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AH operators considered in this paper are bounded and linear (everywhere defined) on a
Hilbert space. An operator A will be called a square root of an operator B if

A2 = B (1)

A simple sufficient condition guaranteeing that any solution A of (1) be normal whenever B is
normal was obtained in [1], namely : / / B is normal and if there exists some real angle 6 for
which Re(^4el8)^0, then (1) implies that A is normal. Here, Re (C) denotes the real part
\ (C + C*) of an operator C.

The object of the present note is to use the above result to generalize the well-known fact
that a (self-adjoint) non-negative operator has a unique non-negative square root (cf. [3],
p. 256, also [2], p. 725) and to obtain a certain uniqueness theorem for logarithms of positive
self-adjoint operators. The following will be proved :

(I) If Bis a non-negative self-adjoint operator, and if A is any solution of(1) (A not assumed
to be self-adjoint or even normal) satisfying Re (A)^0, then necessarily A is the (unique) non-
negative self-adjoint square root of B.

(II) If A is a logarithm of a positive self-adjoint operator B=jX dE, so that eA = B (> 0), and if

IMII<21og2, (2)

then necessarily A is the self-adjoint operator

= JlogXdE (\ogXreal) (3)

The proof of (I) follows from an application of the italicized assertion in the first para-
graph. For, since B is self-adjoint and hence normal, A is normal. Since the square of any
number in the spectrum of A is in the spectrum of B, it follows that the spectrum of A is real.
Therefore A is self-adjoint and, in view of the assumption Re (A)^0, is non-negative (hence
uniquely determined). This completes the proof of (I).

In order to prove (II), it will first be shown that

eAI2 = ^ l / 2 j ( 4 )

where 2?1'2 denotes the (unique) positive square root of B. To this end, note that

the second inequality following from (2). Hence Re(e J ' 2 )^0 and (4) now follows from (I).
Since the inequality (2) holds also if A is replaced by A/2" for n = 1, 2 , . . . , it follows that

gj4/2"_2?i/2n for 7i = 0, 1, 2, ... . Consequently, erA =Hr for any rational number of the form
r = wi/2" (» = 0, 1, 2, ... ; m = 0, ± 1 , ±2, ...) and hence, by continuity,

eu =B< = f X'dE
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for every real t. A differentiation with respect to t of this (operator) identity yields

AetA = H log \dE\B';

hence for t = 0, the relation (3), at least for some determination of log A. But || A | | ^ | log A | for
every A in the (real) spectrum of B and so relation (2) implies that log A is real. This completes
the proof of (II).
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