COMPLEMENTATION IN THE GROUP OF UNITS OF MATRIX RINGS

Stewart Wilcox

Let R be a ring with 1 and $\mathcal{J}(R)$ its Jacobson radical. Then $1+\mathcal{J}(R)$ is a normal subgroup of the group of units, $G(R)$. The existence of a complement to this subgroup was explored in a paper by Coleman and Easdown; in particular the ring $R=\operatorname{Mat}_{n}\left(\mathbb{Z}_{p^{k}}\right)$ was considered. We prove the remaining cases to determine for which n, p and k a complement exists in this ring.

1. Introduction

If R is a ring with 1 , let $G(R)$ denote its group of units. If $\psi: R \rightarrow S$ is a ring homomorphism which maps $1_{R} \mapsto 1_{S}$, let $G(\psi): G(R) \rightarrow G(S)$ denote the corresponding group homomorphism. Denoting by $\mathcal{J}(R)$ the Jacobson radical of R, it can be shown that $J(R)=1+\mathcal{J}(R)$ is a normal subgroup of $G(R)$. In [2] results were found about the existence of a complement of $J(R)$. In particular these were applied to partly classify the case when $R=\operatorname{Mat}_{n}\left(\mathbb{Z}_{p^{k}}\right)$ for a prime p and integers $n, k \geqslant 1$. The remaining values of p, n and k are considered in Propositions 4 and 5 to give the following results.

THEOREM 1. Let $R=\operatorname{Mat}_{n}\left(\mathbb{Z}_{p^{k}}\right)$. Then $J(R)$ has a complement in $G(R)$ exactly when

1. $k=1$, or
2. $k>1$ and $p=2$ with $n \leqslant 3$, or
3. $k>1$ and $p=3$ with $n \leqslant 2$, or
4. $k>1$ and $p>3$ with $n=1$.

When $k=1$ the subgroup $J(R)$ is trivial, and so complemented. Theorems 4.3 and 4.5 of [2] can be summarised in the following.

Theorem 2. (Coleman-Easdown) Define R as above. If $p=2$ or 3 and $n=2$, then $J(R)$ has a complement in $G(R)$. If $p>3, n \geqslant 2$ and $k \geqslant 2$ then $J(R)$ has no complement.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.

It is well known (see, for example, $\left[3\right.$, Theorem 11.05]) that there exists $a \in \mathbb{Z}_{p^{k}}$ with order $p-1$. The subgroup generated by a then complements $1+p \mathbb{Z}_{p^{k}}$ in $G\left(\mathbb{Z}_{p^{k}}\right)$, so a complement always exists when $n=1$. Thus it remains to prove existence when $p=2$ with $n=3$, and disprove existence when $p=2$ with $n \geqslant 4$ and $p=3$ with $n \geqslant 3$. Before proving Propositions 4 and 5 , we make some preliminary observations. Since $\mathbb{Z}_{p^{k}}$ is local, clearly $\mathcal{J}\left(\mathbb{Z}_{p^{k}}\right)=p \mathbb{Z}_{p^{k}}$ and $\mathbb{Z}_{p^{k}} / \mathcal{J}\left(\mathbb{Z}_{p^{k}}\right) \cong \mathbb{Z}_{p}$. Let $\phi_{k}: \mathbb{Z}_{p^{k}} \rightarrow \mathbb{Z}_{p}$ be the natural surjection. From [4, Theorem 30.1], we have

$$
\mathcal{J}\left(\operatorname{Mat}_{n}(S)\right)=\operatorname{Mat}_{n}(\mathcal{J}(S))
$$

for any ring S. In particular with $R=\operatorname{Mat}_{n}\left(\mathbb{Z}_{p^{k}}\right)$ as above,

$$
\mathcal{J}(R)=\operatorname{Mat}_{n}\left(\mathcal{J}\left(\mathbb{Z}_{p^{k}}\right)\right)=\operatorname{Mat}_{n}\left(p \mathbb{Z}_{p^{k}}\right)
$$

so that

$$
R / \mathcal{J}(R) \cong \operatorname{Mat}_{n}\left(\mathbb{Z}_{p}\right)
$$

Let $\psi_{n, k}: R \rightarrow \operatorname{Mat}_{n}\left(\mathbb{Z}_{p}\right)$ be the corresponding surjection, which is induced by ϕ_{k} in the obvious way. Then $G\left(\psi_{n, k}\right)$ is surjective with kernel $J(R)$. Thus $J(R)$ is complemented in $G(R)$ if and only if there exists a group homomorphism $\theta: \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right) \rightarrow G(R)$ with $G\left(\psi_{n, k}\right) \theta=\dot{\mathrm{id}}_{\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)}$.

2. Nonexistence

We first reduce to the case $k=2$ and n minimal.
Lemma 3. Assume $k>1$ and let $R=\operatorname{Mat}_{n}\left(\mathbb{Z}_{p^{k}}\right)$ as above. Pick any $m \leqslant n$. If $J(R)$ has a complement in $G(R)$, then $J(S)$ has a complement in $G(S)$ where $S=\operatorname{Mat}_{m}\left(\mathbb{Z}_{p^{2}}\right)$.

Proof: Since $J(R)$ has a complement, the discussion of the previous section shows that there exists $\theta^{\prime}: \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right) \rightarrow G(R)$ with

$$
G\left(\psi_{n, k}\right) \theta^{\prime}=\operatorname{id}_{\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)}
$$

We have a ring homomorphism $\lambda: \mathbb{Z}_{p^{k}} \rightarrow \mathbb{Z}_{p^{2}}$ satisfying $\phi_{2} \lambda=\phi_{k}$. Then λ induces $\mu: \operatorname{Mat}_{n}\left(\mathbb{Z}_{p^{k}}\right) \rightarrow \operatorname{Mat}_{n}\left(\mathbb{Z}_{p^{2}}\right)$, which satisfies $\psi_{n, 2} \mu=\psi_{n, k}$. Thus

$$
\operatorname{id}_{\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)}=G\left(\psi_{n, k}\right) \theta^{\prime}=G\left(\psi_{n, 2}\right) G(\mu) \theta^{\prime}=G\left(\psi_{n, 2}\right) \theta
$$

where $\theta=G(\mu) \theta^{\prime}$. Denote $\psi_{n, 2}$ by ψ_{n}. Let $H \leqslant \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$ be the subgroup consisting of all matrices of the form

$$
\left(\begin{array}{cc}
A & 0 \\
0 & I_{n-m}
\end{array}\right)
$$

where $A \in \mathrm{GL}_{m}\left(\mathbb{Z}_{p}\right)$ and I_{n-m} is the identity matrix of size $n-m$. Then $H^{\prime}=\psi_{n}^{-1}(H)$ contains $\theta(H)$, and consists of those invertible matrices $A=\left(a_{i j}\right)$ which satisfy $a_{i j}-\delta_{i j}$ $\in p \mathbb{Z}_{p^{2}}$ whenever $i>m$ or $j>m$. Pick elements $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ of H^{\prime}, and assume $i, j \leqslant m$ but $l>m$. Clearly $\delta_{i l}=\delta_{l j}=0$ so that $a_{i l}, b_{l j} \in p \mathbb{Z}_{p^{2}}$. Hence $a_{i l} b_{l j}=0$, so that for $i, j \leqslant m$ we have

$$
(a b)_{i j}=\sum_{l=1}^{n} a_{i l} b_{l j}=\sum_{l=1}^{m} a_{i l} b_{l j}
$$

Thus mapping the matrix $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n} \in H^{\prime}$ to $\left(a_{i j}\right)_{1 \leqslant i, j \leqslant m}$ gives a homomorphism $\nu: H^{\prime} \rightarrow G\left(\operatorname{Mat}_{m}\left(\mathbb{Z}_{p^{2}}\right)\right)$. But there is an obvious isomorphism $\kappa: \mathrm{GL}_{m}\left(\mathbb{Z}_{p}\right) \rightarrow H$ and this satisfies

$$
\psi_{m} \nu \theta \kappa=\mathrm{id}_{\mathrm{GL}_{m}\left(\mathbf{Z}_{p}\right)}
$$

noting that the image of $\theta \kappa$ lies in the domain of ν. Since $\theta_{1}=\nu \theta \kappa$ is a homomorphism, the result follows.

Proposition 4. Assume $k>1$ and define R as above. If $p=2$ with $n \geqslant 4$, or $p=3$ with $n \geqslant 3$, then $J(R)$ has no complement in $G(R)$.

Proof: By the previous Lemma, we may assume that $k=2$, and that $n=4$ when $p=2$ and $n=3$ when $p=3$. First take the $p=3$ case, and consider the following two elements of $\mathrm{GL}_{3}\left(\mathbb{Z}_{3}\right)$

$$
\alpha=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

It is easy to verify that $\alpha^{3}=1$ and $\alpha \beta=\beta \alpha$. Since $\psi_{3} \theta=$ id we may write

$$
\begin{aligned}
& \theta(\alpha)=\left(\begin{array}{ccc}
3 a+1 & 3 b+2 & 3 c \\
3 d & 3 e+1 & 3 f \\
3 g & 3 h & 3 i+1
\end{array}\right) \\
& \theta(\beta)=\left(\begin{array}{ccc}
3 p+1 & 3 q & 3 r+2 \\
3 s & 3 t+1 & 3 u \\
3 v & 3 w & 3 x+1
\end{array}\right)
\end{aligned}
$$

where all variables are integers. Then entry $(1,2)$ of $\theta\left(\alpha^{3}\right)=\theta(1)$ gives $d=1(\bmod 3)$, while entry $(2,3)$ of $\theta(\alpha \beta)=\theta(\beta \alpha)$ gives $d=0(\bmod 3)$, clearly a contradiction. Now assume $p=2$, and consider the following two elements of $\mathrm{GL}_{4}\left(\mathbb{Z}_{2}\right)$

$$
\alpha=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

It is easy to verify that $\alpha^{2}=\beta^{2}=1$ and $\alpha \beta=\beta \alpha$. Since $\psi_{4} \theta=$ id we may write

$$
\theta(\alpha)=\left(\begin{array}{cccc}
2 a+1 & 2 b & 2 c+1 & 2 d \\
2 e & 2 f+1 & 2 g+1 & 2 h+1 \\
2 i & 2 j & 2 k+1 & 2 l \\
2 m & 2 n & 2 o & 2 p+1
\end{array}\right)
$$

and

$$
\theta(\beta)=\left(\begin{array}{cccc}
2 q+1 & 2 r & 2 s & 2 t+1 \\
2 u & 2 v+1 & 2 w+1 & 2 x \\
2 y & 2 z & 2 A+1 & 2 B \\
2 C & 2 D & 2 E & 2 F+1
\end{array}\right)
$$

where again all variables are integers. After a lengthy calculation, from entries $(1,3),(1,4)$ and $(2,4)$ of $\theta\left(\alpha^{2}\right)=1$ we obtain

$$
\begin{aligned}
& a+b+k=1 \quad(\bmod 2) \\
& b+l=0 \\
&(\bmod 2) \\
& f+l+p=1 \\
&(\bmod 2)
\end{aligned}
$$

Similarly from entries $(1,3),(2,3)$ and $(2,4)$ of $\theta\left(\beta^{2}\right)=1$ we obtain

$$
\begin{array}{ll}
E+r=0 & (\bmod 2) \\
A+v=1 & (\bmod 2) \\
B+u=0 & (\bmod 2)
\end{array}
$$

Finally comparing entries $(1,4)$ and $(2,3)$ of $\theta(\alpha \beta)=\theta(\beta \alpha)$,

$$
a+B+p+r=0 \quad(\bmod 2) \quad \text { and } \quad A+E+f+k+u+v=0 \quad(\bmod 2)
$$

Summing the above 8 equations gives $0=1(\bmod 2)$, and we have the required contradiction.

3. Existence

Proposition 5. Assume $k>1$ and define R as above. If $p=2$ and $n=3$ then $J(R)$ has a complement in $G(R)$.

Proof: The group $G L_{3}\left(\mathbb{Z}_{2}\right)$ has the following presentation, which can be easily proved using a standard computer algebra package such as MAGMA [1],

$$
G L_{3}\left(\mathbb{Z}_{2}\right)=\left\langle\alpha, \beta \mid \alpha^{2}=\beta^{3}=(\alpha \beta)^{7}=\left(\alpha \beta \alpha \beta^{-1}\right)^{4}=1\right\rangle
$$

where

$$
\alpha=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

We shall construct a homomorphism $\theta: \mathrm{GL}_{3}\left(\mathbb{Z}_{2}\right) \rightarrow \mathrm{GL}_{3}\left(\mathbb{Z}_{2^{k}}\right)$ such that

$$
\begin{equation*}
G\left(\psi_{3, k}\right) \theta=\operatorname{id}_{\mathrm{GL}_{3}\left(\mathrm{Z}_{2}\right)} \tag{1}
\end{equation*}
$$

Now there exists a with $a=1(\bmod 2)$ and $a^{2}+a+2=0\left(\bmod 2^{k}\right)$ by Hensel's Lemma. Define $\bar{\alpha}, \bar{\beta} \in \mathrm{GL}_{3}\left(\mathbb{Z}_{2^{k}}\right)$ by

$$
\bar{\alpha}=\left(\begin{array}{ccc}
1 & a & -a-1 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \text { and } \quad \bar{\beta}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

It is easily proved using $a^{2}+a+2=0\left(\bmod 2^{k}\right)$ that

$$
\bar{\alpha}^{2}=1 \quad \bar{\beta}^{3}=1 \quad(\bar{\alpha} \bar{\beta})^{7}=1 \quad\left(\bar{\alpha} \bar{\beta} \bar{\alpha} \bar{\beta}^{-1}\right)^{4}=1
$$

We can then define θ by $\theta(\alpha)=\bar{\alpha}$ and $\theta(\beta)=\bar{\beta}$. Then (1) holds for α and β, since $a=1$ $(\bmod 2)$. But α and β generate $\mathrm{GL}_{3}\left(\mathbb{Z}_{2}\right)$, so (1) holds. The result then follows by the observations of Section 1.

References

[1] W. Bosma, J. Cannon and C. Playoust, 'The Magma algebra system (I). The user language', J. Symbolic Computing 24 (1997), 235-265.
[2] C. Coleman and D. Easdown, 'Complementation in the group of units of a ring', Bull. Austral. Math. Soc. 62 (2000), 183-192.
[3] I.D. Macdonald, The theory of groups (Krieger Publishing Co. Inc., Malabar, FL, 1988).
[4] F.A. Szász, Radicals of rings (John Wiley \& Sons Ltd., Chichester, 1981).

20 Macfarlane Street

Davidson, NSW 2085
Australia

[^0]: Received 15th March, 2004
 This work was completed while the author was a recipient of a vacation scholarship from the School of Mathematics and Statistics, University of Sydney.

