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We introduce a definition of a Schunck class of periodic abelian-by-finite soluble groups using major
subgroups in place of the maximal subgroups used in Finite groups. This allows us to develop the theory as in
the finite case proving the existence and conjugacy of projectors. Saturated formations are examples of
Schunck classes and we are also able to obtain an infinite version of Gaschutz O-subgroups.
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1. Introduction

The generalization of Sylow and Hall subgroups in finite soluble groups led to the
definition of saturated formations and their associated projectors by Gaschutz [3] in
1963. These were then extended further to Schunck classes and their projectors by
Schunck [8] in 1967. An account of this theory is given in Chapter III of [1]. For
locally finite-soluble groups there has been a number of successful extensions of the
theory of formations; in particular, it was shown in [2] that this could be carried out in
classes with a good Sylow theory including periodic soluble linear groups and periodic
almost locally nilpotent groups.

To date there has been no attempt to extend the idea of a Schunck class to infinite
groups. The main reason is that the definition of a Schunck class involves the primitive
homomorphic images of finite soluble groups which are related to their maximal
subgroups. In infinite groups there are usually insufficient maximal subgroups and if a
maximal subgroup has infinite index it is not clear that the corresponding homomorphic
image will behave in any way like a finite primitive soluble group.

Here we suggest a possible approach replacing maximal subgroups by the major
subgroups which we introduced in [9]. We work within the class 2IS* of periodic
soluble abelian-by-finite groups. We showed in [10] that the major subgroups work
particularly well in the class of nilpotent-by-finite groups and it seems possible that our
results could be extended to that class; however we shall see that the almost abelian
condition is required for other aspects of our proof.

We begin by recalling the definition and basic properties of major subgroups of 91S*-
groups and introducing semiprimitive Chernikov groups which will be our infinite
analogue of primitive finite soluble groups. In Section 3 we define a Schunck class 3£ of
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9lS*-groups and prove the main result, that each 9lS*-group has a single conjugacy
class of ^-projectors.

We see that saturated formations of 2l<3*-groups are examples of Schunck classes and
that we can also define Gaschiitz fi-subgroups (see [1, p. 311] or [4, p. 23]). This latter
example does generalize the results in the finite case but requires a definition which is
rather more complicated than the original finite version.

2. Major subgroups and semiprimitive Chernikov groups

Let U be a subgroup of the group G and consider the properly ascending chains

from U to G. We define m(U) to be the least upper bound of the types a of all such
chains. Thus m(U) is a measure of how far from G the subgroup U is; m(U)= 1 if and
only if U is a maximal subgroup of G. A proper subgroup M of G is said to be a major
subgroup if m(U) = m(M), whenever M^U<G. The intersection of all major subgroups
of G is denoted by fi{G), which coincides with the Frattini subgroup <p(G) if G is finitely
generated.

Proposition 2.1. [9, Lemma 2.3]. Every proper subgroup of a group G is contained in a
major subgroup of G.

In [10], we considered the major subgroups of nilpotent-by-finite groups and
obtained the following result.

Proposition 2.2. [10] Let A be a nilpotent normal subgroup of finite index in G.
(i) / / M is a major subgroup of G, then M^A' and G/MG is a Chernikov group.
(ii) / / M is a non-maximal major subgroup of G, then A/MG is a divisible Chernikov

p-group, for some prime p, and is divisibly irreducible as a Z(G/A)-module.

As usual, a divisible abelian p-group A which is a ZG-module for some group G is
said to be divisibly irreducible if every submodule of A is finite (see [5], for example).

We use the notation MG to denote the core of M in G. A finite soluble group G is
primitive if it contains a maximal subgroup M such that AfG=l. Then the Fitting
subgroup of G is the unique minimal normal subgroup A of G and the complements of
A in G are the conjugates of M. As a ZM-module, A is faithful and irreducible. The
terminology comes from the theory of permutation groups; a finite soluble group G is
primitive if and only if it has a faithful primitive permutation representation (on the
cosets of M).

Corresponding to this we define a semiprimitive group G to be the split extension of a
faithful divisibly irreducible ZM-module D by the finite soluble group M. In such a
group, M is a major subgroup of G and MG= 1. An infinite soluble Chernikov group G
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is semiprimitive if and only if G has a transitive faithful permutation representation in
which all the non-trivial G-blocks are finite.

Proposition 2.3. With the notation above, let G = DM be a semiprimitive Chernikov
group. Then

(i) D = Fit(G),
(ii)

Proof, (i) Suppose N is a normal nilpotent subgroup of G. Then ND is nilpotent and
so D^Z(ND). Therefore NDnM<tDM = G and so NDnM = l. It follows that
ND = NDnMD = (NDr\M)D = D and so N^D.

(ii) Writing G = DM, consider the map q>: G-*G defined by (dm)q> = d"m.
We have

{{dxml){d2ml))(p = (<*,<£'' 'mim2)(P = d?(dS)-' 'mim2 = dfadfa

and so q> is a homomorphism. Since D is divisible, <p is surjective and clearly
ker <p = Qi(D). Thus G/Q^DJ^G and, by induction, G/iln(D)sG.

3. Schunck classes and projectors

Let X be a class of groups and X a subgroup of G. Then X is an 3£-projector of G if
XN/N is a maximal X-subgroup of G/N, for each N o G.

We consider what conditions on 3E are needed to ensure that every 2l<3*-group has X-
projectors. The main problems concern the semiprimitive Chernikov groups.

Lemma 3.1. Let G be an infinite semiprimitive Chernikov group and let X be a
Q-closed class of groups such that G has an X-projector X. If G is the union of an
ascending chain of X-subgroups then G is an X-group.

Proof. Let G = DM = \Jfl1Hi, with H , e l There is an integer k such that
and so DH( = G, for all i>fc. In particular G/DeX and so DX = G.

Suppose, if possible, that X^G. Then D n X is a proper normal subgroup of G and
the hypotheses of the lemma pass to G/D n X. We may therefore assume that D n X = 1
and so X is finite.

For some i ̂  k, write K = D n //,<: D//, = G. Then HJK and XK/K are complements
to D/K in G/K. Since D//C is abelian, there is an automorphism <p of G/K mapping
HJK to XK/K [6, Hilfssatz VI.7.14]. But HJK<Hi+l/K and so XK/K<(Hi + 1/K)v,
contrary to XK/K being a maximal 3E-subgroup of G/K. This contradiction shows that
X — G and so G e 3E.

It follows from this lemma that if we are to define a Schunck class X of 2IS*-groups
so that every 9IS*-group has J-projectors we need a condition that every semiprimitive
group that is a union of X-groups is also an 3E-group. Without imposing a condition of
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this type we could take X to be the class of all finite soluble groups when it is clear that
an infinite periodic abelian group does not even possess maximal I-subgroups.

Our aim is to define Schunck classes by concentrating on the finite primitive and
infinite semiprimitive homomorphic images of a group so that G e X if and only if all its
primitive and semiprimitive images are in X. A further problem can arise here since a
straightforward definition along these lines would allow us to consider the single
primitive group C2 and the semiprimitive group H = C3« xi C2 in which an element of
order 2 inverts every 3-element. We could define a group G to be an 3E-group if these
are its only primitive and semiprimitive images. But in the group

/ C O N

G= Dr C3n xiC2,

in which an element of order 2 inverts every 3-element, the only 3E-subgroups are of
order 2, whereas G has a homomorphic image isomorphic to H so that G does not have
an jE-projector. The difficulty here is caused by H not being the union of finite X-
groups. We therefore include this in our definition.

Definition 3.2. A Schunck class of 9IS*-groups is a subclass X of SIS* satisfying the
following conditions

(S1)QX = X,
(52) an infinite semiprimitive Chernikov group H is an 3£-group if and only if H is the

union of an ascending chain of finite JE-groups,
(53) if G is an 9IS*-group such that every finite primitive image and every infinite

semiprimitive image is an 3E-group, then G is an £-group.

It should be noted that the class of finite 3E-groups forms a Schunck class of finite
soluble groups and so our results will, in fact, be generalizations of the "classical" results
for finite soluble groups.

Although we do not use the result in its general form, the condition (S2) leads easily
to a local closure property of X.

Lemma 3.3. Let X be a Schunck class ofH<5*-groups. Then

L£n SIS* =3E.

In particular, an X-subgroup of an SIS *-group is contained in a maximal X-subgroup.

Proof. Let GeLXnSIS*; if G$X then it has a finite primitive image G/K$X or an
infinite semiprimitive image G/L $ X. But G has an X-subgroup F such that KF = G and
so G/K^F/Fr\KeQX = X. Also G/LeQLX=LX and so G/L is the union of an
ascending chain of 3E-subgroups. It follows from (S2) that G/LeX.

If M is a major subgroup of the 9lS*-group G then G/MG is either a finite primitive
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group or an infinite semiprimitive group. It is clear therefore that n(G) is the intersection
of all L*aG such that G/L is either finite primitive or infinite semiprimitive. The
"saturation property" for X follows immediately.

Lemma 3.4. Let X be a Schunck class of SIS*-groups and let Ge2I<3*. Then GeX if
andonlyifGln(G)eX.

4. ^-projectors

Having obtained the elementary properties of the Schunck class X we can now prove
the main theorem. Although proof is based on the approach given by Gaschutz [4], it
will be seen that the induction arguments used in the finite case require considerable
modification.

Throughout this section 3E denotes a Schunck class of 9tS*-groups.

Lemma 4.1. Let A be an abelian normal subgroup of the ^HQ*-group G and let X be
an X-subgroup of G such that AX = G and G/A n X eX. Then G is an X-group.

Proof. If G $ X then G has a finite primitive or infinite semiprimitve image G/K $ X.
Since G/AnXeX, K^AnX. Therefore K<{AnX)K^AK. If (AnX)K = AK, then
XK = XAK = G so that G/K^X/X nK contrary to G/K^X. Therefore we may assume
that

K<(AnX)K<AK. (•)

(a) G/K finite primitive. In this case (A n X)K/K and AK/K are nontrivial abelian
normal subgroups of G/K and so are equal (both being Fit(G/K)) contrary to (*).
(b) G/K infinite semiprimitive. In this case

K<(AnX)K<AK^D,

where D/K = D(G/K) = Fit(G/K), (2.3(i)).
Since D/K is divisibly irreducible, {AnX)K/K is finite and so (AnX)K^Dn, for

some n, where DJK = iln(D/K). Since G/AnXeX, this shows that G/DneX and so, by
Lemma 2.3(ii), G/KeX. This final contradiction shows that G must be an 3E-group.

Lemma 4.2. Let A be an abelian subgroup of the 91S*-group G such that G/A is a
finite X-group. Then

(i) G has an X-subgroup X such that ASX = G,
(ii) if X and Y are maximal X-subgroups of G such that AX = A Y= G, then X and Y

are conjugate in G.

Proof, (i) There is a finite subgroup F of G such that AF = G. Thus F/A nFeX and,
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by Lemma 11.11 of [3], there is an S-subgroup X of F such that (AnF)X = F. Hence
AX = AF = G.

(ii) Since A is abelian, A n X~a AX = G and, similarly, AnYoG. Hence
M = {AnX)(An Y)~aG.

Let U = (X, y>; then U/M is generated by the subgroups MX/M and MY/M. But

MXnA = X(An Y)nA=(AnX)(AnY) = M

so MX/M^G/A is finite. Hence U/M is finite and we prove the result by induction on
I U/M |.

First, suppose U/M e X. The group C///1 n X has an ^-subgroup (/I n A") y/(/l n X)
and an abelian normal subgroup A n U/A n X. Since (A n U) n (A n X) y= M, we can
apply Lemma 4.1 to deduce that U/A nXeX. But now U has an 3E-subgroup X and an
abelian normal subgroup A nU satisfying the hypotheses of Lemma 4.1 and so U e 3E.
But U = (X, Y} and A", Y are maximal 3E-subgroups of G, so C/ = X=y. We may
therefore assume that U/M $ X.

Then U/M has a finite primitive homomorphic image U/K $ X. Since U/A nU eX,
K^AnU and so (An U)K/K = Fit(U/K). Since KX/K and KY/K are 3E-groups, they
are complements to Fit(U/K) in 1///C and so are conjugate by an element of Fit(U/K).
That is, there is an element aeA, such that (KY)" = KX. Consider the subgroups X and
Y". Clearly A n Ya = A n Y and so (AnX)(AnYa) = M but (X, Y"}^KX<U. Thus
|<X, yf l>:(/ln.XX4ny< I) |<|l/ /M| and, by induction, X and ya are conjugate. Hence
X and yare conjugate.

It was suggested in the Introduction that it might be possible to develop this theory
in almost nilpotent groups. However the above proof relies heavily on the opening
remark that A n X < AX = G and we have been unable to produce a satisfactory version
of this lemma for nilpotent-by-finite groups. This lemma is used in showing that the X-
subgroups obtained do, in fact, cover all 3E-images of G.

Lemma 4.3. Let A be an abelian normal subgroup of the <il<B*-group G with G/A a
finite X-group and let X be a maximal X-subgroup of G such that AX = G.

IfN^A with NoG and G/NeX, then NX = G.

Proof. Suppose NX¥=G. Then AnNX<iAX = G and A/An NX is a nontrivial
abelian normal subgroup of G/A r> NX.

If A/A n NX has a nontrivial finite image then there is a subgroup B-o G with
N(A nX) = An NX^B<A and G/B a finite I-group.

By Lemma 4.2, G has a maximal it-subgroup ysuch that BY=G and hence AY=G.
By Lemma 4.2(ii), Y and X are conjugate and hence BX = G. But this is contrary to
A n BX = B(A n X) = B < A.

So we may assume that A/A n NX is divisible and so there is a subgroup Bo G with
A n NX^B<A and G/B a Chernikov 3E-group. There is then a subgroup KoG with
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and G/K an infinite semiprimitive 3£-group. By condition (S2), G/K is the union
of an ascending chain of finite 3E-subgroups HJK.

We show that HJAnKeX. Since G/K is semiprimitive, there is a finite subgroup
V/K such that G/K = {AK/K)x(V/K) and integer k such that V^Hh for all i>fc. Now
A n K = A n V and so K//4 nKsG/AeX. Let W//1 n K be a maximal 3E-subgroup of
Ht/AnK containing V/AnK; then (AnH,)W=AVnHi=Hi and so W/AnK is an
S-projector of HJAnK [3, Corollary 11.13]. It follows that KW=Hc but W^V^K
and so W= f/, and HJA nKeX, as required.

Since BX/B is finite, there is an integer m such that X^Hi and HJAnKeX, for all
i^m. By Lemma 4.2, //, has a maximal ^-subgroup S such that (AnK)S = Hi and
hence (AnHi)S = Hi. Also (AnHi)X = Hi and so, by Lemma 4.2(ii), S and X are
conjugate in //,. It follows that (A n K)X = Ht and hence KX = Hh for all i^m. This is
contrary to KX/X being finite and so we must have NX = G.

Lemma 4.4. Lei A be a normal abelian subgroup of the {H<B*-group G such that G/A
is a finite X-group and let X be a maximal X-subgroup of G such that AX = G.

If No G then NX/N is a maximal X-subgroup of G/N.

Proof. (l)
Suppose NX^X* with X*/NeX. Applying Lemma 4.3 in the group X* noting that

(AnX*)X = X*, we obtain NX = X* and so NX/N is a maximal S-subgroup of G/N.
(2) General case Now NnA*oG and, by case (1), (N nA)X/N nA is a maximal X-

subgroup of G/N n A. Thus we may assume that N nA = l and so N is finite.
By induction, we may assume that N is a minimal normal subgroup of G and so is

abelian. Since NnA = l, it follows that AN is an abelian normal subgroup of G
containing N. We can therefore apply case (1) again with AN replacing A.

Theorem 4.5. Let X be a Schunck class of SIS*-groups; then the 9lS*-group G has
X-projectors and any two X-projectors of G are conjugate in G.

Proof. Let A be an abelian normal subgroup of finite index in G. By the finite case,
G/A has an 3E-projector X/A. By Lemma 4.2(i), X has a maximal 3E-subgroup X such
that AX = X.

Let N<i G; we show that NX/N is a maximal J-subgroup of G/N. Applying Lemma
4.4 to the normal subgroup N n X of X, we see that (N n X)X/(N nX) is a maximal
3E-subgroup of X/N n X. The isomorphism between NX/N and X/N n X shows that
NX/N is a maximal I-subgroup of NX/N.

Suppose that NX^X* with X*/NeX. Since NX/AN is a maximal 3E-subgroup of
G/AN and NX = ANX^AX* we have NX = AX* and so X*^NX. But NX/N is a
maximal X-subgroup of NX/N and so NX = X* and NX/N is a maximal 3E-subgroup of
G/N. Thus X is an 3E-projector of G.

If X and Y are 3E-projectors of G, then AX/A and /4 y//4 are ^-projectors of G/A and
so are conjugate in G/A. We may therefore assume that AX = AY. Now it follows from
Lemma 4.2(ii) that X and Y are conjugate.
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Corollary 4.6. Let GeWZ* and NoG. Then the X-projectors of G/N are the
subgroups NX/N, where X is an X-projector of G.

Proof. It is clear that if X is an 3£-projector of G then NX/N is an X-projector of
G/N.

Let X/N be an ^-projector of G/N. Then X/N is conjugate to NX/N and so X = NX9

and X9 is an ^-projector of G.

The proof of Theorem 4.5 actually contains the following useful fact.

Lemma 4.7. Let A be a normal abelian subgroup of finite index in the tl<5*-group G
and let X/A be an X-projector of G/A. If X is a maximal X-subgroup of X such that
AX = X, then X is an X-projector of G.

Corollary 4.8. Let X be an X-projector of the 2IS*-growp G and let L be a subgroup
of G containing X. Then X is an X-projector of L.

Proof. Let A be a normal abelian subgroup of finite index in G. Then AX/A is an
3E-projector of G/A. By the finite case, AX/A is an 3E-projector of AL/A and hence
(A n L)X/(A n L) is an ^-projector of L/A r\ L. The result now follows from Lemma 4.7.

It follows from Corollary 4.8 that the 3£-projectors of an 9IS*-group G can also be
characterised as the X-covering subgroups of G, as in the finite soluble case.

5. Examples

5.1. Saturated formations

Let n be a set of primes and, for each pen, let f(p) denote a formation of finite
soluble groups. The saturated formation g of 9lS*-groups defined by f is

pen

An 9lS*-group G is an g-group if and only if G is a 7t-group and, for each p-chief
factor U/VofG, G/Cc(l//K)ef(p).

It is clear that g satisfies condition (SI) of the definition. Now let G = D>iM be a
semiprimitive Chernikov group with D a p-group. First suppose that Geg; then M s
G/De5- If H is a finite subgroup of G containing M and U/Vis a p-chief factor of H
with U^DnH, then U/Vis a p-chief factor of G and H/CH(U/V)^G/CG(U/V)e^(p). It
follows that He3 and so G is the union of an ascending chain of finite g-groups.
Conversely, suppose that G = \J?LlHi with H, eg . We may assume that M^H, and so
M^G/D^Hi/DnHieft. If U/V is a p-chief factor of G with U^D then U is finite,
since D is divisibly irreducible. Therefore U^Hj, for some i, and, since DH^G, U/Vis
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a p-chief factor of H,. Therefore G/CG(C//K)stf,/CH|(l//K)ef(p) and so Geg. Thus
condition (S2) is satisfied.

Finally, suppose that G is an 2l<5*-group with every finite primitive and infinite
semiprimitive homomorphic image in g. Then by the residual closure property of g, we
have G//i(G)eg. Since g is saturated, it follows that Geg.

5.2. Gaschutz £2-subgroups

Let Q be a subset of W such that Q' = ^J\Q is multiplicatively closed. A finite soluble
group is then defined to be an fi-group if the index of each maximal subgroup is in the
set fi.

For 9IS*-groups the definition of an fi-group is slightly more complicated as we have
to consider major subgroups and allow for a semiprimitive fi-group being the union of
finite fi-subgroups.

Definition 5.1. An 9lS*-group G is an il-group if, for every major subgroup M of G,
there are subgroups U and Vcontaining M with Vmaximal in U and | U:V\eCl.

Of course, if M is a maximal subgroup of G then this condition simply says that
| G:M | e Q and so for finite soluble groups we have the usual definition. If M is a non-
maximal major subgroup of G, then there is an ascending chain of subgroups

M< F, < Ul s£ V2 < U2 ̂  • • • <G

such that Vj is maximal in [/, and | C/,-.̂  |eQ.
It is not immediately clear that the class of fl-groups forms a Schunck class of 21S*-

groups and to prove this we require the existence in finite soluble groups of Gaschutz
fi-subgroups.

Definition 5.2. A Gaschutz Cl-subgroup of the group G is an Q-subgroup S of G such
that | U:V\$Q whenever S< V< U^G and Kis maximal in U.

Proposition 5.3. [4, Theorem III. 10] The finite Sl-groups form a Schunck class of finite
soluble groups and the projectors of a finite soluble group G are the Gaschutz Q-subgroups
ofG.

We make use of this to prove that the Q-groups form a Schunck class of 9IS*-groups.
It is clear that they form a Q-closed class and, since the definition only refers to finite
primitive and infinite semiprimitive images of G, condition (S3) will also be satisfied.
The only problem arises from the infinite semiprimitive groups and this is dealt with in
the following result.

Lemma 5.4. Let G = D >\M be an infinite semiprimitive Chernikov group. Then G is an
Q-group if and only if G is the union of ascending chain of finite il-subgroups.
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Proof. First, suppose that G = \J?=iHj with Ht a finite Q-group. If L is a maximal
subgroup of G, then L^D and, since G/D^HJD n//,-, for some i, G/D is an Q-group
and so |G:L|eQ. If Lis any non-maximal major subgroup of G then Lis finite and so
L<Hh for some i. There is a subgroup Kt with L ^ X , < / / ; and X, maximal in //,.
Since //, is an Q-group, |//,-:/C, |eQ. Hence G is an Q-group.

Conversely, suppose that G is an Q-group; then G/D is a finite Q-group. Also there is
an ascending chain of subgroups,

M^Vt <U1^V2<U2^ ••• <G

with Vt maximal in t/; and | l/;:^|eQ. Note that if Kt is the core of V{ in [/,- then 1/,/X,-
is an Q-group. Choose subgroups X{ of I/,- such that

and Xt is a maximal Q-subgroup of Ut. Since G = DM we have DXt = G and hence
(Dn l/,)^, = [/;. It follows from Lemma 4.7 that Xt is a projector of Ut and hence
/CiA\ = l/i. Therefore X(>X,,n V,]^Xi n C/i_1>Ar

i_1 and the chain (*) is a properly
ascending chain. Let X = [J'jo

=1Xi; then A' is an infinite subgroup of G and DX = G.
Therefore D n X is an infinite normal subgroup of G and, since D is divisibly irreducible
DnX = D. Therefore G = X = \JfLlXi is the union of an ascending chain of finite
Q-subgroups.

It follows that the class of Q-groups forms a Schunck class of 2l<5*-groups and hence
every 9IS*-group has a conjugacy class of projectors associated with this class. We call
these Q-projectors and the existence and conjugacy of Gaschiitz Q-subgroups is just the
following characterization of Q-projectors.

Proposition 5.5. Let Ge2l<3*; then the Gl-projectors of G are the Gaschiitz Q-
subgroups of G.

Proof. Let X be an Q-projector of G and let U, V be subgroups containing X with V
maximal in U. Consider the finite primitive group U/Vy. By Corollary 4.8, X is an
Q-projector of U and so XVV/VV is an Q-projector of U/Vv. Since V^XVV, it follows
from the finite case that | U: V \ $ Q and so X is a Gaschiitz Q-subgroup of G.

Conversely, let S be a Gaschiitz Q-subgroup of G. Then SN/N is clearly a Gaschiitz
Q-subgroup of G/N for any No G and so it is sufficient to observe that S is a maximal
Q-subgroup of G. Suppose S is properly contained in an Q-subgroup X; then S is
contained in a major subgroup of X. By definition of a Gaschiitz Q-subgroup, every
maximal link above S has index in Q' and so every maximal link between M and X has
index in Q', contrary to X being an Q-group. Therefore S is a maximal Q-subgroup of G
and hence is an Q-projector.

This result would of course be more satisfactory if we could define Q-groups so that
every maximal link above a major subgroup had index in the set Q. However the
following construction shows that this is not possible.

The first part of this construction is based on an example due to Huppert [6, Aufgabe
15 on p. 715]. Let X = <x1; x2, x3> and Y=^yt, y2} be elementary abelian 2-groups of
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orders 23, 22, respectively, and let z = (j», i = l , 2, 3, j=l, 2> be elementary abelian of
order 26. Then we can form a group P of order 211 generated by X and Y in which Z is
central and [xI-,jyJ-]=Zy.

Now P has an automorphism a of order 21 which induces automorphisms a.^ of order
7 on X and oe2 of order 3 on Y. Thus [x,)']a = [*<'">/'2] and a induces an automorphism
of order 21 on Z. If one considers X^GF(23) and at being multiplication by a primitive
element and similarly for the a2 acting on Y^GF{22), then ZsGF(23) ® GF(22)^
GF(26) and a!®a 2 generates GF(26) over GF(2). Therefore Z is an irreducible
<a>-module.

Form the group H = Px<a> so that |f/| = 211.3.7 and let A = ZX and F=y<a>. Then
/I is a GF(2)F-module and A is indecomposable. For, if B is a proper nontrivial F-
submodule of A other than Z, then as <a>-modules A = B®Z and B^3E. But B+X<A
and since A/B^Z is irreducible as an <a>-module we must have B = X. However, X is
not an F-submodule. Therefore A is an indecomposable GF(2)F-module, an extension of
the irreducible Z of dimension 6 by A/Z of dimension 3.

Since the socle of A is irreducible, A can be embedded in a projective indecomposable
GF(2)F-module D^ [7, Lemma VII.10.4] and Soc D^Soc A has dimension 6. Since
A^Dlt Dx has an irreducible factor of dimension 3. [In fact, there are just four
projective indecomposable modules with socles being isomorphic to GF(2), P/A of
dimension 2, A/Z of dimension 3 and Z of dimension 6. The principal block consists of
the first two of these and so £), only has composition factors of dimensions 3 and 6.]

The projective indecomposable GF(2)F-module Dx is also injective [7, Theorem
VII.7.8] and so there is an injective ZF-module D such that fi^DlsD,^, Theorem 4.1].

By [5, Lemma 2.2], D is a sum of divisibly irreducible submodules and so contains a
divisibly irreducible submodule A containing infinitely many composition factors of
dimension 3. But also ADJDn is non-trivial and so contains Soc(D/Dn) = SJDn, which is
irreducible of dimension 6. Therefore A also has infinitely many composition factors
A n SJA n Dn of dimension 6.

Now form G = AxiF; G is a semiprimitive Chernikov group with F being a major
subgroup. Let n = {3, 7, 2, 22, 23}; since A has infinitely many composition factors of
order 23 it follows that G is an fi-group even though there are maximal links of index
26 above every nonmaximal major subgroup.
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