring by Kaplansky (cf. [16,
page 122]). Such localizations have been used to strengthen the theorem of
Gottlieb on Euler characteristics of finite aspherical complexes [11], to prove
a converse for 2-complexes and to show that the closed 4-manifold obtained
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[2] Amenable groups 161

by surgery on a 2-knot whose group has such a subgroup is often aspherical
[6, 7, 8, 10, 13, 14, 15, 24].

We wish to extend this technique to the case when "abelian" is relaxed
to "elementary amenable". That such an extension might exist is suggested
by the work of Cheeger and Gromov, who used L2-cohomology to show
that Gottlieb's theorem holds under the assumption that G has an infinite
amenable normal subgroup [3]. (If G is the group of a finite aspherical
complex such a subgroup must be torsion free.) Moreover Kropholler, Linnell
and Moody have shown that the rational group ring of an elementary amen-
able group whose finite subgroups have bounded order and which has no
nontrivial finite normal subgroup has a classical ring of fractions which is
a matrix algebra over a division ring [18]. (Linnell has also noticed that
Rosset's theorem may be so extended [19], and we have used his work to
strengthen our results below.)

Some restriction on the group is to be expected, for any connected graph
is aspherical, and so the technique cannot apply to the group rings of non-
abelian free groups. Elementary amenable groups do not have nonabelian
free subgroups. (There are torsion groups which are not amenable [20], and
amenable groups which are not elementary amenable [12].) It is noteworthy
also that the class of elementary amenable groups is at present the largest
class of groups over which the 4-dimensional TOP disk embedding theorem
is known [9], and that the general problem can be reduced to the case of free
groups [2].

In Section 1 we shall extend the notion of Hirsch length to elementary
amenable groups (Theorem 1) and show that torsion free elementary amen-
able groups of small Hirsch length are solvable (Theorem 2). In Section 2
we show that if a (discrete) group G has a nontrivial elementary amenable
normal subgroup N whose finite subgroups have bounded order and which
has no nontrivial finite normal subgroup then Q[G] embeds in a ring with the
strong invariant basis number property which is flat as a Q[G]-algebra and
such that the tensor product with the augmentation module Q is 0 (Theorem
3). In Section 3 we shall use this theorem and the result of [18] to extend the
arguments of [15, Chapter 3]. Theorem 4 gives an extension of Gottlieb's
result, and its corollary gives an application to combinatorial group theory.
Theorems 5 and 6 give applications to 4-manifolds. In particular, we show
that if M is a closed orientable 4-manifold with #(Af) = 0 and G = nx{M)
is torsion free and elementary amenable then either G = Z or G has a
presentation (a, t\tat~x = a") for some n ^ 0 or M is aspherical and G
is virtually poly- Z of Hirsch length 4.

I would like to thank Jerry Levine and the Department of Mathematics
at Brandeis University for their hospitality while I prepared this paper, and
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Peter Linnell for his correspondence, which led to improvements upon the
original results.

1. Elementary amenable groups and Hirsch length

The class EG of elementary amenable groups is the smallest class which
contains all finite groups and is closed under extension and increasing union,
and the formation of sub- and quotient-groups. The class EG may also be
described as follows. If X, Y are classes of groups, let XY denote the class
of groups G which have a normal subgroup H in X such that the quotient
G/H is in Y, and let LX denote the class of groups such that each finitely
generated subgroup is contained in some ^-subgroup. Let Xo = {1} and
let Xx be the class of finitely generated virtually abelian groups. If Xa has
been defined for some ordinal a let Xa+l = {LXa)X{, and if Xa has been
defined for all ordinals a less than some limit ordinal fi let X^ = \J Xa.
Then it is not hard to show by transfinite induction that each Xa is subgroup
closed, that XaXfi c Xa+fi and that EG = [jXa [18]. (Similarly it can be
shown that each Xa is closed under taking quotients by normal subgroups.)
If G is an elementary amenable group we shall let a(G) = mm{a\G is in

Using transfinite induction it may also be shown that torsion groups in
EG are locally finite, that finitely generated simple groups in EG are finite,
and that no group in EG has a nonabelian free subgroup [4]. Every virtually
solvable group is elementary amenable, but the converse is false.

EXAMPLE. Let Z°° be the free abelian group on generators {xt\i in Z}
and let G be the subgroup of Aut(Z°°) generated by {et\i in Z} , where
e.(xt) = xi + xi+l and e,.(x.) = x- if j' ± i. As G is the increasing union
of subgroups isomorphic to groups of upper triangular integer matrices it is
locally nilpotent. However it has no nontrivial abelian normal subgroup., If
we let <f> be the automorphism of G defined by <f>{et) = ei+1 for all / then
the corresponding extension of Z by G is a finitely generated torsion free
elementary amenable group which is not virtually solvable.

LEMMA 1. Let G be a finitely generated infinite elementary amenable
group. Then G has normal subgroups K < H such that G/H is finite,
H/K is a free abelian of positive rank and the action of G/H on H/K by
conjugation is effective.

PROOF. By transfinite induction on a(G) we may show that G has a
normal subgroup K such that G/K is an infinite virtually abelian group
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(that is, in Xi). We may assume that G/K has no nontrivial finite normal
subgroup. If H is a subgroup of G which contains K and is such that H/K
is a maximal abelian normal subgroup of G/K then H and K satisfy the
above conditions, n

We may extend the notion of Hirsch length to elementary amenable groups
as follows. In general it shall be a nonnegative integer or oo. If G is in
Xx, that is, has a finitely generated abelian subgroup A of finite index, let
h(G) = rank A. Suppose that the Hirsch length has been defined for all groups
in Xa and that a{G) = a + 1. If G is in LXa let h(G) = lub{h(F)\F is
an A^-subgroup of G} . If G is not in LXa but has a normal subgroup K
in LXa with quotient in Xx, let h(G) = h(K) + h{G/K). In the following
theorem we shall show that this sum is independent of the choice of such a
normal subgroup.

THEOREM 1. Let G be an elementary amenable group. Then

(a) h(G) is well defined,
(b) if H is a subgroup of G then h{H) < h{G),
(c) h(G) = \ub{h(F)\F is a finitely generated subgroup of G}, and
(d) if H is a normal subgroup of G then h(G) = h{H) + h(G/H).

PROOF. We shall prove all four assertions simultaneously by induction on
a(G). They are clearly true when a(G) = 1. Suppose that they hold for all
groups in Xa and that a(G) = a+1. If G is in LXa then so is any subgroup,
and (a) and (b) are immediate, while (c) follows since it holds for groups in
Xa and since each finitely generated subgroup of G is an ^-subgroup. To
prove (d) we may assume that h(H) is finite, for otherwise both h(G) and
h(H) + h(G/H) are oo, by (b). Therefore by (c) there is a finitely generated
subgroup J of H with h{ J) = h{H). Given a finitely generated subgroup
Q of G/H, we may choose a finitely generated subgroup F of G containing
J and whose image in G/H is Q. Since F is finitely generated it is in Xa

and so h(G) = h(H) + h{Q). Taking least upper bounds over all such Q we
have h(G) > h(H) + h(G/H). On the other hand if F is any A^-subgroup
of G then h(F) = h(F n H) + h{FH/H), since (d) holds for F, and so
h(G) < h(H) + h(G/H). Thus (d) holds for G also.

Now suppose that G is not in LXa, but has a normal subgroup K in
LXa such that G/K is in Xx. If Kx is another such normal subgroup then
(d) holds for K and Kx by the hypothesis of induction and so h (K) =
h(K n #,) + h(KKx/K{) and h(Kx) = h{K n KJ + h(KKJK). Since we
also have h(G/K) = h{G/KKx) + h(KKx/K) and h(G/Kx) = h(G/KKx) +
h(KKx/Kx) it follows that h(Kx) + h(G/Kx) = h(K) + h(G/K) and so h(G)
is well defined. As any subgroup of G is an extension of a subgroup of G/K
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by a subgroup of K, (b) follows easily. By the hypothesis of induction, (c)
holds for K. Therefore if h(K) is finite K has a finitely generated subgroup
/ with h(J) = h(K). Since G/K is finitely generated there is a finitely
generated subgroup F of G containing / and such that FK/K = G/K.
Clearly h{F) = h(G). If h(K) is infinite then for every n > 0 there is a
finitely generated subgroup Jn of K with h(Jn) > n. In either case, (c)
also holds for G. If H is a normal subgroup of G then H and G/H
are also in Xa+l, while H n K and / / tf / tf = K/H nK ae in L* a and
HK/K = H/H n tf and G/HK are in AT,. Therefore

h(H) + h(G/H) = h(H nK) + h{HK/K) + h(HK/H) + h(G/HK)
= h(H DK) + h(HK/H) + h(HK/K) + h(G/HK).

Since K is in LXa and G/K is in X{ this sum equals h(G) = h(K) +
h{G/K) and so (d) holds for G. This completes the inductive step.

It is easy to see that a group is elementary amenable of Hirsch length 0 if
and only if it is locally finite. More generally if G is elementary amenable
and H is a locally finite normal subgroup of G then h{G/H) = h{G). Our
next theorem shows that elementary amenable groups of small Hirsch length
are extensions of solvable groups by locally finite normal subgroups.

THEOREM 2. Let G be an elementary amenable group and let T be its
maximal locally finite normal subgroup. If h(G) is finite then G is in
LXh(G)+\ • V h(G) < 3 then G/T is solvable, of derived length at most 5.
Moreover if h(G) = 1 or 2 and G is finitely generated then G/T is virtually
torsion free.

PROOF. The first assertion follows by induction on h(G), from Lemma
1. To prove the other assertions we may assume that T = 1. We may also
assume that G is finitely generated, for although a locally solvable group need
not be solvable, it is solvable of derived length at most d if every finitely
generated subgroup is solvable of derived length at most d. If h(G) = 0
then G is finite and hence trivial. Therefore we may also assume that G is
infinite, and so by Lemma 1 it has normal subgroups K < H with H/K = ll
for some 0 < r < h{G) and G/H isomorphic to a subgroup of GL(r, Z).
Clearly h(K) = h(G) - r. If h(G) = 1 then K is trivial and G = Z
or (Z/2Z) * (Z/2Z); hence G is metabelian and virtually torsion free. If
h(G) = 2 then either H = Z2 and G/H is a finite cyclic or dihedral group,
or h(K) = h{G/K) = 1. In the latter case the Hirsch-Plotkin radical \fK
of K is a torsion free rank 1 abelian subgroup of index at most 2 in K and
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G/\/K has an infinite cyclic subgroup of index at most 4. In both cases G
has derived length at most 3 and is virtually torsion free. If h(G) = 3 then
either H = Z3 and G/H has derived length at most 3, or K is metabelian
and G/K has derived length at most 3, or K has derived length at most 3
and G/K is metabelian; in all cases G is solvable and of derived length at
most 5.

The argument breaks down for larger values of h as GL(/z, Z) may then
have nonsolvable finite subgroups. However this result is all that we shall
need. (See [25] for a more general result.)

2. Localizing group rings

Kropholler, Linnell and Moody have shown that if G is an elementary
amenable group with finite subgroups of bounded order and with no non-
trivial finite normal subgroup then Q[G] has a classical ring of fractions
which is a matrix ring over a division ring [18]. That is, there is a division
ring D and an embedding i: Q[G] —> Mn{D) (where n is the l.c.m. of the
orders of the finite subgroups of G) such that the image of every nonzero
divisor of Q[G] is invertible in Mn(D) and every element of Mn(D) can
be uniquely expressed in the form i(S)~ i(y) for some y and S in Q[G].
Since a finitely free left Mn (Z>)-module is a finite dimensional left .D-vector
space, every onto endomorphism of such a module is an isomorphism. A
ring for which this holds is said to have the strong invariant basis number
property, or to be an SIBN-ring. Equivalently, a ring R is an SIBN-ring if
whenever a stably free left i?-module M satisfies M © Ra = Rb for some
integers a, b > 0 the difference b - a depends only on M, and is 0 only if
M = 0.

We shall show that certain localizations of group rings are SIBN-rings, by
adapting Rosset's argument with the help of [18] and of another result of
Linnell. He has shown that if N is an elementary amenable group in which
the finite subgroups have bounded order then the action of each nonzero
divisor of C[N] by left multiplication on L2(N,fic) is injective [19]. (Here
Hc is counting measure on N, that is, the Haar measure for the discrete
topology on N. Whether a similar result is true of all torsion free groups
remains an open question [5].)

THEOREM 3. Let G be a group with an elementary amenable normal sub-
group N whose finite subgroups have bounded order and with no nontrivial
finite normal subgroup, and let M be the classical ring of fractions for Q[N].
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Then Q[G]S = M®Q[N] Q[G] is an SIBN-ring in which Q[G] embeds and is
flat as a Q[G]-algebra. If N is nontrivial then Q[G]S ®Q[G] Q = 0.

PROOF. Since M is a classical ring of fractions for Q[N] it is a direct
limit of free right Q[iV]-modules and so is flat as a Q[N]-a\gebra. Therefore
Q[G]S = M <8>G[AT] Q[G] is ^ a t a s a right Q[G]-module. We may define a
multiplication which makes this module into a g[G]-algebra by

for rx and r2 in Q[N], sx and s2 in Q[N] - {1} and a and fi in G. The
assumptions on N imply that if it is nontrivial it must have an element n of
infinite order. Since n - 1 is then a nonzero divisor in Q[N] it is invertible
in M and hence in Q[G]S, and as it annihilates the augmentation module
Q it follows that Q[G]S ®Q[G] Q = 0. That Q[G]S is an SIBN-ring follows
as in [23], from [19, Theorem 4] instead of Rosset's 3.4.

Our original version of Theorem 3 assumed Linnell's result as one of the
hypotheses. Theorem 3 is also implicit in the introduction to [19].

Goodearl used a more conservative localization, in which just products of
terms of the form q-u with q in Q and v in N - { 1 } were inverted [10].
It is easy to verify that such terms act injectively on L2(N, fic): in effect
we may reduce to the case when N is generated by v . If N is abelian the
multiplicative system 5" generated by such terms is a left Ore set in C[G],
that is, the direct limit of the right module homomorphisms {s: C[G] —>
C[<J]|.S in S} forms a ring. However this is not clear in general.

3. Applications to 2-complexes and 4-manifolds

The arguments of Theorems 1 and 3 of Chapter 3 of [15] depend only on
the existence of an embedding of the group ring into an SIBN-ring which is
flat as an algebra over the group ring and such that the tensor product with the
augmentation module is trivial. (This strategy was first applied, in a special
case, in [13].) Thus the next two theorems follow from [18] and Theorem
3 without further argument. (Note however that Theorem 4 is formulated
in terms of the " [G, m]-complexes" of [6] rather than 2-complexes as in its
model in [15].)

THEOREM 4. Let X be a finite m-dimensional cell complex with Uj(X) = 0
for 2 < j < m - 1, and let G = nx(X). Suppose that G has a nontriv-
ial elementary amenable normal subgroup U whose finite subgroups have
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bounded order and which has no nontrivial finite normal subgroup. Then
(-l)mX{X) >0,and x{X) = 0 if and only if X is aspherical.

COROLLARY. If a finitely presentable group G has such a subgroup it has
deficiency at most 1. / / def G = 1 and G^I then c.d. G = 2 and either G
is metabelian or U = Z.

Is the corollary still true if we assume merely that G has an infinite normal
subgroup U which has no nonabelian free subgroup?

Fornera has shown that if a connected finite complex X has a regular
covering X whose automorphism group has a nontrivial abelian normal sub-
group A which is not a torsion group and if for each n > 0 either there is
an element of infinite order in A which acts nilpotently on Hn(X; Q) or
Hn(X\ Q) has finite dimension then x(X) = 0 [8]. (This extends earlier
results of [6] and [7].) This may be further extended by allowing A to be an
elementary amenable group which is not a torsion group and such that the
finite subgroups of the quotient of A by its maximal locally finite normal
subgroup have bounded order.

THEOREM 5. Let M be a closed 4-manifold. Suppose that there are nor-
mal subgroups T < U of G = nx(M) and a subring R of Q such that
Hom(T/T',R) = 0, HS(G/T; R[G/T]) = 0 for s < 2 and U/T is a non-
trivial elementary amenable group whose finite subgroups have bounded order
and which has no nontrivial finite normal subgroup. Then x(Af) > 0 and the
covering space MT of M with group T is R-acyclicifandonlyifx(M) = 0.

For another example showing that some condition is needed on the group,
note that the manifold S1 x S2#Si x S3 has fundamental group free of rank
2 and Euler characteristic - 2 .

If h(G/T) > 2 the cohomological condition is always satisfied. On the
other hand, if h(G/T) = 1 or 2 then G/T has a nontrivial torsion free
abelian subgroup which is characteristic and so we may be able to apply the
ad hoc arguments of [15, Chapters 3 and 4].

LEMMA 2. Let G be elementary amenable and let W be a free left R[G]-
module, where R is a ring. Then HS(G; W) = 0 for all s < h(G).

PROOF. We argue by transfinite induction. The result is well known for G
in Xx. If it is true for all groups in XQ then it is true for all groups in LXa

by [22, Lemma 4.1]. The inductive step then follows for groups in Xa+X on
applying the LHS spectral sequence.
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It follows easily from this lemma that h{G) < c.d.RG, for any elementary
amenable group G and ring R.

THEOREM 6. Let M be a closed 4-manifold with x(M) = 0. Suppose that
G = nx(M) is elementary amenable, and that if T is the maximal locally-
finite normal subgroup of G then the finite subgroups of G/T have bounded
order. Then either

(a) G/T = Z or (Z/2Z) * (Z/2Z) and T is finite (that is, G has two
ends); or

(b) G/T is solvable and has a subgroup of finite index which is an exten-
sion of Z by a subgroup of Q;or

(c) G/T is virtually poly-Z and h(G/T) = 4. In this case, if T is finite
then M is aspherical.

PROOF. Since ^(M) = 0 the fundamental group G must be infinite, and
so h(G/T) > 0. Suppose first that h(G/T) = 1. After passing to a subgroup
of finite index if need be, we may assume that G/T = Z and M is orientable.
The argument of the first paragraph of Theorem 6 of Chapter 3 of [ 15] applies
to show that T is finite. Therefore G has two ends, and so (a) holds. If
h(G/T) = 2 then G/T is solvable and virtually torsion free by Theorem 2.
It is easily checked that a finitely generated torsion free elementary amenable
group of Hirsch length 2 is an extension of Z by a subgroup of Q. If
h(G/T) > 2 then by Lemma 2 we may apply Theorem 5 (with R = Q) and
so G/T is a PD+-group over Q. In particular h(G/T)<4, by Lemma 2. It
now follows from Lemma 1 and Theorem 2 that G/T is virtually solvable.
Therefore G/T must be virtually poly-Z, by a result of Kropholler [17],
and so h(G/T) = c.d.QG/T = 4 . The final remark follows from Theorem 5
as M then has a finite covering space whose group is a torsion free poly- Z
group of Hirsch length 4.

In cases (b) and (c) must G be torsion free? (Cf. pages 64-70 and 104-
105 of [15].)

COROLLARY. If G is torsion free then either G = Z or G is an ascending
HNN extension with a presentation {a, t\tat~l = a") for some n ^ 0 or M
is aspherical and G is virtually poly- Z of Hirsch length 4.

PROOF. The cases when h(G) = 1 or h{G) > 2 are immediate from
the theorem. Thus we may suppose that G has a normal subgroup H of
finite index which is an extension of Z by a nontrivial subgroup of Q.
In particular the Hirsch-Plotkin radical \[G is nontrivial. Since \[G is a
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torsion free locally nilpotent group of Hirsch length at most 2 it is abelian.
If h{y/G) = h{G) then G/VG is finite, so y/G^Z2 and G s Z2 or ZxZ.
Otherwise \/G has rank 1 and G/\fG has 2 ends. Therefore G has a normal
subgroup B containing \/G such that G/B s Z or (Z/2Z) * (Z/2Z) and
B/\fG is finite. Since B is torsion free it must in fact be abelian, and so
B = \/G. Thus we may assume that H has index at most 2. Since G is
finitely presentable so is H and therefore it is an ascending HNN extension
over a finitely generated base [1]. The base must be Z and the associated
subgroups Z and «Z, for some n ^ 0. Thus H has a presentation of the
above form. As we are assuming that >/G has rank 1 we must have n ^ 1
or - 1 . It is not hard to see that such a group cannot be a subgroup of index
2 in a torsion free group. Hence H = G and the corollary is proved.

Theorem 6 and its corollary may be used to strengthen some of the results
of [15, Chapter 6]. Note that Theorem 1 of that chapter needs correction—
the third sentence is wrong, as a locally nilpotent group need not have a
nontrivial abelian normal subgroup. (Compare with the example in Section
1 above.) However this is true in all the applications of the theorem later in
the chapter, and Theorem 3 above may be used to show that the statement
of the theorem is correct as it stands.
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