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Abstract

We prove the existence of optimal control for nonlinear systems having implicit derivative
with quadratic performance criteria.

1. Introduction

The theory of optimal control of linear systems with quadratic performance
criteria is well developed, where the results are most complete and closest to use
in practical design. The optimal regulator problem for nonlinear systems has
received little attention. For example, Lukes [5] discussed the problem via
Lyapunov-like theory. Yamamoto [7] approached the problem by means of the
contraction mapping principle and proposed a new control scheme to obtain a
quasi-feedback optimal control for nonlinear systems with quadratic perfor-
mance. Colonius and Hinrichsen [2] investigated the optimal control of functional
differential systems via the Dubovitskii-Milyutin Method.

Dacka [4] has introduced a new method of analysis to study the controllability
of nonlinear systems with implicit derivative, based on the measure of noncom-
pactness of a set and the Darbo fixed point theorem. The aim of this paper is to
prove the existence theorem for optimal control of nonlinear systems having
implicit derivative with quadratic performance criteria, by suitably adopting the
technique of Dacka [4]. We shall prove the theorem for a larger class of dynamical
systems as compared with Yamamoto [7].
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2. Mathematical preliminaries

Let (X, || • ||) be a Banach space and £ be a bounded set of X. In this paper the
following definition of the measure of noncompactness of a set £ is used [6]

fi ( £ ) = inf { r > 0; £ can be covered by a finite number of

balls whose radii are smaller than r }.

Its importance follows from Darbo's theorem which states that, "If S is a
nonempty bounded closed convex subset of X and P: S -» S is a continuous
mapping such that for any set E c S we have

where k is a constant, 0 < k < 1, then P has a fixed point".
For the space of continuous functions Cn[t0, tx] with norm

||x|| = max{|x,.(0|: i = I , . . . , * , f e [ f o , ' i ]} ,

the measure of noncompactness of a set £ is given by

p(E)=lwo(E)-± hm+w(E,h),

where w(E, h) is the common modulus of continuity of the functions which
belong to the set £, that is,

w(E,h) = sup [ s u p | x ( 0 - * ( . * ) | : I ' ~ s \ ^ h ] ,
xeE

and for the space of continuously differentiable functions C*[t0, tx] with norm

||*||d=||J>x||c. + Wk.
we have

where

Z)£= {x: *<=£} .

Let us form the Cartesian product

<2+m[t0,ti] = Ql['o>'i] X

with the following norm:
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T h e measure of noncompactness of any set E bounded in C*+m[t0, f j is given by
the relation

n(E) = max[(i(El),n(E2)],

where Ex and E2 are the natural projections of the set E on the spaces Cn
x and

3. Basic assumptions

Consider the nonlinear system

x(<) = A(t)x(t) + B(t)u(t) +f(t,x(t),x(t)) (1)
with initial condition x(t0) = xQ and quadratic performance

J = \x'(t1)Fx(t1)+\fl [x'Q(s)x + u'R(s)u]ds, (2)

where x is an n-vector, u is an m-vector, A(t), B(t) and f(t,x(t),x(t)) are
dimensionally appropriate continuous functions. Further F, Q(s), R(s) are re-
spectively constant, positive semidefinite and positive definite dimensionally
appropriate matrices with continuous entries. The prime indicates the matrix
transpose. Assume that

\\A(t)\\«M, | | a ( r ) | | < J V f o T t e [ t 0 , t l ] ( 3 )
with fixed times t0 and tx,

\f(t,x,y)\<L for t e [t0, tj and x,yeR", (4)
and for every y, y e R" and x e R", t & [t0, t^,

\f(t,x,y)-f(t,x,y)\^k1\y-y\, (5)

where M, N, L and k1 are positive constants such that 0 < kx < \. Define the
norm of a continuous n X m matrix valued function D(t) by

m

|| D (t) || = max £ | du (/) |, where du are the elements of D.
'' y-i

In general, the optimal regulator problem of (1) and (2) can not be solved
analytically, hence for each fixed z e C*[t0, tx], consider the following system

x{t) = A(t)x{t) + B(t)u{t) +f(t,t(t),z(t)). (6)
Since this system is linear, we can analytically solve the regulator problem for (2)
and (6) and obtain the following results [1]:

u(t,z) = -K*(t)x(t)-g*(t,z,z)

= -R-i(t)B'(t)K(t)x(t)>- R-\t)B'{t)g(t, z, z), (7)
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where

K(t) = -K(t)A(t) - A'(t)K(t)B(t)R-l(t)B'(t)K(t) - Q(t), (8)

*('i) = F,

g(t,z,z) = -\A'{t) - K{t)B{t)R-\t)B'{tj\g{t,z,z) - K(t)f(t,z, z),

g(tltz,z) = O. (9)

For this linear regulator problem, if there exists a solution x(t) which agrees with
a predetermined function z(t), then this function is also recognized as a solution
for the original problem of (1) and (2).

4. Existence theorem

THEOREM. / / the nonlinear system (1) with quadratic performance (2) satisfies
the conditions (3) to (5), then the optimal control exists and is given by

u(t,x) = -K*(t)x(t) - g*(t,x,x)

= -R-\t)B'(t)K(t)x(t) - R-\t)B'(t)g(t,x,x), (10)

where

K(t) = -K(t)A(t) - A'(t)K(t) + K(t)B(t)R-\t)B'(t)K(t) - Q(t),

*(h) = F, (11)

and

g{t,x,x) = ~[A'{t) - K{t)B{t)R-\t)B'{t)]g{t,x,x) - K{t)f{t,x,x),

g(tl,x,x) = 0. (12)

PROOF. The solution of (6) with initial condition x(tQ) = x0 is given by

x(t) = F(t, to)xo + / ' F(t, s)B(s)u(s) ds + f F(t, s)f(s, z, z) ds, (13)

where F(t,t0) is the fundamental matrix solution for the homogeneous linear
equation of (6). Substituting (7) into (13), we obtain

x(t) = F(t, to)xo - f F(t,s)B(s)K*(s)x(s) ds

- (' F(t,s)B(s)g*(s, z,z)ds+ (' F(t, s)f(s, z, i) ds. (14)
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with

L x = sup ||A-*(*)||,
se[to>'i]

L2 = sup \g*(t,z,z)\,

a = NL1exp(2M(tl-t0)).

The operator i> maps H into itself. As easily seen, all the functions P(z)(t) with
z e # are equicontinuous, since they have uniformly bounded derivatives. We
shall now find an estimate for the modulus of continuity of the functions
DP(z)(t) for /, s e [/0, r j :

+ \B(t)K*(t)z(t)-B(s)K*(s)z(s)\

+ \B(t)g*(t,z(t),z(t))-B(s)g*(s,z(s),z(s))\

+ \f(t,z(t),z(t))-f(s,z(s),z(s))\. (18)

For the first two terms of the right hand side of (18) we may give the upper
estimate as B0(\t — s\), where Bo is a nonnegative function such that
limA_0+ B0(h) = 0 and that it can be chosen independent of the choice of the
element z e H. Similarly for the last two terms we have the upper estimate as

k2\t(t)-t(s)\ + fii(\*-s\) and ^ | i ( 0 - i ( 5 ) I + B2(\t - s\)
respectively. Letting B = Bo + Bx + B2 and k = kx + k2, then

\DP(z)(t)-DP(z)(s)\*k\z(t)-i(s)\+fi(\t-s\),
and we infer that

w(DP(z), h) < kw{Dz, h) + B(h).
Hence we conclude that, for any set E c H,

p(PE)<kn(E).
Thus, by the Darbo fixed point theorem the operator P has at least one fixed
point; therefore there exists a function z* e Cn

x[/0, tx] such that

x*(t) = z*(t) = P{z*(t)).
This x*(t) satisfies the conditions given in (10) and (12).

REMARK. Regarding the solution of (1), it should be noted that if / satisfies the
Lipschitz condition with respect to the vector x, then the system (1) is well-posed
in the sense of classical theory. We comment that the optimal control obtained in
the above theorem is not easy to implement and hence further research is required
in this direction.
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The equation (14) represents a nonlinear relation between z(s) and x(s) on
[t0, / J . It is sufficient for the existence of the optimal control (10) that at least one
fixed point exists for the nonlinear function (14). Here (14) is equivalent to (15)
for the existence of fixed points:

x(t) = F(t,to)xo- (' F(t,s)B(s)K*(s)z(s)ds

-[' F(t,s)B(s)g*(s,z,z)ds+ f F(t,s)f{s,z,z)ds. (15)

If the nonlinear function / ( / , x, x) satisfies the condition (5), then from (12), we
have [3]

\g(t,x,y)-g(t,x,y)\^fh\X(t,s)K(s)\\f(s,x,y)-f(s,x,y)\ds
Jt

<*i ( ' i - 'o )* i l j ' - .y | .

where X(t, s) is the transition matrix corresponding to the matrix

K(t)B(t)R-l{t)B'(t)-A'(t) and bx = max|Jf(r, s)K(s) \.

Hence it follows that

\g*(t,x,y)-g*(t,x,y)\<\R-l(t)B'(t)\b1k1(ti-to)\y-y\

< t M ( ' i -*o)\y-y\>

where b2 = msK\R-\t)B\t)\. Let k2 = b1b2k1(t1 - to)N be such that 0 < k2 <
1/2. Then

\g*(t,x,y) - g*(t,x,y)\< (kt/N^y - y\. (16)

The equation (15) can be written as

x(t)=P(z)(t), (17)

where P is a nonlinear operator on C*[t0, tt]. This operator is continuous, since
all the functions involved in the operator are continuous. Let us consider the
closed convex subset

H={zeC n
1 [r o , r 1 ] : | | z | |<JV 1 , | |Pz | |<7V 2 },

where the positive real constants Nt and N2 are defined by

+ Lexp(2Af(*1 - <0))]«p(fl(<1 - tQ)),

N2 = (M + NLjNi + NL2 + L,
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