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Abstract

Proof systems for expressive type theories provide a foundation for the verification and

synthesis of programs. But despite their successful application to numerous programming

problems there remains an issue with scalability. Are proof environments capable of reasoning

about large software systems? Can the support they offer be useful in practice? In this article

we answer this question by showing how the Nuprl proof development system and its rich type

theory have contributed to the design of reliable, high-performance networks by synthesizing

optimized code for application configurations of the Ensemble group communication toolkit.

We present a type-theoretical semantics of OCaml, the implementation language of Ensemble,

and tools for automatically importing system code into the Nuprl system. We describe

reasoning strategies for generating verifiably correct fast-path optimizations of application

configurations that substantially reduce end-to-end latency in Ensemble. We also discuss

briefly how to use Nuprl for checking configurations against specifications and for the design

of reliable adaptive network protocols.

1 Introduction

Advanced type systems have greatly increased our ability to produce reliable soft-

ware. In programming languages, type checking, certifying compilers, and extended

static checking (Schneider et al., 2000; Leino, 2000) help detecting subtle errors at

compile time. In theorem proving, type theories provide the logical foundation for

proving programs correct and synthesizing algorithms from formal specifications.

Numerous proof assistants have been built for these expressive formalisms and been

used successfully in a variety of applications in mathematics and programming.

Some of the most prominent of these systems are Alf (Altenkirch et al., 1994;

ALFA), Coq (Dowek et al., 1991; Coq), HOL (Gordon & Melham, 1993; HOL),

Isabelle (Paulson, 1990; Isabelle), Lego (Pollack, 1994), Nuprl (Constable et al.,

1986; Allen et al., 2000; Nuprl), PVS (Owre et al., 1996; PVS), TPS (Andrews et al.,

1996; TPS), and Twelf (Pfenning & Schürmann, 1999). Most applications, however,

have dealt only with theoretical algorithms or idealizations of real systems. It is not

clear whether the proof methods used in them scale well enough to offer practically

useful support for software design.

In this article we demonstrate that formal logical methods based on expressive

type systems are capable of supporting the formal design and implementation of
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Fig. 1. Linking Ensemble and Nuprl.

large-scale, high-performance network systems. In particular, we show that linking

the Ensemble group communication toolkit (Hayden, 1998; Birman et al., 2000)

to the Nuprl proof development system (Constable et al., 1986; Allen et al., 2000)

provides an infrastructure for the application of logical inference techniques to a

real-world system. We call this infrastructure a logical programming environment for

Ensemble (Kreitz et al., 1998). Within the logical programming environment we have

developed logical optimization tools that can substantially increase the performance

of Ensemble and as well as mechanisms that support the verification and formal

design of Ensemble protocols.

Figure 1 illustrates the methodology of our approach. We link Ensemble and

Nuprl by developing tools for importing Ensemble’s system code into the Nuprl

proof development system, and vice versa. These tools convert Ensemble code into

terms of Nuprl’s logical language and are based on a type-theoretical semantics of

Ensemble’s implementation language OCaml.

Within Nuprl we then optimize the (represented) code of application configur-

ations of Ensemble by applying semantics-preserving logical transformations and

export the result back into the OCaml programming environment. In addition to

that we provide a formal proof that the generated code, while being significantly

more efficient, has in fact the same functionality as the original one. We can also

apply formal reasoning strategies to verify Ensemble protocols and use formal

techniques to support the design new communication protocols for Ensemble.

Obviously, our approach is limited to distributed systems with a simple and

well-defined design structure. Importing and exporting system code into a formal

language like type theory requires the system’s implementation language to have a

precise mathematical semantics. For formal optimization and verification to become

feasible, the system must have components with precisely specified interfaces and

well-defined mechanisms for composing them. Fortunately, the Ensemble system

and its implementation language OCaml satisfy these requirements.

In the following section we give a brief account of Nuprl and Ensemble. Section 3

will describe the representation of OCaml programs in Nuprl’s type theory as well as
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Table 1. Expressions of Nuprl’s type theory

Type Members and associated noncanonical expressions

Function Space S→T , x:S→T λx.t, f t

Product Space S×T , x:S×T <s,t>, let <x,y> = e in u

Disjoint Union S+T inl(s), inr(t),

case e of inl(x) �→ u | inr(y) �→ v

Universes �j — types of level j —

Equality Type s = t ∈ T Ax

Empty Type Void — no members — any(x)

Atoms Atom "token", if "a"="b" then s else t

Numbers � 0, 1, -1, 2, -2,. . .

rec-case i of x<0 �→ [fx].s | 0 �→ b | y>0 �→ [fy].t

s+t, s-t, s*t, s÷t, s rem t,

if i=j then s else t, if i<j then s else t

i<j Ax

Lists S list [], t::list,

rec-case L of [] �→ b | x::l �→ [fl].t

Inductive Types rectype X =T [X] — members defined by unrolling T [X] —

let∗ f(x) = t in f(e),

Subset {x:S|P [x]}, — some members of S —

Intersection ∩x:S.T [x], — members that occur in all T [x] —

x:S∩T [x] — members x that occur S and T [x] —

Union ∪x:S.T [x] — members that occur in some T [x], tricky equality—

Quotient x,y : S//E[x, y] — members of S , new equality —

Very Dependent Functions — functions whose range types depend on the values

{f | x:S→T [f, x]} of their inputs and of the functions themselves —

the tools for importing and exporting system code. Formal optimization is presented

in section 4, while section 5 describes research on the verification and formal design

of Ensemble protocols. Section 6 addresses related work. We conclude by discussing

insights gained from our research as well as future work.

2 Preliminaries

2.1 Nuprl

The Nuprl proof development system (Constable et al., 1986) is a framework for

the development of formal mathematical knowledge as well as for the synthesis,

verification, and optimization of software.

Nuprl’s logical language, summarized in Table 1, is a significant extension of

Martin-Löf’s intuitionistic Type Theory (Martin-Löf, 1984; Constable, 1998) that

includes formalizations of fundamental mathematical concepts, an expressive data

system, and a functional programming language similar to the core of ML. Each type

comes with notions of (lazy) evaluation and extensional equality, which are essential

for defining the semantics of expressions. Nuprl’s type theory is open-ended in the
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Table 2. Important user-defined Nuprl types and expressions

Natural numbers � ≡ {i:Z|0�i}
Logical connectives ∀ ∃ ∧ ∨ ⇒ ¬ True False — Curry-Howard isomorphism —

Singleton type Unit, () ≡ 0=0 ∈Z , Ax

Top type Top ≡ ∩x:Void.Void

Booleans �, tt, ff ≡ Unit + Unit, inl(()), inr(())

Boolean conditional if b then s else t ≡ case b of inl( ) �→ s | inr( ) �→ t

Y combinator Y ≡ λf. (λx.f (x x)) (λx.f (x x))

List operations hd(l), tl(l), l
1
@l

2
, length(l), map(f;l), rev(l), l[i], l[i..j−]

sense that new types may be added to the theory if needed. Recent additions for

reasoning about classes and objects include very dependent function types, dependent

intersection and records, and a union type (Hickey, 1996; Kopylov, 2000; Constable

& Hickey, 2000; Hickey, 2001).

As Nuprl expressions are defined independently of their types, Y combinators

and similar constructs may be used within Nuprl terms, which makes it possible

to represent all computable functions in type theory. In the course of a formal

argument, however, expressions have to be proven to belong to some type. Nuprl

proofs are developed in a top down sequent calculus: proof goals are refined into

subgoals by application of inference rules until they can be handled by axioms or

already proven lemmata. For each type there is a a collection of inference rules

for reasoning about the formation and equality of types, members, and associated

noncanonical expressions, for reasoning about the use of variables of a type, and

for reasoning about computation. The latter are crucial for reasoning about values

of expressions and for proving properties of expressions that contain non-typeable

subexpressions like the Y combinator.

The Nuprl system (Constable et al., 1986; Allen et al., 2000; Nuprl) supports an

interactive development of formal mathematical theories and program verifications.

It provides a highly visual proof editor , a tactic mechanism for the development

of proof strategies through programmed application of inference rules, decision

procedures for standard arithmetic and equality reasoning, mechanisms for extracting

programs from proofs and evaluating programs , and an extendable library of

verified knowledge from various domains. Furthermore, users may use definitional

abstractions to extend the formal language of type theory in a conservative way (see

Table 2 for important user-defined concepts) and display forms to customize the

outer appearance of terms without changing their internal structure.

The system has been used in increasingly large applications in mathematics

and programming, such as constructive versions of Girard’s paradox (Howe, 1987),

Higman’s lemma (Murthy & Russell, 1990), abstract algebra (Jackson, 1994), verifica-

tions of a logic synthesis tool (Aagaard & Leeser, 1993) and of the SCI cache co-

herency protocol (Howe, 1996), and in our current work on communication systems

(Kreitz et al., 1998; Hickey et al., 1999; Liu et al., 1999; Bickford et al., 2001c).

In its newest release (Allen et al., 2000), Nuprl features an open, distributed

architecture that is organized as a collection of independent communicating processes
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centered around a persistent knowledge base (or library). This enables users to

connect external proof tools to Nuprl and to use them simultaneously and

asynchronously in complex proofs. Currently, users may invoke the MetaPRL

proof engine (Hickey & Nogin, 2000; Hickey, 2001; MetaPRL) and the intuitionistic

first-order theorem prover JProver (Schmitt et al., 2001). Additional proof systems

will be connected in the future.

2.2 Ensemble

Ensemble (Hayden, 1998; Ensemble) is a high-performance network protocol

architecture that aims at securing critical applications. It is a successor of the widely

adopted system Isis (Birman & van Renesse, 1994) and Horus (van Renesse et al.,

1996) and is designed particularly to support group membership and communication

protocols. Ensemble is currently used in the BBN Aqua and Quo platforms, a fault-

tolerant test bed at JPL, the Adapt adaptive multimedia middleware system at

Lancaster University, a multi-player game by Segasoft, and in the Alier financial

database tools.

Ensemble’s architecture (Hayden & Rodeh, 2001) is based on the notion of a

protocol stack , illustrated in Figure 2. The system is constructed from a library of

over sixty micro-protocol modules, or layers , which implement fragmentation and

re-assembly, flow control, message ordering, buffering and retransmission, signing

and encryption, group membership, synchronization, and other functionality. Micro-

protocols can be stacked in a variety of ways to meet the communication demands

of an application. Each module adheres to a common interface consisting of a

top-level and a bottom-level part. The top-level interface of a module communicates

with the bottom-level interface of the module immediately on top of it. The interface

is event-driven: modules pass event objects to the adjacent modules. Certain types
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of events (e.g. send events) travel down, while others (e.g. message delivery events)

travel up the stack.

Ensemble is written almost entirely in OCaml (Leroy, 2000). The choice of

OCaml instead of C, which was used for implementing Ensemble’s predecessor

Horus, significantly reduced the size of micro-protocol code and made it easier to

develop and maintain Ensemble modules. The main benefit of OCaml, however,

is that it has a precise mathematical semantics, which can be employed for the

automated verification, optimization, and generation of Ensemble protocol stacks.

These operations can be tedious and error-prone if performed manually. Using the

Nuprl proof development system enables us to address both problems: automation

makes it possible to re-use common reasoning strategies, and formal reasoning

guarantees the correctness of code transformations.

3 Representing OCaml programs in Nuprl

OCaml (Leroy, 2000), is a strongly typed, functional programming language that

has been extended by reference cells, exceptions, a module system, and an object

calculus. Its functional core is similar to the language of Nuprl’s type theory. But

it has a different, less rigid syntax and contains many additional features.

To support formal reasoning about systems implemented in OCaml we have to be

able to automatically convert OCaml programs into terms of Nuprl’s type theory

that capture the semantics of these programs. For this purpose we have developed

a shallow type-theoretical semantics of OCaml that is faithful with respect to the

informal semantics given in the OCaml manual (Leroy, 2000) and to the operational

semantics generated by the OCaml compiler.

We have “implemented” this formalization using Nuprl’s definition mechanism:

definitional abstractions add new terms to Nuprl’s type theory that capture both

the structure and the operational semantics of OCaml language constructs, while

display forms make sure that the outer appearance of these terms is identical to the

OCaml construct they represent. For instance, an OCaml function declaration, as

we will elaborate in section 3.1, is represented by the following two objects:

ABS Function{}(p; e) ≡ λs,env. inr(λe
1
. p e

1
e), s

DISP function p -> e ≡ Function{}(p; e)

The abstraction declares a new abstract term with operator identifier Function, no

parameters , and two subterm arguments p and e. The abstraction defines the abstract

term to be equal to the term on the right-hand side. The corresponding display form

describes that the new term is to be displayed as function p -> e . Together,

abstraction and display form represent the structure, the semantics, and the syntax

of the OCaml function declaration. In the rest of this paper, we omit the abstract

description of new terms and simply write

function p -> e ≡ λs,env. inr(λe
1
. p e

1
e), s

In addition to the formal representation we have also developed a formal

programming logic for reasoning about OCaml programs and their evaluation. The

programming logic is expressed in the form of inference rules that are implemented
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as Nuprl tactics and are based on well-formedness theorems of each language

construct. This guarantees that the rules are correct with respect to the type-

theoretical semantics of OCaml and allows formal reasoning to be performed at the

level of OCaml programs instead of the underlying type-theoretical concepts.

Finally, we have created tools that convert OCaml programs into their formal

Nuprl representations and store them as objects of Nuprl’s library. These tools

make the actual OCaml-code of an Ensemble protocol stack available for formal

reasoning within Nuprl and help the reasoning system to keep track of modifications

in Ensemble‘s implementation.

In the rest of this section, we describe the formalization of OCaml and the tools

that translate between OCaml programs and their formal representations.

3.1 A type-theoretical model for OCaml

The basic language of OCaml is centered around a functional core enhanced by

patterns, references, and exceptions. We briefly discuss aspects of formalizing these

components and then describe a type-theoretical model for OCaml. We illustrate

this model by representing OCaml’s language core in Table 3, and present the

complete formalization of OCaml based on this model in section 3.3.

OCaml’s functional core is a simple applicative language with constants, higher-

order functions, local bindings, call-by-value application, and recursive definition.

Its expressions and values are

(Expressions) e ::= v | e
1
e

2
| let x=e

1
in e

2
| let rec x=e

1
in e

2

(Values) v ::= c | x | function x -> e

where x is a variable and c a constant. Apart from notational differences this

language is similar to the core of Nuprl’s type theory. OCaml’s function declaration

function x -> e has the same semantics as the lambda-abstraction λx.e in type

theory, function application in OCaml and Nuprl are the same, a let-binding

let x=e
1
in e

2
can be expressed as application of an abstraction (λx.e

2
) e

1
,

and a recursive definition let rec x=e
1
in e

2
as (λx.e

2
) (Y (λx.e

1
)). OCaml

variables are represented as Nuprl variables while the representation of constants

depends on the representation of the corresponding data types.

Patterns are language constructs that enable a programmer to decompose data

structures in a convenient way. A local binding of the form let p=e
1
in e

2

matches the pattern p against the expression e
1
and binds the variables of e

2
that

occur in p accordingly. In contrast to a simple let-binding, the pattern p may

contain several variables that are grouped together by data structure constructors,

which determine the fragment of e
1
that will be bound to the variables in e

2
.

As Nuprl’s type theory does not include general pattern matching, OCaml func-

tion declarations and let-bindings cannot be mapped directly onto corresponding

Nuprl constructs anymore. Therefore, we explicitly represent OCaml’s runtime

environment of variable bindings and separate expressions from patterns. OCaml
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expressions are functions that evaluate variables and terms in this environment,

while patterns are functions that update the environment of some expression.

Formally, an environment env is represented as a table consisting of pairs of

variables and values. Table lookup (env[x]) and extending the table by a new

binding (env@{x �→ v}) are defined via predefined standard list and pair operations.

{} ≡ []

env@{x �→ v} ≡ <x,v> :: env

env[x] ≡ lookup x env

An OCaml variable expression x will be represented by a function that expects an

environment env as input and looks up the current value of x in that environment.

In contrast, a variable pattern xp will be represented by a function that takes two

expressions e
1
and e

2
and modifies an environment env for evaluating e

2
by binding xp

to the value of e
1
in env. In this framework, a function definition function p -> e

applies the pattern p to some input expression e
1

and to e, while a let binding

let p=e
1
in e

2
is an application of p to e

1
and e

2
. Evaluating let xp=e1

in e
2

in the environment env would result in e
2
(env@{xp �→(e

1
env)}).

Reference cells in OCaml are special instances of mutable records, which are

associated with generalizations of the familiar operations ref e , !e , and e
1
:=e

2
.

As they may occur in arbitrary OCaml expressions, causing them to have side-effects,

we need to extend our formal model by explicitly representing a global state.

We represent OCaml expressions by functions that operate on an environment

env and a store s, evaluate a term with respect to env and s, and return both

the value and the possibly updated store. Similar to an environment, a store s is a

table of pairs of addresses (natural numbers) and values. The creation of new table

entries (New(s)), store lookup (!s[addr]), and updating the contents of a store cell

(s[addr← v]) are defined via standard list and pair operations.

[ ] ≡ []

New(s) ≡ max (map fst s) + 1

s[addr←v] ≡ <addr,v> :: s

!s[addr] ≡ lookup addr s

A reference ref e evaluates the expression e with respect to the current store

and environment, determines a free address in the updated store s
1
, assigns the

value v of x to that address, and then returns the address and the modified store

s
1
[addr←v] as result. Dereferencing !e means evaluating e and then looking up

the resulting address in the (updated) store (!s
1
[addr]). An assignment e

1
:=e

2
first

evaluates e
2
and then e

1
. Afterwards it assigns the value of e

2
to the store address

determined by e
1
. The result of the expression is the unit value ().

Exceptions are an ML concept for handling failure while ensuring typability of

expressions. Exceptions may be raised by runtime failures or by explicit calls to the

function raise and are handled using the expression try e
1
with p -> e

2
.

Exceptions can be viewed as alternative result of evaluating an expression and

belong to the same type. The exception Division by zero generated by evaluating
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x/0, for instance, has the type int. Formally, OCaml data types are a disjoint

union EXCEPTION + T of the type of exceptions (represented as atoms) and the

type T of the data type’s values. Values v and exceptions exn have to be tagged

accordingly. For this purpose we use the Nuprl terms inr(v) and inl(exn).

We represent raise exn as a function that for each environment env and store s

returns inl(exn) and an unchanged store. try e
1
with p -> e

2
is represented

by a function that returns the value of e
1
unless the evaluation fails. Otherwise it

matches the resulting exception against the pattern p and proceeds with evaluating

e
2
in an enriched environment.

As exceptions may occur in arbitrary OCaml expressions, our representation of

expressions and patterns must always check whether the result of evaluating an

expression is a value or an exception. To simplify the formalization, we introduce

an abbreviation let↓ inr(v),s = eval
1
in eval

2
that catches this failure check.

let↓ <inr(v),s> = eval
1
in eval

2

≡ let <r,s
1
> = eval

1
in

case r of inl(exn) �→ inl(exn), s
| inr(v) �→ eval

2

The formal model. The combination of the functional core, patterns, references, and

exceptions describes all the essential features of the Caml part of OCaml, i.e. the

language fragment without the object and module system. The expressions, values,

and patterns of this core language are

(Expressions) e ::= v | e
1
e

2
| let p=e

1
in e

2
| let rec p=e

1
in e

2

(Values) v ::= c | x | function p -> e | ref | ! | :=
| raise | try e

1
with p -> e

2

(Patterns) p ::= xp

where x is a variable, xp a variable pattern, and c a constant. The type-theoretical

formalization of this language core is described by the Nuprl definitions in Table 3.

It represents OCaml expressions as elements of the type

EXPR ≡ s:STORE → env:ENV → (EXCEPTION + VALUE) × STORE

where ENV is the type of variable binding environments (tables of variable names

and values), STORE the type of stores (tables of addresses and values), EXCEPTION

the type of exceptions (atoms), and VALUE the type of values (Nuprl’s type Top). To

“lift” a value v to an expression that always evaluates to v, we use the abbreviation

�v� ≡ λs,env. inr(v), s

Lifting is necessary to express the call-by-value evaluation order in the represent-

ation of function application and exception handling.

OCaml patterns are represented as elements of EXPR → EXPR → EXPR . The

language core contains only variable patterns. The representation of all other

patterns of OCaml is discussed in Appendix A.2.

OCaml types are represented in a way that the typing relation in OCaml can

be expressed by the built in membership relation of Nuprl’s type theory. Thus

OCaml types will be represented as subtypes of the type EXPR, i.e. as (dependent)
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Table 3. Nuprl representation of OCaml’s language core

e
1
e

2
≡ λs,env. let↓ <inr(v),s

1
> = e

2
s env in

let↓ <inr(f),s
2
> = e

1
s

1
env in

(f �v�) s
2
env

let p = e
1
in e

2
≡ p e

1
e

2

let rec p = e
1
in e

2
≡ p (Y (λe. p e e

1
)) e

2

xv ≡ λs,env. inr(env[xv]),s

function p -> e ≡ λs,env. inr(λe
1
. p e

1
e), s

ref e ≡ λs,env. let↓ <inr(v),s
1
> = e s env in

let addr = NEW(s
1
) in

inr(addr), s
1
[addr←v]

!e ≡ λs,env. let↓ <inr(addr),s
1
> = e s env in

inr(!s
1
[addr]), s

1

e
1
:= e

2
≡ λs,env. let↓ <inr(v),s

1
> = e

2
s env in

let↓ <inr(addr),s
2
> = e

1
s

1
env in

inr (), s
2
[addr←v]

raise exn ≡ λs,env. inl(exn), s

try e
1
with p -> e

2
≡ λs,env. let <r,s

1
> = e

1
s env in

case r of inl(exn) �→ (p �exn� e
2
) s

1
env

| inr(v) �→ inr(v), s
1

xp ≡ λe
1
,e

2
. λs,env. let↓ <inr(v),s

1
> = e

1
s env in

e
2
s

1
(env@{xp �→v})

function types of the form s:STORE → env:ENV → (EXCEPTION + T) × STORE.

The representation of OCaml types is discussed in detail in Appendix A.3.

It should be noted that, due to the use of formal abstractions, every OCaml

program corresponds to exactly one canonical representation in Nuprl. The type-

theoretical semantics of this term, defined in the abstractions, describes the oper-

ational semantics of the program. The structure of this term, built from abstract

Nuprl terms, describes its abstract syntax tree. The display of the term, defined by

the corresponding display forms, is identical to that of the program.

The OCaml program (function x -> x) x, for instance, is represented by the

Nuprl term Apply{}(Function{}(PatVar{x}(); Var{x}()); Var{x}()). The

semantics of this term, given by the definitions in Table 3, is a term that reduces to

λs,env. inr(env[xv]),s , the semantics of (the representation of) the variable x.

The term is displayed by the Nuprl system as (function x -> x) x.

3.2 Modules and objects

Modules and compilation units are second class objects of the OCaml programming

language. They cannot be used as parts of expressions and have no operational

semantics per se. Instead, they provide a means for structuring code, for instance

by introducing names for user-defined types and functions and binding them to a

particular expression, describing the signature of an abstract data type, providing
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alternative implementations of the same function, and disambiguating references to

names that are defined in multiple modules.

As Ensemble’s implementation uses neither functors nor the with operator (see

section 6.10.4 of Leroy (2000)) in the specification of its modules, it suffices to

represent each module expression as a separate object of Nuprl’s library, i.e. as

object on the meta-level of Nuprl’s type theory. We use meta-level object generators

to map type and value definitions onto Nuprl abstractions that globally declare

the corresponding names, prefixed by the name of the module, as abbreviation for

a certain expression or type (see Appendix A.4). Module definitions and the open

command are instructions that influence the behavior of these object generators and

make sure that named references within type-theoretical expressions are linked to

the correct abstraction. As a consequence, each module expression is accessible as

separate Nuprl object and can be reasoned about individually.

We are currently investigating a more general approach that formalizes module

expressions within type theory instead of its meta-level. In this approach we represent

module expressions as functions that update a global environment. This allows

treating named references as variables that consult the environment during evalu-

ation. The approach is theoretically more satisfactory and also allows representing

functors as functions on global environments. However, it is also more complex and

its consequences for practical reasoning need to be evaluated.

Objects, methods, classes and inheritance are not used in Ensemble’s imple-

mentation and currently not represented. Although objects could be understood

as generalization of reference cells, the current type theories do not offer sufficient

support for expressing the formal semantics of methods and inheritance. Preliminary

studies by A. Kopylov indicate that a combination of dependent records and union

types may provide a foundation for representing objects in the future.

3.3 Extent of formalization

As the main purpose of our formalization of OCaml is to provide a foundation for

the verification, optimization, and synthesis of Ensemble protocols and stack, we

have focused on developing type-theoretical representations of OCaml’s functional

core and the language constructs that are actually being used in the code of

Ensemble. Our formalization was originally based on OCaml-1.07 and later migrated

to OCaml-2.02. We are currently working on adding the new features of OCaml-3.0x

and making the representation more complete.

Chapter 6 of the OCaml manual (Leroy, 2000) describes the syntax of all OCaml

language constructs and their informal semantics. Our type-theoretical represent-

ation provides a formal semantics of these language constructs through Nuprl

abstractions and represents their syntax through the corresponding display forms .

Nuprl precedence objects are being used to control the automatic generation of

parentheses that follow OCaml’s rules for precedences and associativity. Finally, well-

formedness theorems show that the Nuprl representation of a language construct is

faithful with respect to OCaml’s type system. For instance, Nuprl representations

of OCaml expressions must be members of (the Nuprl representations of) the
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corresponding OCaml types. Our formalization, which we will describe in detail in

Appendix A, currently includes the following

• All expressions listed in section 6.7, including the constants listed in section

6.5, except for bitwise logical and floating point operators, method invocation,

object creation, coercion, and object duplication (see Appendix A.1).

• All patterns listed in section 6.6, except for float patterns and variant abbre-

viation patterns (see Appendix A.2).

• All type expressions listed in section 6.4, except for closed variant types,

object and class types. Labels in function types are not yet supported (see

Appendix A.3).

• All type definitions listed in section 6.8, except for constraint definitions and

optional prefixes for type parameters (see Appendix A.4).

• There is limited support for module specifications, module implementations

and compilation units, listed in sections 6.10–12, as described in section 3.2.

• Classes, listed in section 6.9, are not yet supported.

Our formalization had to take into account that OCaml constructs have a more

flexible syntax than the terms of type theory. Record expressions {f
1
=e

1
;..;f

n
=e

n
},

for instance, can have arbitrarily many components, while in Nuprl each term must

have a fixed number of subterms. Therefore, although we can formalize arbitrarily

sized record expressions by Nuprl terms, it is not possible to use a single Nuprl

abstraction for this purpose. Instead, we have to iterate primitive abstractions to

build a formal representation of record expressions, similarly to the way one would

build constant list expression by iteratively prepending elements to the empty list,

and provide appropriate iteration definitions in the corresponding display forms to

make sure that the resulting term is displayed as syntactically correct OCaml record

expression (see Appendix A.1 for a detailed discussion).

Thus in general, OCaml language constructs do not correspond directly to

Nuprl abstractions but to Nuprl terms that are constructed by combining several

primitive abstractions. For each construct we have developed a meta-level term

generator , i.e. an ML function that builds the Nuprl representation of the construct.

These term generators are crucial for automatically creating the formal represent-

ation of a piece of OCaml code and are used by the tools that import OCaml

source code into Nuprl as well as by the tools for synthesizing and optimizing

code.

Our representation of the fundamental OCaml language constructs in Nuprl

currently includes 220 formal abstractions (to represent OCaml semantics), 230

display forms (to represent OCaml syntax), and 190 wellformedness theorems

relating formal abstractions to (OCaml) types. In addition to these, we have imported

a large fragment of the OCaml libraries listed in sections 18–28 of Leroy (2000)

into Nuprl using the automatic tools described in section 3.5 below. For externally

defined library functions this also meant providing “external” implementations,

i.e. explicit representations to which the external command could link.
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3.4 A programming logic for OCaml

Formal reasoning about OCaml programs involves two types of arguments: reas-

oning about program properties (static semantics), and reasoning about the results

of program executions (dynamic semantics).

Program properties are usually expressed by a type system. The type of a program

can range from being its OCaml data type to a precise specification of its behavior.

Our formalization of OCaml enables us to use Nuprl’s built-in membership relation

for both purposes: the OCaml types of OCaml expressions are represented as the

Nuprl types of their Nuprl representation. More specific program specifications

can be described using Nuprl’s subset constructor.

Reasoning about program executions involves reasoning about the semantic equal-

ity of OCaml expressions that are syntactically different. Two OCaml expressions

are semantically equal if their representations in Nuprl are. As Nuprl’s type theory

comes with built-in notions of extensional equality and evaluation of terms, the

equality of OCaml expressions can be shown by applying Nuprl’s proof rules for

reasoning about computation and equality of expressions.

In theory, applying Nuprl’s inference rules is sufficient to support formal reas-

oning about OCaml programs: one would simply have to unfold the abstractions

in the formal representations of the programs and types and then reason about the

resulting term in type theory. This, however, would make formal reasoning about

OCaml programs impractical and formal arguments inaccessible to programmers,

as there is no visible relation between the formal proof and the original program.

To support formal reasoning on the level of OCaml, we have developed a pro-

gramming logic for OCaml, whose inference rules are derived from the formal

semantics of expressions and types. These rules preserve the “OCamlness” of

expressions: they always return (representations of) valid OCaml expressions and

do not reveal the underlying type-theory. They are implemented as tactics, which in

turn are based on formal abstractions, formal lemmata about wellformedness and

evaluation, and the proof rules of Nuprl. This ensures that the implemented pro-

gramming logic is faithful with respect to the type-theoretical semantics of OCaml.

The rules for reasoning about program properties follow the style of reasoning in

Nuprl: they are top-down sequent rules that reason about the type of a program

expression by decomposing both the expression and the type into smaller fragments

such that proofs for the resulting fragment subgoals are sufficient to establish the

original goal. The derived rule for reasoning about function application in OCaml,

for instance, states that applying an expression f to an expression e is proven to be

of OCaml type T if we can prove f to be of type S -> T and e to be of type S.

∆ � f e ∈ T
BY ApplyMem

∆ � f ∈ S -> T
∆ � e ∈ S

∆ is a placeholder for the sequent’s assumptions, which remain unchanged by

the rule. Its implementation as Nuprl tactic decomposes a proof goal into the two

subgoals described above, provided the goal matches the first line of the rule. A
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complete list of the derived inference rules for reasoning about properties of OCaml

programs is given in Kreitz (1997).1

Similarly, we have derived rules for the symbolic evaluation of OCaml expressions

from the formal operational semantics of OCaml expressions. The rule for evaluating

an OCaml function application, for instance, states that applying the expression

function x -> e to an expression e’ can be reduced to the OCaml expression

e [e’/x] , i.e. the expression e with occurrences of x replaced by e’.

(function x -> e) e’ −→ e [e’/x]

This rule can only be applied if e’ is free of side-effects , since side-effects may

evaluate differently on the left and right hand side. A tactic that executes the rule

through controlled applications of Nuprl rules would not be able to prove the two

expressions equal. The function body e, on the other hand, may include side-effects.

Appendix A.5 gives a detailed description of the inference rules for reasoning

about the computational behavior of OCaml programs. These rules can not only

be used for computing the result of executing a program in a specific context, but

also for transforming OCaml programs into equivalent ones. As such, they provide

a foundation for the formal optimizations that we will discuss in section 4.

3.5 Import and export of OCaml Code

The type-theoretical semantics of OCaml and its “implementation” as Nuprl

abstractions and display forms provide the foundation for formal reasoning about

OCaml programs. However, if we want to reason about real system implementations

with ten thousands of lines of code, we have to provide mechanisms that automat-

ically translate the OCaml code into its Nuprl representation and vice versa.

Figure 3 illustrates our mechanisms for importing and exporting OCaml source

code. The tools for importing OCaml code into Nuprl have to analyze the syntax of

the OCaml source code, create the type-theoretical terms that represent it, and store

them as objects in Nuprl’s library. To ensure faithfulness with respect to the OCaml

programming environment we use the Camlp4 parser-preprocessor (de Rauglaudre,

1 Although the formal model for OCaml in Kreitz (1997) is simpler than the one described here, the
derived rules remain the same. Only their implementation as tactics has changed.

https://doi.org/10.1017/S0956796803004854 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004854


Building reliable, high-performance networks 35

2000), an isolated version of the OCaml-parser, as tool for analyzing program text.

Camlp4 parses OCaml source code, generates its abstract syntax tree, and then calls

an output module for further processing, e.g. pretty-printing or dumping the binary.

To convert the abstract syntax tree into Nuprl objects, we have implemented a

new output module for Camlp4 that creates intermediate code, which causes Nuprl

to build the corresponding abstractions and display forms. The module generates

pieces of this code for each node of the syntax tree, distinguishing the various kinds

of identifiers, expressions, patterns, types, signature items, and module expressions

as specified in Appendix A of de Rauglaudre (2000).

The intermediate code is a program in Nuprl’s meta-language ML that calls

the term and object generators described in sections 3.3 and 3.2 to build the

Nuprl representations of the OCaml code. It will be passed to the Nuprl system,

which generates abstractions and display forms for each function, type, and module

declared in the source code. In the process, the object generators also resolve issues

that arise when linking the code of several modules, which cannot be addressed by

the parser. These are name resolution (i.e. linking a named reference to a specific

object in some module), determining whether an identifier represents a variable or a

named reference, and resolving overloading of operator names. In addition to that,

the object generators also attempt to state and prove a well-formedness theorem

for each newly generated object, using its OCaml signature, if available, or a type

inference algorithm to determine its type.

To make synthesized OCaml programs available to the OCaml programming

environment, we have also implemented a mechanism for exporting Nuprl repres-

entations of OCaml code. Since we have designed the display forms and precedence

objects for each OCaml language construct in a way that they obey OCaml’s syntax

requirements, the Nuprl system displays and prints terms that represent OCaml

programs as syntactically correct OCaml source code. Exporting OCaml code is

therefore simply a matter of selecting the code pieces to be exported and printing

them into a file. The generated program text can then be compiled, linked, and

executed in the OCaml environment without further modifications.

We have used our tools to import a large fragment of the OCaml libraries

(44 modules containing about 10,000 lines of code) and the essential modules of

Ensemble (79 modules / 40,000 lines) into the Nuprl system. This resulted in the

creation of 2320 formal abstractions and an equal number of display forms and

well-formedness theorems. Terms representing user-defined functions reach more

than 50 KB in size and may grow to more than 1 MB if abstractions are unfolded.

4 Formal optimization

Ensemble’s modular approach to building communication systems has many ad-

vantages over monolithic systems. Small components are easier to design, specify,

develop, test, verify, and optimize, while application systems may be more readily

adapted to new environments and extended at run-time with new components.

However, building systems from components usually comes with a performance

penalty: the abstraction barriers between the components impose high overheads
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arising from additional function calls, redundant code, and code that is not used

in a particular configuration. In this section, we show how Ensemble’s performance

can be significantly improved by employing formal logical optimizations that turn

Ensemble into one of the fastest reliable multicast systems currently available.

Hayden (1998) suggests several optimizations that could be applied to stack-based

architectures implemented in functional programming languages:

1. Avoid garbage collection during message processing by freeing space allocated

for messages after they have been sent or delivered.

2. Avoid marshaling of small objects when sending data over the net.

3. Delay non-critical message processing by sending and delivering messages

before updating a module’s state and buffers.

4. Compress the module stack for common sequences of execution, creating a

fast-path that can be used in the common case.

5. Compress message headers that are added by micro-protocols while processing

a message that is being sent.

The first three steps do not affect the modular approach as such and can be

addressed when implementing the system modules by adding low-level procedures

that overwrite the defaults of OCaml’s run-time system and by adopting a particular

programming style. However, the final two optimizations require generating special

code after an application system has been configured from the modules.

Generating fast-paths for common cases and compressing headers is far beyond

the capabilities of current compiler optimization techniques. Therefore previous

work (Abbott & Peterson, 1993; Engler & Kaashoek, 1996; Hayden, 1998) involves

significant annotation of the code or hand-optimization, which is a difficult and

error-prone process. By using a formal logical tool like Nuprl, we can completely

automate these optimization steps and prove that they do not introduce any errors.

4.1 Fast-path optimization

In most applications of communication systems it is easy to identify common

sequences of execution. Data are being sent and received and there is no need

for message partitioning, retransmission, buffering, synchronization, etc. This means

that only a small fragment of the code of a protocol stack is involved in processing

the message and that some micro-protocols are not being activated at all. Fast-path

optimization aims at improving the system’s performance by identifying the code

that is actually used in the common case.

To understand fast-path optimization, it is useful to think of a protocol as a

function that takes the internal state of the protocol and an input event and

produces an updated state and a list of output events. In this view, a protocol

stack is a macro-protocol built by composing protocol functions. A protocol can be

optimized if we can describe its regular state and common input events. Formally, we

use a Common Case Predicate (CCP), a Boolean function on the state of a protocol

and an input event, for this purpose. CCPs are usually specified by the programmer

of a protocol or may be determined from run-time statistics. For example, a CCP
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may express that the event is a deliver event whose sequence number is equal to the

next expected packet to arrive. If the CCP is satisfied for a received message, then the

message may be delivered and the index of the next expected packet incremented.

Otherwise, the message would have to be buffered.

Analyzing the path of events that satisfy the common case predicate through

the code of a protocol stack helps isolating the code that is actually being used.

We call this path a fast-path through the protocol stack and the resulting code a

bypass , which will be used to process events in the common case. To decide whether

a message can be handled by the bypass code or has to go through the original

stack, we use the same CCP that was used to generate the bypass code, as illustrated

in Figure 4 (the transport module below the protocol stack provides marshaling

of messages). It is necessary to generate efficient code for this CCP, as it will be

executed for every event.

In the following sections, we describe how to perform fast-path optimization

within the framework of a formal theorem proving environment.

4.2 A knowledge-based approach to optimization

Formally, the optimizations necessary to generate bypass code can be expressed as

conditional rewrite steps that simplify and evaluate code fragments in the context

of a logical proposition, the common case predicate. To perform these steps, we use

the Nuprl proof development system. Nuprl enables us to automatically generate

bypass code and to wrap it by a module to be inserted into Ensemble. Additionally,

we can produce a formal proof that the generated code is equivalent to the original

one with respect to the formal semantics of the programming language.

Experience has shown that purely tactic-based rewrite techniques are not appro-

priate for optimizing protocol stacks. Although they are very useful for optimizing

https://doi.org/10.1017/S0956796803004854 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004854


38 C. Kreitz

equivalent to

Composition

Stack

Layers

Composition Theorems

Up/Linear Up/BounceUp/Split

Dn/Split Dn/BounceDn/Linear

Top Layer

Layer

Layer

Bottom Layer

(static, a priori)

Optimize Common Case

Verify Simple Compositions

Application Stack

(dynamic)

Optimize Common Case

(static, a priori)

Join & Generate Code

Stack Optimization Theorems

Layer Optimization Theorems
Up/Send             Up/Cast               Dn/Send              Dn/Cast

Up/Send             Up/Cast               Dn/Send              Dn/Cast

NuPRL

Code

OCaml Environment

Protocol Layers

Compose Function

Optimized Application Stack

Fig. 5. Optimization methodology: composing optimization theorems.

individual micro-protocols (as described in section 4.3) they scale badly when

protocols are assembled into a stack. The reason for that is that the code for

composing protocols must provide for the situation that a protocol’s input event

may generate several output events to be sent to both adjacent protocols. Tracing

the path of an event thus requires an optimization tactic to deal with the formal

representation of the entire code of the protocol stack – more than 20,000 lines of

code – at once.

Furthermore, although the optimization of individual micro-protocols is largely

automated, it occasionally requires expertise about the actual implementation to

be provided interactively. In contrast to the programmers who designed the micro-

protocols, application designers who configure the components of a communication

system to suit a particular application usually do not have this expertise.

Our approach to fast-path optimization takes into account that the implementation

of the individual micro-protocols is static for each release of Ensemble, while the

configuration of application stacks is not. This allows us to provide formally verified

knowledge about fast-path optimizations of each micro-protocol a priori , i.e. together

with the release of Ensemble, and to implement tactics that use this knowledge to

automatically generate fast-path optimizations of application stacks. Formally, we

do so by composing optimization theorems as illustrated in Figure 5.

There are two levels of formal optimizations. The first, or static, level (section 4.3)

depends solely on the code of the individual micro-protocols and is performed

semi-automatically under the guidance of the developer of the micro-protocol

and a Nuprl expert, using a small collection of special-purpose tactics. At this

level we generate and prove optimization theorems about the result of optimizing
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micro-protocols for four fundamental cases: down- or up-going events (sending

or receiving messages) for both point-to-point sending and broadcasting. These

theorems may take anything from two minutes to an entire afternoon to develop

and are included in the optimization tool that is made available to application

developers.

The second, or dynamic, level (section 4.4) depends on the protocol stack con-

figured by an application developer and cannot be provided a priori. Using compos-

ition theorems about the effect of applying Ensemble’s composition mechanism to

common combinations of fast-path optimizations, we generate and prove theorems

about the result of optimizing the application stack. Header compression, described

in section 4.5 may be integrated at this stage. We then synthesize bypass code from

these theorems and create a module for integrating it into Ensemble (section 4.6).

This step is completely automated and requires only the names of the micro-protocols

used in the application stack as input.

It should be noted that optimization is orthogonal to verification. Our formal

tools prove that the resulting code is semantically equal to the original protocol

stack but do not make any assumptions about the correctness of the stack. In the

rest of this section, we explain the technical details of the optimization tool.

4.3 Optimization of micro-protocols

The static optimizations of Ensemble micro-protocols are based on an analysis of

possible fast-paths, or branches in the protocol code, which essentially describes a

simple state-event machine. In principle, each branch could be considered a fast-

path whose CCP is composed of the predicates in the corresponding conditionals.

However, a common case in communication is usually related to “ordinary” mes-

sages being sent or received, and not to handling errors, retransmissions, group

management, etc. Identifying these paths requires insight into the code, which means

that the Ensemble programmer must either annotate the code or provide the

information explicitly when initiating the optimization of the micro-protocol.

The optimization of a protocol layer proceeds by a series of code transformations

that preserve the semantics of a layer’s code under the assumption of a CCP and

are based on the following basic mechanisms:

Function inlining and symbolic evaluation simplifies code in the presence of constants

or function calls. Logically, this means rewriting the code by unfolding definitions

and controlled partial evaluation. Both techniques can be expressed in terms of

evaluation rules from our programming logic for OCaml (see section 3.4, which

guarantees their correctness with respect to OCaml’s type-theoretical semantics).

To automate the application of these rules we have developed an evaluation tactic

Red, which searches top-down for the first reducible subterm of an OCaml program

fragment and reduces it. The search can be restricted by providing a subterm address

as additional argument. This allows a user to to leave certain expressions unchanged

while focusing on meaningful reductions.
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Table 4. Excerpt from the code of Ensemble’s Pt2pt micro-protocol

type header = NoHdr | Data of seqno | Ack of seqno | Nak of seqno * seqno
type state = {sweep: Time.t; mutable next sweep: Time.t; ... }
let init (ls,vs) = {sweep = Param.time vs.params "pt2pt sweep"; ... }
let hdlrs s (ls,vs) {up out=up; upnm out=upnm;

dn out=dn; dnlm out=dnlm; dnnm out=dnnm}
= let log = Trace.log "PT2PT" ls.name in

let up hdlr ev abv hdr = ...
and uplm hdlr ev hdr = ...
and upnm hdlr ev = ...
and dn hdlr ev abv =

match getType ev with
| ESend ->

let dest = getPeer ev in
if dest = ls.rank then failwith "PT2PT: send to myself";
let sends = Arraye.get s.sends dest in
let seqno = Iq.hi sends in
let iov = getIov ev in
Iq.add sends iov abv ;
dn ev abv (Data seqno)

| -> dn ev abv NoHdr
and dnnm hdlr = dnnm

in {up in=up hdlr; uplm in=uplm hdlr; upnm in=upnm hdlr;
dn in=dn hdlr; dnnm in=dnnm hdlr}

let l args vs = Layer.hdr init hdlrs args vs
let = Layer.install "PT2PT" l

Directed equality substitution such as the application of distributive laws lead to

further simplifications of the code. Technically, we apply lemmata from Nuprl’s

logical library. By adding to each lemma a direction that ensures formulas to

become simpler (e.g. indicating whether an equality lemma should be applied from

left-to-right or vice versa), we guarantee the termination of this process.

Context-dependent simplifications help in extracting the relevant code from a micro-

protocol. They trace the code path of messages that satisfy the CCPs and isolate

the corresponding code fragments. Technically, a CCP is expressed as an equality

that describes the value of a piece of code in a case split or a conditional. We

use this equality to substitute a piece of the code by a value and and then rewrite

the result with the above two mechanisms. A tactic UseAssumption performs these

steps automatically for a given assumption. Its implementation is straightforward,

as Nuprl supports equality reasoning and the management of hypotheses.

Tailored transformations take advantage of the fact that micro-protocols in

Ensemble are coded according to a certain discipline. This discipline is illustrated

in Table 4 by the code of Ensemble’s Pt2pt micro-protocol, which implements

fault-tolerant point-to-point message delivery. Each protocol layer l is built from

an initialization function init and an event handler hdlrs, which describes how

input events affect the state of the protocol and what events will be sent to adjacent

protocols. The function hdlrs is split into five subhandlers for up- and down-going
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events with full, local, or no message headers. Each of these subhandlers performs a

case analysis over type of the input event (sending, broadcasting, group management,

error handling, etc.) and triggers state updates and outgoing events accordingly.

Sending events to adjacent micro-protocols is done by calling their respective event

handlers rather than sending the events explicitly. This particular programming style

makes it possible to create a functional, imperative, or threaded version of Ensemble

(with different implementations of event queueing and layer composition) from a

single reference implementation by packing the layer’s initial state and event handler

with a function called Layer.hdr. The conversion into functional, imperative, or

threaded mode will take place when a protocol stack is built.

The coding discipline for Ensemble micro-protocols enabled us to write a

tactic EvaluateCodeStructure that applies a predetermined series of controlled

unfold and evaluation steps, η-reductions, distributive laws, and other “undirected”

equalities to isolate the relevant action in the event handler of a protocol. The tactic

performs the tedious initial steps of a micro-protocol optimization automatically

and is very efficient, since it does not require search.

Optimizations for each micro-protocol proceed in two phases. In the first phase

we use tactic-based forward reasoning to isolate the fast-path that corresponds to

the CCP and to optimize its code. Optimizations are initiated for four fundamental

cases: down- or up-going events for both point-to-point sending and broadcasting.

Basic CCPs for these cases are created automatically and the Ensemble programmer

may add additional CCPs to describe the common case.

To initialize the optimization of (the event handler of) a protocol layer l, we

generate a Nuprl optimization object that contains an expression of the form

CCP
l
⇒ let (s

0
,hdlr) = convert Functional l args (ls, vs)

in hdlr(sl, event)

where convert is an Ensemble library function that converts the code for the micro-

protocol l into a functional protocol stack, which consists of an initial state s
0
and

an event handler hdlr. sl is the current state of l and event an input event, which

must be of the form UpM(ev,hdr) or DnM(ev,hdr), i.e. up- or down-going events

ev with a message header hdr. The common case predicate CCP
l
for the layer l

usually characterizes the type of the event ev (send or broadcast), the structure of

the header hdr (full header, no header, or a local header), and the state sl .

For the sake of clarity we suppress irrelevant formal details in the top-level pre-

sentation by introducing a formal abbreviation (i.e. an abstraction and the corres-

ponding display form) for the above expression and write

OPTIMIZE LAYER l FOR EVENT event AND STATE sl ASSUMING CCP
l

A formal optimization begins by unfolding the formal abbreviation and moving

the common case predicate into the hypothesis list. Using EvaluateCodeStructure

we then isolate the case distinction within the relevant event handler of the function

hdlrs (see Table 4). Afterwards we apply the tactic UseAssumption whenever the

code to be optimized is a conditional or a case expression that fits one of the

assumptions of the CCP, and the tactic Red as long as top-level reductions make

progress. The process that applies these steps has been completely automated.
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Usually the optimization may stop at this point. However, we give the Ensemble

programmer an opportunity to invoke additional simplifications with the tactic Red

before committing the result to Nuprl’s library. Often, the (Nuprl representations

of) about 250–500 lines of OCaml code will be reduced to a single update of the

protocol’s state and a single output event to be sent to the next layer.

We illustrate our method by an optimization of Ensemble’s Pt2pt protocol with

respect to point-to-point sending. The basic CCP for this situation states that input

events have the form DnM(ev, hdr), where the constructor DnM indicates a down-

going input event, ev is a point-to-point send event (getType ev = ESend), and hdr

is an arbitrary message header. The Ensemble programmer also adds the CCP that

applications do not send to themselves (getPeer ev �= ls.rank). Formally, we

create the following optimization object.

OPTIMIZE LAYER Pt2pt
FOR EVENT DnM(ev, hdr)
AND STATE s pt2pt
ASSUMING getType ev = ESend ∧ not (getPeer ev = ls.rank)

After applying EvaluateCodeStructure we reach a choice point, i.e. a case

distinction, in the code of the event handler dn hdlr (see Table 4).

1. (getType ev) = ESend
2. not (getPeer ev = ls.rank)
� match getType ev with

ESend -> ..... Code hidden ....
| -> ..... Code hidden ....

The CCP now appears in the form of two assumptions. Details of the code are

temporarily hidden from the display, as they are not relevant at this point and may

not fit on the screen. We call UseAssumption 1, which leads to an evaluation of the

first case of the case expression and eliminates all the other cases from the code.

1. (getType ev) = ESend
2. not (getPeer ev = ls.rank)
� if getPeer ev = ls.rank then failwith "PT2PT: send to myself";

let sends = Arraye.get s.sends (getPeer ev) in
let seqno = Iq.hi sends in
let iov = getIov ev in
Iq.add sends iov hdr ;
dn ev (Full (Data seqno), hdr)

Next, we apply UseAssumption 2, which leads to an elimination of the conditional

and to subsequent reductions of the let-abstractions.

1. (getType ev) = ESend
2. not (getPeer ev = ls.rank)
� Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr;

dn ev (Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

No further reductions are meaningful at this point, since the remaining code

contains only a single update to the state s pt2pt and a single call to an down-going
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event handler, which receives the incoming message header, extended by additional

data, as input.

In the second phase, we create an optimization theorem , which proves that, under

the CCP, the bypass code is semantically equal to the protocol from which it was

generated. It verifies the correctness of the optimizations and will later be used

for the optimization of protocol stacks, described in section 4.4. To create it, we

compose the initial optimization object with its final result into a statement of a

formal Nuprl theorem, which requires us to prove a conditional equality of the form

� ∀sl:l.state. ∀Hdr,Args:U. ∀ls:View.local, vs:View.state.
∀ev:Event.t. ∀hdr:Hdr. ∀args:Args.
CCP

l
⇒ let (s

0
,hdlr) = convert Functional l args (ls, vs)

in hdlr(sl, event)
= updates; handlers

where the left equand is the starting point of the optimization and the right equand

its final result, consisting of a series of state updates and calls to event handlers. To

make the presentation of this formal theorem more accessible to programmers, we

introduce a formal abbreviation that allows us to present statements of the above

kind in the Nuprl system as follows.

OPTIMIZING LAYER l FOR EVENT event AND STATE sl ASSUMING CCP
l

YIELDS HANDLERS handlers AND UPDATES updates

To prove the optimization theorem, we use the trace of the formal optimization

as proof plan that triggers the application of Nuprl proof tactics that perform

exactly the same steps on the left-hand side of an equation as the rewrite tac-

tics Red, UseAssumption, and EvaluateCodeStructure did on the code of the

micro-protocol. As a consequence, the optimization theorem is created and proven

automatically, even if the original optimization required considerable interaction. We

have written a tactic CreateOptVerify, which performs all these steps. Since it is

is guaranteed to succeed, it can be triggered as background process when the result

of an optimization is being committed. Applying this tactic to the optimization of

Pt2pt with respect to point-to-point sending, for instance, leads to the optimization

theorem presented in Table 5.

Our library currently contains more than 100 optimization theorems for com-

mon Ensemble micro-protocols. These theorems were generated from optimization

objects that we developed using the tactics described above and CCP information

provided by the developers of Ensemble.

4.4 Stack optimization

In contrast to micro-protocol layers, application protocol stacks cannot be optimized

a priori, as thousands of possible configurations can be generated with the Ensemble

toolkit. Since the application developer has little or no knowledge about Ensemble’s

code, the process of optimizing an application stack has to be completely automatic.

We have developed a tool for optimizing arbitrary protocol stacks that uses

formal composition theorems to compose optimization theorems for individual micro-

protocols into optimization theorems for protocol stacks (c.f. Figure 5).
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Table 5. Optimization theorem for Pt2pt wrt. point-to-point sending (snapshot)

OPTIMIZING LAYER Pt2pt
FOR EVENT DnM(ev, hdr)
AND STATE s pt2pt
ASSUMING getType ev = ESend ∧ not (getPeer ev = ls.rank)

YIELDS HANDLERS dn ev (Full (Data (Iq.hi
(Arraye.get s pt2pt.sends (getPeer ev))), hdr))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr

BY InitReconf

GIVEN: s pt2pt, Msg, Args, ls, vs, ev, msg, args
9. (getType ev) = ESend
10. not (getPeer ev = ls.rank)
� let (s

0
,hdlr) = convert Functional Pt2pt.l args (ls, vs)

in hdlr(s pt2pt, DnM (ev, hdr))
= Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr;

dn ev (Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

BY EvaluatingCodeStructure

� match getType ev with
ESend -> ..... Code hidden ....

| -> ..... Code hidden ....
= Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr;

dn ev (Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

BY UsingAssumptions [9;10]

� Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr;
dn ev (Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

= Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr;
dn ev (Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

BY Equality

In top-down sequent proofs tactics refine a sequent and write the remaining subgoal sequent(s) below the tactic name,
which is recorded next to the BY. Variable declarations in hypotheses are abbreviated and hypotheses that do not change
are not repeated. A proof is complete if there are no more subgoals. In the Nuprl system, details of tactic executions may
be revealed on demand.

Composition theorems give an abstract, yet precise description of the effect of

applying Ensemble’s stack composition mechanism to common combinations of

fast-paths, such as linear traces (events pass straight through a layer), bouncing

events (events generate callback events), and trace splitting (events cause several

events to be emitted from a layer) – both for up- and down-going input events.

The following composition theorem, for instance, expresses the obvious effect of

composing down-going linear fast-paths: if an event passes straight down through

the upper layer and then through the lower one, then it passes straight through the

composed layers (Upper ||| Lower) as well. The state update for the combined layer

is the combination of the individual updates.

OPTIMIZING LAYER Upper
FOR EVENT DnM(ev, hdr) AND STATE s upper

YIELDS HANDLERS dn ev hdr1 AND UPDATES stmt1

∧ OPTIMIZING LAYER Lower
FOR EVENT DnM(ev, hdr1) AND STATE s lower

YIELDS HANDLERS dn ev hdr2 AND UPDATES stmt2

⇒ OPTIMIZING LAYER Upper ||| Lower
FOR EVENT DnM(ev, hdr) AND STATE (s upper, s lower)

YIELDS HANDLERS dn ev hdr2 AND UPDATES stmt1; stmt2
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Again, we have used formal abbreviations to make the presentation of the composi-

tion theorem in the Nuprl system easier to comprehend. With all the abbreviations

unfolded the theorem would read as follows.

� ∀State
l
,Stateu,Stacks,Msq,Args: �. ∀Lower,Upper:Stacks.

∀s
l
:State

l
. ∀su:Stateu. ∀args:Args. ∀ls:View.local. ∀vs:View.state.

∀ev:Event.t. ∀stmt1,stmt2,dn:EXPR. ∀hdr,hdr1,hdr2:Hdr.
let (s

0
,hdlr) = convert Functional Upper args (ls, vs)

in hdlr(su, DnM(ev, hdr))
= stmt1; dn ev hdr1

∧ let (s
0
,hdlr) = convert Functional Lower args (ls, vs)

in hdlr(s
l
, DnM(ev, hdr1))

= stmt2; dn ev hdr2

⇒ let (s
0
,hdlr) = convert Functional (compose Upper Lower) args (ls, vs)

in hdlr((su, sl
), DnM(ev, hdr))

= stmt1;stmt2; dn ev hdr2

While the use of formal abbreviations makes the statement of a composition theorem

appear almost trivial, its formal proof is complex, as it requires reasoning about the

function compose, the actual OCaml code of Ensemble’s composition mechanism.

The implementation of compose uses general recursion to handle the traffic of events

between the individual layers, which in principle may circulate up and down through

a stack several times before they leave.

By proving theorems about the result of applying this code to the most common

combinations of fast-paths we lift the optimization process to a higher conceptual

level: instead of reasoning about code, we reason about composition as such, using

composition theorems as derived inference rules. Optimizing composed protocols

is now a single reasoning step, while purely tactic-based optimizations would

have to apply thousands of simplification steps to the code to achieve the same

result.

Like optimization theorems for individual micro-protocols, composition theorems

are included in the optimization tool, as they do not depend on a particular

application stack. We have proven 12 composition theorems for the most common

combinations of fast-paths for up- and down-going events. As a consequence,

optimization theorems for protocol stacks can be created and proven automatically.

We have implemented a tactic CreateOptStack, which takes the names of the

micro-protocols in the application stack as input, creates statements of optimization

theorems for the complete stack, proves them correct, and stores the theorems

in the Nuprl library. Optimization theorems are created separately for the four

fundamental cases – down- and up-going events for both point-to-point send-

ing and broadcasting – to allow for the creation of independent bypass code

fragments.

The statement of the optimization theorem for a protocol stack has the same basic

form as one for micro-protocols. To create it, the tactic composes the statements of

the corresponding layer optimization theorems top down. It matches in- and outgoing

events according to the statement of the corresponding composition theorem and

accumulates the (instantiated) CCPs, states, and updates accordingly.

To prove the theorem, the tactic partially unfolds the formal abbreviations and

moving the CCP’s into the hypothesis list. It then instantiates the optimization

https://doi.org/10.1017/S0956796803004854 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004854


46 C. Kreitz

theorems of the micro-protocols in the stack with the actual input event that will

enter them. It then applies, step-by-step, the appropriate composition theorems to

compose the fast-paths through the micro-protocols into one for the stack and

finally shows that this is exactly the result that had to be proven.

The proof is stored in the Nuprl library with only these macro steps visible

at the top-level. Thus users inspecting it will first see the basic line of reasoning,

which is particularly important for realistic application stacks with 10–30 protocol

layers. Further details of the corresponding tactic executions may be revealed on

demand.

As an example, we illustrate the optimization of the protocol stack

Pt2pt ||| Mnak ||| Bottom with respect to point-to-point sending. To state the optimiz-

ation theorem, CreateOptStack looks up the corresponding optimization theorems

of Pt2pt (Table 5), Mnak, and Bottom:

OPTIMIZING LAYER Mnak

FOR EVENT DnM(ev, hdr)
AND STATE s mnak
ASSUMING getType ev = ESend

YIELDS HANDLERS dn ev (Full nohdr hdr)

AND UPDATES ()

OPTIMIZING LAYER Bottom

FOR EVENT DnM(ev, hdr)
AND STATE s bottom
ASSUMING getType ev = ESend

∧ s bottom.enabled
YIELDS HANDLERS dn ev (Full nohdr hdr)

AND UPDATES ()

Since all three optimizations show a linear behavior, they can be combined according

to the composition theorem for down-going linear traces. The input event for the

three-layer stack is the input of Pt2pt. The layer states are composed into a tuple and

the CCP’s are accumulated by conjunction. The handler code results from matching

the input and output events of adjacent micro-protocols. The resulting update is

composed from the individual updates. The generated optimization theorem and its

proof are shown in Table 6.

4.5 Header compression

Optimization theorems do not only describe a fast-path through a protocol stack

but also provide the means for an additional optimization that cannot be achieved

by partial evaluation or related techniques. They state exactly which headers are

added to a typical data message by the sender’s stack and how the receiver’s stack

processes these headers in the respective layers. As most of the header fields are

now fixed, we only have to transmit the header fields that may vary. In the stack

Pt2pt ||| Mnak ||| Bottom, for instance, point-to-point sending creates the header

Full nohdr (Full nohdr (Full (Data
(Iq.hi(Arraye.get s pt2pt.sends (getPeer ev)), hdr))))

in which only the italicized field contains essential information. Transmitting only

this field will reduce the net load and improve the performance of communication.

For this purpose, we generate code for compressing and expanding headers,

and wrap the protocol stack with these two functions (using Ensemble’s built-

in function wrap msg). Both functions are generated automatically by considering

the free variables of the events in the optimization theorems. For the stack
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Table 6. Generated optimization theorem for the stack Pt2pt ||| Mnak ||| Bottom

OPTIMIZING LAYER Pt2pt ||| Mnak ||| Bottom
FOR EVENT DnM (ev, hdr)
AND STATE (s pt2pt, s mnak, s bottom)
ASSUMING getType ev = ESend ∧ not (getPeer ev = ls.rank) ∧ s bottom.enabled

YIELDS HANDLERS dn ev (Full nohdr (Full nohdr (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr

BY InitStackReconf

GIVEN: s pt2pt, s mnak, s bottom, Hdr, Args, ls, vs, ev, hdr, args
11. (getType ev) = ESend
12. not (getPeer ev = ls.rank)
13. (s bottom.enabled)

� OPTIMIZING LAYER Pt2pt ||| Mnak ||| Bottom
FOR EVENT DnM (ev, hdr)
AND STATE (s pt2pt, s mnak, s bottom)

YIELDS HANDLERS dn ev (Full nohdr (Full nohdr (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr

BY QuoteLayerVerifs

14. OPTIMIZING LAYER Bottom
FOR EVENT DnM (ev, Full nohdr (Full

(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr)))
AND STATE s bottom

YIELDS HANDLERS dn ev (Full nohdr (Full nohdr (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))))

AND UPDATES ()
15. OPTIMIZING LAYER Mnak

FOR EVENT DnM (ev, Full (Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))),hdr))
AND STATE s mnak

YIELDS HANDLERS dn ev (Full nohdr (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr)))

AND UPDATES ()
16. OPTIMIZING LAYER Pt2pt

FOR EVENT DnM (ev, hdr)
AND STATE s pt2pt

YIELDS HANDLERS dn ev (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr

BY Repeat ComposeReconfigurations

14. OPTIMIZING LAYER Pt2pt ||| Mnak ||| Bottom
FOR EVENT DnM (ev, hdr)
AND STATE (s pt2pt, s mnak, s bottom)

YIELDS HANDLERS dn ev (Full nohdr (Full nohdr (Full
(Data (Iq.hi (Arraye.get s pt2pt.sends (getPeer ev))), hdr))))

AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev)) (getIov ev) hdr

BY Hypothesis 17

Pt2pt ||| Mnak ||| Bottom we generate the following functions

let compress hdr = match hdr with
Full nohdr (Full nohdr (Full (Data seqno, hdr))) -> OptSend(seqno, hdr)

| Full nohdr (Full (Data (seqno), Full nohdr hdr)) -> OptCast(seqno, hdr)
| hdr -> Normal(hdr)

let expand hdr = match hdr with
OptSend(seqno, hdr) -> Full nohdr (Full nohdr (Full (Data seqno, hdr)))

| OptCast(seqno, hdr) -> Full nohdr (Full (Data (seqno), Full nohdr hdr))
| Normal(hdr) -> hdr

We then optimize the code of the wrapped protocol stack using the same method-

ology as before. We have provided generic compression and expansion theorems,

which describe the outcome of optimizing a wrapped stack relatively to the result

of optimizing a regular stack. We use them to generate optimization theorems for

the wrapped stack from those of the regular stack. This step is fully automated.
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For point-to-point sending in the stack Pt2pt ||| Mnak ||| Bottom, for instance,

combining fast-path optimization with compression leads to the following theorem,

which again uses formal abbreviations to make its presentation more accessible.

OPTIMIZING LAYER Pt2pt ||| Mnak ||| Bottom WRAPPED WITH COMPRESSION
FOR EVENT DnM(ev, hdr)
AND STATE (s pt2pt, s mnak, s bottom)
ASSUMING getType ev = ESend ∧ not (getPeer ev = ls.rank)

∧ s bottom.enabled
YIELDS HANDLERS dn ev (OptSend (Iq.hi

(Arraye.get s pt2pt.sends (getPeer ev))), hdr)
AND UPDATES Iq.add (Arraye.get s pt2pt.sends (getPeer ev))

(getIov ev) hdr

Integrating compression into the optimization process will always lead to an

improvement in the common case, because the optimized code will directly generate

(or analyze) events with compressed headers, instead of creating a full header first

and compressing it afterwards. Only for the non-common case there will be a slight

(but hardly measurable) overhead, as the functions compress and expand have to

be executed explicitly.

4.6 Code generation

The above optimization steps describe logical operations within the Nuprl system.

In a final step, their results are converted into OCaml code that can be compiled and

linked to the rest of the communication system. To generate this code, we compose

the code fragments from the four optimization theorems into a single program,

which also delays state updates until events have been sent or delivered, using the

CCPs as conditionals that select either one of the fast-paths or the original stack.

The bypass code is wrapped by code fragments that convert it into a module, which

then can be compiled and linked to Ensemble without further modifications.

We have developed a tactic Optimize that combines stack optimization, header

compression, code generation, and exporting the result into the Ensemble source

tree into a single operation. Given a list of names of the micro-protocols in the

protocol stack it takes less than 30 seconds to generate the optimized code and

prove it to be equivalent to the original stack. In the process, it creates eight stack

optimization theorems (with and without compression) as well as 28 abstractions

representing the new code module.

Experiments in Liu et al. (1999) have shown that in common applications with

10 or more layers the optimized code is significantly more efficient than the original

Ensemble application stack. Although the synthesized code has to be integrated

into the functional version of Ensemble, which typically is about 50% slower than

the imperative one, it outperforms the best version of Ensemble by a factor of 3–5.

5 Verification and formal design

In the previous sections we have focused on reasoning about the code of modular

systems and on logic-based tools for optimizing their performance. We will now
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briefly address the remaining aspects of a formal infrastructure for building reliable,

high-performance networks, namely verification and formal design.

5.1 Specification and correctness

The goal of specification is to give a precise description of a system and to define

and document its features. Specifications can be used to guide the configuration of

application systems from modules, to support the design of new modules, and to

determine whether an implementation is correct .

Specifications range from specifying the behavior of a system to specifying its

properties . Both kinds of specifications are important. Properties describe the system

at the highest level while behavioral specifications describe how to implement the

properties. Behavioral specifications can be either concrete or abstract . Abstract

specifications are non-deterministic descriptions of a system’s global behavior. Con-

crete specifications give deterministic descriptions of a system’s components and can

easily be mapped onto executable code.

As example consider a FIFO network, which is characterized by the property

that messages are received in the same order in which they were sent . An abstract

behavioral specification would introduce a global queue of events in transit and state

that messages may be appended to the end of the queue and be removed from its be-

ginning . A concrete behavioral specification would describe a protocol that attaches

sequence numbers to messages and require that incoming messages whose sequence

number is too big will be buffered . At the lowest level we find the implementation of

this protocol, for instance as Ensemble’s Pt2pt module.

The relation between the four levels of specification can be pictured as follows.

Properties of an abstract specification are derived by proof . A concrete specification

is derived from the abstract specification by refinement , which involves designing

a protocol that implements the abstract requirements with respect to some ab-

stract network model. The implementation is linked to the concrete specification

by scheduling the order of actions and coding them in a specific programming

language.

Proof

Code Verification

Verification

PropertiesConcrete Behavioral

Abstract Behavioral

Specification

Specification (global)

(local)

Scheduling

Refinement

Implementation

Nondeterministic I/O Automaton

Highlevel Mathematics

Deterministic I/O Automaton

Programming Language (OCaml, ...)

Abstract
Network

Model
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Introducing several levels of abstraction makes it feasible to prove properties

of a system’s implementation or to derive an implementation from properties –

establishing a direct link between properties and implementation would be much

harder. Formal verification and design of networked systems in Nuprl therefore

requires a representation of all four level is Nuprl’s type theory.

For the highest level, the abstract system properties, we have developed a formal

model of communication (Bickford et al., 2001a; Bickford et al., 2001b; Bickford

et al., 2001c) that enables us to reason in Nuprl about properties of global traces

of events such as reliability, confidentiality, message ordering, etc. Abstract and

concrete system specifications are expressed in terms of non-deterministic and

deterministic IO-automata (IOA) (Lynch, 1996), which are abstractions of the

state-event machines implicitly used in the descriptions of network protocols. A

type-theoretic representation of IO-automata has been developed (Hickey et al.,

1999; Bickford & Hickey, 1999). The implementation level of Ensemble is the

programming language OCaml (Leroy, 2000), whose representation is discussed in

section 3.

A formal verification exploits the above relationship between the four levels. As

in the case of fast-path optimizations, a compositional approach is taken: individual

micro-protocols are verified independently and the verification of protocol stacks is

based on IOA composition, which is proven to preserve all safety properties of the

components. A good example of such a proof can be found in Hickey et al. (1999),

which demonstrates the correctness of one of Ensemble’s total ordering protocols

and located a subtle bug in the original implementation.

5.2 Formal design

Formal methods can have a large impact when being engaged at the earliest stages

of design and implementation. At this stage it is possible to state assumptions

and goals that drive the system design and to use proof environments to clarify

these goals, to explore ideas, and to detect flaws in the design before it is being

coded.

In Liu et al. (2001) and Bickford et al. (2001a, 2001c), it is shown how the Nuprl

system has contributed to the design and implementation of a verifiably correct

adaptive network protocol for Ensemble. The protocol was realized as a hybrid

protocol that switches between specialized protocols and formally proven correct

with the Nuprl system. In the process we have developed a characterization of

communication properties that can be preserved by dynamic switching. We have

introduced the concept of meta-properties to abstractly describe switchable properties

and have shown that six meta-properties are sufficient for protocols to work correctly

under a switch. We also have characterized a switch-invariant that an implementation

of the switch has to satisfy to preserve switchable properties.

The verification efforts revealed hidden assumptions that are crucial for the cor-

rectness of the implementation and showed limitations for the use of such a generic

protocol that might otherwise have gone unnoticed. This demonstrates that engaging

proof systems such as Nuprl at the earliest stages of design and implementation
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adds value to all subsequent stages and creates valuable information needed for the

maintenance and evolution of software.

6 Related work

The CMU Fox project (Biagioni, 1994) uses an extension of Standard ML for

building protocol stacks. Its broader goal is to investigate the extent to which high

level languages like ML are suitable for systems programming.

Integrated Layer Processing (ILP) (Clark & Tennenhouse, 1990) is an approach

to reduce the overhead of layered protocols (Abbott & Peterson, 1993). The Filter

Fusion Compiler (FFC) (Proebsting & Watterson, 1996) implements ILP using

partial evaluation, but has only been applied to very simple protocols. Furthermore,

the code generated by FFC has to be hand-modified to get good performance.

The Esterel compiler (Castelluccia & Dabbous, 1996) is used to convert a

protocol specification into a sequential finite automaton, from which efficient C code

is generated. Esterel was used to specify and implement a large subset of the TCP

protocol, but it does not scale easily to arbitrary protocol stacks. Furthermore it

cannot formally ensure the correctness of the optimization or the protocol itself.

In operating system research there is related work on locating and optimizing

common paths. Synthesis (Massalin, 1992) uses a run-time code generator to

optimize the most frequently used kernel routines. Pu et al. (1995) describe work on

optimizing Synthetix kernel functions by reducing the length of common paths.

HOL-ML (VanInwegen & Gunter, 1994; VanInwegen, 1996) is an encoding of

a subset of SML and its dynamic semantics in HOL (Gordon & Melham, 1993).

It formalizes the abstract syntax of SML expressions on the object level of HOL

and defines the static and dynamic semantics by a collection of explicitly introduced

inference rules. The main emphasis of HOL-ML was proving properties of the

programming language within the framework of a formal theorem prover.

Filliâtre (1998, 2002) developed a calculus for reasoning about functional programs

with references in Coq (Dowek et al., 1991; Coq). The calculus is based on an ML-

like model programming language that translates imperative programs into the

functional calculus of inductive constructions using a memory model similar to

ours. The focus of this work is exploring Floyd–Hoare style reasoning for a richer

programming language within the framework of type theory.

The LOOP project (van den Berg et al., 2000; van den Berg & Jacobs, 2001; Jacobs

& Poll, 2001) provides a tool for translating Java classes into the formal theories

of PVS (Owre et al., 1996; PVS) and Isabelle/HOL (Paulson, 1990; Isabelle). It

formalizes a subset of Java in a type-theoretical model of untyped memory cells

(similar to our model of store), which are used for storing Java objects and arrays.

The main emphasis of the project is the formal verification of Java programs.

Our representation of OCaml in Nuprl provides an infrastructure for reasoning

about large-scale programs and for applying semantics-preserving optimizations.

Nuprl abstractions and display forms enable us to represent the abstract syntax of

OCaml programs, their operational semantics, and the original syntax in which they

were written. Inference rules for reasoning about the static and dynamic semantics
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of OCaml are derived from this representation and operate entirely on the level

of the programming language instead of revealing the underlying logic. This makes

formal reasoning accessible to programmers and allows exporting the result of

formal transformations back into the programming environment.

A variety of formal systems has been used for verifying and synthesizing hardware

and software systems. Model checking (McMillan, 1993; Manna & Pnueli, 1995;

Clarke et al., 1999) has been very successful in the verification of hardware and

finite state software systems. Numerous systems (Cleaveland et al., 1994; Dill, 1996;

Holzmann, 1997) have been used in a variety of case studies. But so far they

are restricted to finite state systems and of limited value for reasoning about the

complete code of real distributed systems. Deductive model checking (Finkbeiner

et al., 1998; Sipma et al., 1999) combines model checking with automated deduction

for the verification of infinite-state and real-time systems. Although this approach is

very promising, it is not yet applicable to distributed systems.

There have been numerous applications of Isabelle (Paulson, 1990; Paulson,

1998; Paulson, 1999), PVS (Lincoln & Rushby, 1993; Owre et al., 1996; Rushby,

1994; Rushby, 1997; Rushby, 1999), and ACL2 (Kaufmann et al., 2000; ACL2) to

verifying abstract communication protocols. Few projects, however, deal with the

actual code of real-world systems.

The KIDS system (Smith, 1991) and its successor SPECWARE (Srinivas & Jüllig,

1995) support the modular construction of formal specifications and their refinement

into executable code. These systems have been successful in practical applications

(Smith & Parra, 1993; Gomes et al., 1996; Blaine et al., 1998; Westfold & Smith,

2001), but are currently limited to the development of sequential algorithms.

7 Conclusion

We have described an embedding of the Ensemble group communication toolkit to

the Nuprl proof development system that is based on a type-theoretical semantics

of Ensemble’s implementation language OCaml. The formal link between Ensemble

and Nuprl provides an infrastructure for the application of logical inference tech-

niques to the actual code of a modular, real-world system. Using this infrastructure

we have shown how to build logic-based optimization tools that can significantly

improve the performance of the already optimized Ensemble system in concrete

applications and are guaranteed not to introduce any errors. Our results show that

logical methods for program synthesis, verification, and optimization can be made

to scale effectively to large software systems.

This article extends preliminary work (Kreitz, 1997; Kreitz et al., 1998; Kreitz,

1999), which now has matured into push-button technology and is based on

an advanced semantical model for OCaml, which allows for a type-theoretical

representation of a larger fragment of the programming language.

Although we chose a limited application domain – all Ensemble configurations

are stacks of micro-protocols, which can be considered state-event machines – we

believe that our approach could generalize and scale to more general configuration

and component types. We believe that the following ingredients were key to the
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success of our approach:

1. Using small and simple system components, which are easier to reason about.

2. Using a well-defined configuration operation on components.

3. Using a mostly functional implementation of components in a language with

a formal semantics, which allows formal manipulations.

4. Using and continuously expanding a tactical proof system for a rich specific-

ation language such as Nuprl, which makes verification and optimization

techniques scale and more accessible to system developers.

5. Using several layers of formal abstraction, libraries of verified formal know-

ledge, and compositional reasoning, which makes formal techniques independ-

ent from a particular application domain.

6. Using a collaboration between systems and theorem proving groups, as the

joint expertise is required for making formal methods apply to real systems.

We believe that it may be possible to use our approach in other complex systems

such as file systems, atomic transaction protocols, optimizing compilers, and perhaps

eventually an entire operating system kernel, as the formal techniques described

here can be applied to other modular systems whose components and composition

mechanisms can be described semantically.

We also hope to elaborate our optimization technique into one that would allow

us to detect common combinations at run-time, and generate the optimized code

dynamically, using layer optimization theorems for all possible bypass paths. We can

then make use of Ensemble’s support for dynamically loading layers and switching

protocol stacks on-the-fly (van Renesse et al., 1999).

We also intend to extend our work on formalizing the semantics of programming

languages. Our methods would have a wider impact if we could express the type

theoretical semantics of OCaml’s classes and object and also target other back-end

languages such as Java, using ideas developed for the LOOP project (van den Berg

et al., 2000) and preliminary work in Attalli et al. (1998) and Naumov (1998). This

may, however, require expanding our logical foundations, as type theories do not

yet offer sufficient support for objects, methods, classes, and inheritance.

Finally, we shall continue our research on the verification and formal design of

distributed systems. We plan to refine and extend our formal models to include

reasoning about embedded systems with bandwidth and resource limitations, and

time constraints.
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A The type-theoretical formalization of OCaml

The type-theoretical formalization of OCaml’s semantics is based on the model

described in section 3.1. It represents OCaml expressions as functions that operate

on a store s and an environment env, and return a value (or an exception) and

a possibly updated store. Expressions may include patterns, which are represented

as functions that take two expressions e
1
and e

2
and modify the environment of e

2

according to the result of matching e
1
against the pattern template. OCaml types

are represented as (dependent) function types, which enables us to express OCaml

typings by the membership relation of Nuprl’s type theory.

Our embedding of OCaml into type theory is shallow : instead of describing the

type of all possible OCaml expressions and defining an evaluation function for these

terms, we describe OCaml expressions by Nuprl terms that directly represent their

operational semantics. All tactics for manipulating OCaml expressions are based

on derived inference rules that preserve the “OCaml-ness” of Nuprl terms, which

makes sure that the internal representation will not be revealed.

Our formalization only covers OCaml programs that are type-correct , as these are

the only expressions that actually have a semantics. It does not handle compile-time

errors like detecting an attempt to match an integer against a list, but only run-

time errors, which will result in raising exceptions. Our tools for importing OCaml

code into Nuprl (section 3.5) make sure that only programs accepted by OCaml’s

type checker will be translated into a type-theoretical representation.

Although the OCaml manual (Leroy, 2000) does not specify the evaluation

order of subexpressions in OCaml programs, the evaluation order of a formal

representation has to be fixed to guarantee a deterministic behavior of programs in

formal reasoning. To ensure faithfulness with respect to the OCaml compiler our

formalization usually encodes a right-most depth-first strategy.

In addition to the basic type theory of Nuprl (Table 1) our formalization of

a type theoretical model of OCaml utilizes a variety of user-defined operations

on lists, booleans (see Table 2), tables, numbers, etc. that are included in Nuprl’s

standard libraries, the definitions given in Section 3.1, and the following notions.

IDENT ≡ Atom

LABEL ≡ Atom

VALUE ≡ Top

ENV ≡ (IDENT × VALUE) List

ADDR ≡ �
STORE ≡ (ADDR × VALUE) List

EXCEPTION ≡ Atom

EXPR ≡ s:STORE → env:ENV → (EXCEPTION + VALUE) × STORE

A.1 Expressions

The syntax and meaning of OCaml expressions is described in section 6.7 of the

OCaml manual (Leroy, 2000). As described above, we represent OCaml expressions

as elements of the type EXPR , i.e. as functions of the form λs,env. value,s’ , where

value is the result of evaluating the expression and s’ the updated store.
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Tables A 1 and A 2 give a complete description of the formal representation of

OCaml expressions in Nuprl. In the tables we use the following abbreviations.

�v� ≡ λs,env. inr(v), s

↑ ≡ λs,env. inl("Match failure"), s

λ↓[v,s
1
/e, env]. e′ ≡ λs,env. let↓ <inr(v),s

1
> = e s env in e′

λ↓[v
2
,v

1
,s

1
/e

2
,e

1
, env]. e′ ≡ λs,env. let↓ <inr(v

2
),s

2
> = e

2
s env in

let↓ <inr(v
1
),s

1
> = e

1
s

2
env in e′

λ↓[v
3
,v

2
,v

1
,s

1
/e

3
,e

2
,e

1
, env]. e′ ≡ λs,env. let↓ <inr(v

3
),s

3
> = e

3
s env in

let↓ <inr(v
2
),s

2
> = e

2
s

3
env in

let↓ <inr(v
1
),s

1
> = e

1
s

2
env in e′

The terms {}, {f
1
=e

1
}⊗e

2
, and e[v/x] do not belong to the language of OCaml.

They are used only for describing the semantics of record expressions and for

loops.

The formalization does not yet include expressions for float constants, bitwise

logical and floating point operators, labels in matchings that may affect function

evaluation, and operations on objects (new obj, e#method, (e:>T), (e:T
1
:>T

2
),

{v
1
=e

1
,..,v

n
=e

n
}). Expressions of the language core described in Table 3, such as

function p -> e and let p = e
1
in e

2
, are subsumed by more general versions.

ref e is now an abbreviation for a mutable singleton record. The representation

of the operators listed in section 6.7.4 of the manual is not included in the tables, as

they are defined explicitly in the OCaml library module pervasives.ml.

It should be noted that there is some overlap between the native syntax of

OCaml and Nuprl’s type theory. The list prepend operation, for instance, is written

as e
1
::e

2
in both formal languages, and the decomposition of pairs in Nuprl is

written as let <x,y>=e
1
in e

2
while the application of a pair pattern in an OCaml

let-binding is written as let (x,y)=e
1
in e

2
. Usually, it is clear from the context

which formal construct is being used. For instance, the representation of constant list

expressions is based on (the representation of) OCaml’s list append operation, while

the representation of constant array expressions is based on Nuprl’s list append

and lifting. For Nuprl’s proof system, the distinction is obvious, since the terms for

Nuprl’s and OCaml’s list append operations have different operator identifiers and

the similarity is only a matter of term display.

Our tables use a dot-notation to describe the formalization of OCaml constructs

that do not have a fixed size, such as constant list, array, and record expressions, and

multiple matchings and bindings. Since formal definitions in Nuprl require terms

to have a fixed number of subterms, the actual representation of these constructs

has to be based on iterated abstractions . For instance, the representation of a

record expression {f
1
=e

1
; ..; f

n
=e

n
} is built from the representation of the empty

record {} and n applications of the record composition operator {f=e}⊗e’ . The

display form for the latter has to make sure that the resulting term is displayed as

syntactically correct record expression and not as {f
1
=e

1
; {..; {f

n
=e

n
}..}} .

In some rare cases, such as the definition of mutually recursive let bindings, it is not

possible to use an iteration of basic abstractions to represent the OCaml language

construct: to build rec p
1
,p

2
= e

1
,e

2
from rec p

1
= e

1
and rec p

2
= e

2

we would have to distribute the second abstraction over two subterms of the first.
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Table A 1. Nuprl representation of OCaml expressions (I)

x ≡ λs,env. inr(env[x]),s

raise e ≡ λ↓[v,s
1
/e, env]. inl(v), s

i ≡ �i�
’chr’ ≡ �"chr"�
() ≡ �Ax�
false ≡ �ff�
true ≡ �tt�
if e then e

1
else e

2
≡ λ↓[v,s

1
/e, env]. (if v then e

1
else e

2
) s

1
env

if e then e
1

≡ if e then e
1
else ()

[] ≡ �[]�
e

1
::e

2
≡ λ↓[v

2
,v

1
,s

1
/e

2
,e

1
, env]. inr(�v

1
�::�v

2
�), s

1

[e
1
; ..; en] ≡ e

1
::...::en::[]

cconstr ≡ �<"cconstr",()>�
ncconstr e ≡ λ↓[v,s

1
/e, env]. inr(<"ncconstr",�v�>, s

1

‘tag ≡ �<"tag",()>�
‘tag e ≡ λ↓[v,s

1
/e, env]. inr(<"tag",�v�>, s

1

(e
1
,e

2
) ≡ λ↓[v

2
,v

1
,s

1
/e

2
,e

1
, env]. inr(<�v

1
�,�v

2
�>), s

1

e
1
e

2
≡ λ↓[v

2
,v

1
,s

1
/e

2
,e

1
, env]. (v

1
�v

2
�) s

1
env

{} ≡ �λfield.-1�
{f

1
=e

1
}⊗e

2
≡ λ↓[v

2
,v

1
,s

1
/e

2
,e

1
, env].

let addr = if v
2
f

1
< 0 then NEW(s

1
) else v

2
f

1
in

inr(λf. if f = f
1
then addr

1
else v

2
f), s

1
[addr←v

1
]

{e with f
1
=e

1
; ..; fn=en} ≡ {"f

1
"=e

1
}⊗..⊗{"fn"=en}⊗e

{f
1
=e

1
; ..; fn=en} ≡ { {} with f

1
=e

1
; ..; fn=en}

e.f ≡ λ↓[v,s
1
/e, env]. inr(!s

1
[v "f"]), s

1

e
1
.f <- e

2
≡ {"f

1
"=e

1
}⊗e

2
; ()

ref e ≡ {contents=e}
!e ≡ e.contents

e
1
:= e

2
≡ e

1
.contents <- e

2

[|e
0
; ..; en|] ≡ �ref e

0
::...::ref en::[]�

e
1
.(e

2
) ≡ λ↓[v

2
,v

1
,s

1
/e

2
,e

1
, env]. !(v

1
[v

2
]) s

1
env

e
1
.(e

2
) <- e

3
≡ λ↓[v

3
,v

2
,v

1
,s

1
/e

3
,e

2
,e

1
, env]. (v

1
[v

2
] := �v

3
�) s

1
env

"c
0
..cn" ≡ [|’c

0
’;..;’cn’|]

e
1
.[e

2
] ≡ e

1
.(e

2
)

e
1
.[e

2
] <- e

3
≡ e

1
.(e

2
) <- e

3

e
1
; e

2
≡ λ↓[v,s

1
/e, env]. e

2
s

1
env

while e do e
1
done ≡ Y(λwhile. if e then (e

1
; while))

e[v/x] ≡ λs,env. e s (env@{x �→v})
for i = e

1
to e

2
≡ λ↓[v

2
,v

1
,s

1
/e

2
,e

1
, env].

do e
3
done (rec-case v

2
-v

1
of n<0 �→ [loop]. ()

0 �→ e
3
[v

1
/i]

n>0 �→ [loop]. loop; e
3
[v

l
+n/i]

) s
1
env

for i = e
1
downto e

2
≡ λ↓[v

2
,v

1
,s

1
/e

2
,e

1
, env].

do e
3
done (rec-case v

2
-v

1
of n<0 �→ [loop]. loop; e

3
[v

l
+n/i]

0 �→ e
3
[v

1
/i]

n>0 �→ [loop]. ()

) s
1
env

https://doi.org/10.1017/S0956796803004854 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004854


Building reliable, high-performance networks 57

Table A 2. Nuprl representation of OCaml expressions (II)

e when e
1

≡ if e
1
then e else ↑

p when e
1
-> e ≡ λv. p v (e when e

1
)

p -> e ≡ p when true -> e

p when e
1
-> e | matching ≡ λv.λs,env.

let <match,s
1
> = p v (e when e

1
) s env in

case match of inl(exn) �→ matching v s
1
env

| inr(val) �→ inr(val), s
1

p -> e | matching ≡ p when true -> e | matching

matching ≡ λe. λs,env. let↓ <inr(v),s
1
> = e s env in

matching v s
1
env

match e with matching ≡ matching e

function matching ≡ � matching �
fun p

1
...pn when e

1
-> e ≡ function p

1
-> ... function pn when e

1
-> e

try e with matching ≡ λs,env. let <result,s
1
> = e s env in

case result of inl(exn) �→ matching exn s
1
env

| inr(v) �→ inr(v), s
1

pat ≡ λe
1
,e

2
. λs,env. let↓ <inr(v),s

1
> = e

1
s env in

pat v e
2
s

1
env

p = e ≡ p e

p = e and binding ≡ λe’. binding (p e e’)

x p
1
..pn = e ≡ x = fun p

1
..pn -> e

x p
1
..pn = e and binding ≡ x = fun p

1
..pn -> e and binding

rec p = e ≡ p (Y (λe’. p e’ e))

rec p
1
= e

1
and ... pn = en ≡ rec p

1
,..,pn = e

1
,..,en

rec x p
1
..pn = e ≡ rec x = fun p

1
..pn -> e

let bindings in e ≡ bindings e

(e) ≡ e

begin e end ≡ e

(e:T) ≡ e

Therefore, our implementation provide a series of abstractions for each fixed number

of mutually recursive bindings.

To simplify the representation of records, we represent all their components as

mutable reference cells, even if they are not declared mutable. Attempts to assign a

new value to a non-mutable component will be caught by the OCaml type checker,

while otherwise the outward behavior of mutable and non-mutable components is

identical. For the same reason, we simply represent parenthesized expressions with

type constraints (e:T) by the expression e , as the type constraint is checked at

compile time and has no influence on the operational semantics.

A.2 Patterns

Patterns, described in section 6.6 of the OCaml manual, are templates that allow

selecting data structures of a given shape and binding identifiers to components

of this structure. As discussed in section 3.1, we represent patterns as functions
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Table A 3. Nuprl representation of OCaml patterns

≡ λv,e. e

x ≡ λv,e. e[v/x]

p as x ≡ λv,e. (p v e)[v/x]

i ≡ λv,e. if i=v then e else ↑
’chr’ ≡ λv,e. if "chr"=v then e else ↑
"str" ≡ λv,e. if str=strv then e else ↑
true ≡ λv,e. if v then e else ↑
false ≡ λv,e. if v then ↑ else e

[] ≡ λv,e. rec-case v of [] �→ e | vhd::vtl �→ ↑
p

1
::p

2
≡ λv,e. rec-case v of [] �→ ↑ | vhd::vtl �→ p

1
vhd (p2

vtl e)

[p
1
; ..; pn] ≡ p

1
::p

2
::...::pn::[]

cconstr ≡ λv,e. let <v
1
,v

2
>=v in if v

1
="cconstr" then e else ↑

ncconstr p ≡ λv,e. let <v
1
,v

2
>=v in if v

1
="ncconstr" then p v

2
e else ↑

‘tag ≡ λv,e. let <v
1
,v

2
>=v in if v

1
="tag" then e else ↑

‘tag p ≡ λv,e. let <v
1
,v

2
>=v in if v

1
="tag" then p v

2
e else ↑

p
1
, p

2
≡ λv,e. let <v

1
,v

2
>=v in p

1
v

1
(p

2
v

2
e)

{f
1
=p

1
; ..; fn=pn} ≡ λv,e. p

1
!s[v "f

1
"] ( ..(pn !s[v "fn"] e)..)

[|p
0
; ..; pn|] ≡ λv,e. p

0
!s[v[0] "contents"]

( ..(pn !s[v[n] "contents"] e)..)

(p) ≡ p

(p:T) ≡ p

() ≡ ( :unit)

p
1
| p

2
≡ λv,e. (p

1
v e) ? (p

2
v e)

that modify an expression e by updating its environment according to the result of

matching a value v against the template. These functions decompose the values of

expressions that are built using the language constructs listed in Table A 1.

Table A 3 gives a complete description of the formal representation of OCaml

patterns in Nuprl. In the table we use the following abbreviation.

e
1
? e

2
≡ λs,env. let <result,s

1
> = e

1
s env in

case result of inl(exn) �→ e
2
s

1
env

| inr(v) �→ inr(v), s
1

The formalization does not yet include patterns for float constants and for type

constructors abbreviating polymorphic variants (# typeconstr).

In the Nuprl implementation, the variable-sized patterns for constant list, array,

and record expressions are represented by an iterated application of basic abstrac-

tions, similar to the way the corresponding expressions are represented. Parenthesized

patterns with type constraints (p:T) are represented by the pattern p , as the type

constraint is checked at compile time.

Since patterns match templates against values, they have to be lifted to functions

on expressions instead of values in order to become applicable within bindings and

matchings. Applying a lifted pattern pat (see Table A 2 for a formal definition)

to an expression e
1
first evaluates e

1
and then applies the pattern to the resulting

value.
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Table A 4. Nuprl representation of OCaml types

’id ≡ id

int ≡ �int�

char ≡ �Atom�

string ≡ char array

bool ≡ ���

unit ≡ �Unit�

array ≡ λT.�REF(T) List�

list ≡ λT.�T List�

exn ≡ �EXCEPTION�

(T) ≡ T

T
1
->T

2
≡ �T

1
→T

2
�

T
1
* T

2
≡ �T

1
× T

2
�

T typeconstr ≡ typeconstr T

(T
1
,..,Tn) typeconstr ≡ typeconstr <T

1
,..,Tn>

T as ’id ≡ rectype id = T

T
1
[T as ’id/z] ≡ rectype id = T

1
[T/z]

{mutable f
1
:T

1
} ≡ �f:FIELD → (if f = f

1
then REF(T

1
) else EXPR)�

{f
1
:T

1
} ≡ {mutable f

1
:T

1
}

{fielddecl
1
;..;fielddecln} ≡ {fielddecl

1
}∩ ..∩ {fielddecln}

cconstr ≡ �c:CONSTR × if c="cconstr" then unit else EXPR�

ncconstr of T ≡ �c:CONSTR × if c="ncconstr" then T else EXPR�

constr
1
|...| constrn ≡ constr

1
∩ ..∩ constrn

‘tag ≡ �tg:TAG × (if tg = "tag" then unit else EXPR)�

‘tag of T ≡ �tg:TAG × (if tg = "tag" then T else Top)�

[> variant
1
|...| variantn] ≡ variant

1
∩ ..∩ variantn

[variant
1
|...| variantn] ≡ [> variant

1
|...| variantn]

A.3 Type expressions

Type expressions, described in sections 6.4 and 6.8 of the OCaml manual, are used

to denote the data types of OCaml as well as type constraints within patterns

and expressions. Our formalization of OCaml type expressions aims at representing

the typing relation in OCaml by the built-in membership relation of Nuprl’s type

theory. Thus OCaml types will be represented as (dependent) function types of the

form s:STORE → env:ENV → (EXCEPTION + T) × STORE .

Table A 4 gives a complete description of the formal representation of OCaml

type expressions, including record and variant (constructor) types, in Nuprl. In the

table we use the following abbreviations.
�T� ≡ s:STORE → env:ENV → (EXCEPTION + T) × STORE

REF(T) ≡ s:STORE → env:ENV → ({i:ADDR | �!s[i]� ∈T} + VALUE) × STORE

FIELD ≡ LABEL

CONSTR ≡ LABEL

TAG ≡ Atom

The formalization does not yet include the types constants float, id option, and

(’id
1
, ’id

2
, ’id

3
) format, which are defined explicitly in OCaml’s library module

pervasives.ml, closed variant types [< variant
1
|..| variant

n
], object types
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(<..>, <m
1
:T

1
;..;m

n
:T

n
;..>), and class types (# class, T # class, (T

1
,..,T

n
) #

class). Labels in function types are not yet supported.

Type variables usually occur only in type definitions and type constraints. In

the former, they are linked to the data type parameters of a type constructor

(see Appendix A.4), while in the latter they represent unspecified types that can be

instantiated to satisfy the constraint. As type constraints are checked at compile time

and ignored at runtime, we represent OCaml type variables as Nuprl variables.

Although type constructors are usually defined by users, OCaml has a few

predefined constructors such as list and array. Note that type constructor

application in OCaml uses postfix notation. The type exn of exceptions describes

the result type of error messages that are returned when an exception is “raised”.

Formally, it is a type like any other OCaml type.

Record types are defined as dependent function types that assign different types

to different values of a field. A record type declaration {f
1
:T

1
; ..; f

n
:T

n
} is

represented by the type

f:FIELD → if f = f
1
then T

1
else ... else if f = f

n
then T

n
else Top

As record type declarations are variable-sized, we need to build their formal

representation an iterated application of basic abstractions. We use Nuprl’s inter-

section type constructor for this purpose, since (the representation of) {f
1
:T

1
;f

2
:T

2
}

has the same members as {f
1
:T

1
} ∩ {f

2
:T

2
} . As explained in Appendix A.1, all

component types are represented as mutable types, even if they are not explicitly

declared mutable. Note, that in OCaml record types and variant constructor types

always have to be defined types, i.e. they may only occur on the top-level of type

definitions. Polymorphic variant types may occur in arbitrary type expressions.

Building the representation of complex recursive types (T
1
[T as ’id]) involves a

meta-level construction that detects the occurrence of T as ’id in T
1
, replaces it by

T and wraps the whole expression with Nuprl’s constructor for inductive types.

A.4 Type and value definitions

Type and value definitions, described in sections 6.8 and 6.11 of the OCaml manual,

bind type constructors and value names to data types and expressions. They do

not have an object level semantics in OCaml, but have to be considered meta-level

operations that link names to actual types and expressions.

As a consequence, type and value definitions are not represented by object-level

terms of type theory. Instead, they are mapped onto definition objects of the Nuprl

system, i.e. meta-level objects that bind new abstract terms to type theoretical

expressions. Nuprl abstractions represent the links between user-defined type and

expression variables and their definitions, while display forms make sure that the

syntactical appearance of the abstract term is identical to the original OCaml code.

Our mechanisms for importing OCaml code into Nuprl (section 3.5) make sure

that the abstraction objects corresponding to user-defined types and values allow

identifying both the name chosen by the user and the module within which it was

defined. References to these names within a piece of code will be disambiguated at

“compile time” and mapped onto the appropriate abstract terms. Thus evaluating
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Table A 5. Nuprl representation of OCaml type and value definitions

type typeconstr = T ≡ typeconstr ≡ Y (λtypeconstr.T)

type ’id typeconstr = T ≡ type typeconstr = λid.T

type (’id
1
,..,’idn) typeconstr = T

≡ type typeconstr = λtypes.

let <id
1
,..,idn> = types in T

let id = e ≡ id ≡ e

let id p
1
..pn = e ≡ let id = fun p

1
..pn -> e

let rec id = e ≡ id ≡ Y (λid.e)

let rec id p
1
..pn = e ≡ let rec id = fun p

1
..pn -> e

user-defined OCaml types and values simply means unfolding the corresponding

Nuprl abstraction. As an additional feature, this approach enables Nuprl users to

look up definitions of OCaml functions by clicking on the abstract term.

Table A 5 describes the formal definitions that are needed to build a formal

representation of OCaml’s type and value definitions. Note that these definitions

map OCaml definitions to (the contents of) Nuprl definition objects, as indicated

by the “≡ ” symbol on the right hand side of a definition.

The formalization accounts for the fact that type definitions may be recursive but

does not yet include type constraints and optional prefixes for type parameters,

which indicate whether a type constructor is to be co- or contravariant with

respect to that parameter. Furthermore, as all OCaml definitions are mapped

onto individual definition objects in Nuprl, multiple top level bindings as in

type typedef
1
and ... typedef

n
and let [rec] binding

1
and ... binding

n

will be separated into individual definitions when the code is imported into Nuprl.

A.5 Partial evaluation of OCaml expressions

Symbolic computation rules for OCaml expressions support the partial evaluation

of OCaml programs. As the semantics of OCaml expressions and patterns clearly

describes the dynamic behavior of OCaml expressions, the computation rules for

OCaml can be implemented as derived inference rules using Nuprl tactics and

computation rules. A critical issue in this implementation is the preservation of the

“OCamlness” of expressions: the tactics always have to return a (representation

of a) valid OCaml expression and must not reveal the underlying type-theoretical

description. Another issue is the potential presence of reference cells in expressions:

the tactics can rewrite an expression into another one only if both expressions have

the same values and the same side-effects.

Many of our computation rules OCaml that we describe in this section therefore

require certain subexpressions to be free of side-effects , which roughly means that

they do not contain assignments of the form e
1
.f <- e

2
, e

1
:= e

2
, e

1
.(e

2
) <- e

3
,

or e
1
.[e

2
] <- e

3
. Function definitions in function, fun, and let expressions are

always free of side-effects, even if the function body is not. Function applications,

however, are free of side-effects only if the function body is.

In Nuprl the test for being free of side-effects is performed by meta-level

tactics. A practical difficulty is the occurrence of user-defined functions: unfolding
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Table A 6. (Derived) computation rules for OCaml

Redex Contractum

-i, i+j, i-j, i*j, i/j, i mod j −→ as usual

i=j, i<>j, i<j, i<=j, i>j, i>=j −→ as usual

if true then e
1
else e

2
−→ e

1

if false then e
1
else e

2
−→ e

2

e::[e
1
;..;en] −→ [e::e

1
;..;en]

{f
1
=e

1
; ..; fn=en}.fi

−→ e
i

1

{f
1
=e

1
; ..; fn=en}.fi

<-e −→ {f
1
=e

1
; ..; f

i
=e; ..; fn=en} 2

[|e
0
; ..; en|].(i) −→ e

i

1

[|e
0
; ..; en|].(i)<-e −→ [|e

0
; ..; e; ..; en|]

2

"c
0
..cn".[i] −→ ’c

i
’

"c
0
..cn".[i]<-’chr’ −→ "c

0
..chr..cn"

e; e
2

−→ e
2

3

while e do e
1
done −→ if e then (e

1
; while e do e

1
done)

for i=e
1
to e

2
do e

3
done −→ if e

1
<=e

2
then (e

3
[e

1
/i];

for i=e
1
+1 to e

2
do e

3
done) 4

match e with p
1
-> e

1
’ when e

1
−→ e

i
’ �e/p

i
� 2 3 5

...
pn -> en’ when en

(function matching) e −→ match e with matching

(fun p
1
..pn when e’ -> e) e

1
..en −→ e �e

1
/p

1
�.. �en/pn�

6

let p
1
= e

1
and .. pn = en in e −→ e �e

1
/p

1
�.. �en/pn�

2

let x p
1
..pn = e in e’ −→ let x = fun p

1
..pn -> e in e’

let rec x
1
=e

1
and .. xn=en in e −→ let x

1
=e

1
[let rec x

1
=e

1
in x

1
/ x

1
]

and ...

xn=en [let rec xn=en in xn / xn] in e 2

let rec x p
1
..pn = e in e’ −→ let rec x = fun p

1
..pn -> e in e’

id −→ e 7

id e
1
..en −→ e �e

1
/p

1
�.. �en/pn�

2 8

1: e
j
free of side-effects for j �=i. 2: e

j
free of side-effects for all j. 3: e free of side-effects.

4: e
1
, e

2
free of side-effects. 5: i is the first j with e

j
�e/p

j
��=↑ and e

j
’ �e/p

j
�=true .

6: e’ �e
1
/p

1
�.. �en/pn� = true. 7: let id = e user-defined . 8: let rec id p

1
..pn = e user-

defined.

their definitions and checking them for side-effects would make the test extremely

expensive, as this often requires unfolding further definitions. Therefore the test

assumes the bodies of other user-defined functions to have side-effects. If needed, the

definitions of other functions can be unfolded explicitly by tailored evaluation tactics.

This approach prevents the computation rule from being applied incorrectly, i.e. to

expression where it cannot produce a formal justification for the evaluation step.

Using side-effects within expressions other than the bodies of functions is con-

sidered poor programming style and usually avoided, as this makes it difficult to

understand the program’s behavior. For this reason, our symbolic computation rules

for OCaml are applicable to almost all “real” programs, despite their restriction to

expressions that are free of side-effects.

Table A 6 describes the current set of derived computation rules for partially

evaluating OCaml programs within the framework of the Nuprl system. These
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Table A 7. (Derived) rules for symbolic pattern evaluation

e �e’/ � �→ e

e �e’/x� �→ e [e’/x]

e �e’/p as x� �→ e �e’/p� [e’/x]

e �i/i� �→ e

e �’chr’/’chr’� �→ e

e �"c
0
..cn/"c0

..cn"� �→ e

e �true/true� �→ e

e �false/false� �→ e

e �[]/[]� �→ e

e �e
1
::e

2
/ p

1
::p

2
� �→ e �e

1
/p

1
� �e

2
/p

2
�

e �[e
1
; ..; en] / p

1
::p

2
� �→ e �e

1
/p

1
� �[e

2
; ..; en]/p2

�

e �[e
1
; ..; en] / [p

1
; ..; pn]� �→ e �e

1
/p

1
�.. �en/pn�

e �cconstr/cconstr� �→ e

e �ncconstr e’ / ncconstr p� �→ e �e’/p�

e �‘tag / ‘tag� �→ e

e �‘tag e’ / ‘tag p� �→ e �e’/p�

e �e
1
, e

2
/ p

1
, p

2
� �→ e �e

1
/p

1
� �e

2
/p

2
�

e �{f
1
=e

1
;..;en=en} / {fi1

=p
1
;..;f

ik
=p

k
}� �→ e �e

i1
/p

1
�.. �e

ik
/p

k
� if k�n

e �[|e
0
; ..; en|] / [|p

0
; ..; pn|]� �→ e �e

0
/p

0
�.. �en/pn�

e �e’/(p)� �→ e �e’/p�

e �e’/(p:T)� �→ e �e’/p�

e �e’/()� �→ e

e �e’/p
1
| p

2
� �→ e �e’/p

1
� if e �e’/p

1
� �= ↑

e �e’/p
1
| p

2
� �→ e �e’/p

1
� if e �e’/p

1
� = ↑

If e’ is in canonical form and none of the above rules applies then e �e’/p� �→ ↑

rules can be applied to arbitrary sub-terms of an OCaml expression as long as their

proviso (see the bottom of the table) is satisfied. The evaluation tactic Red, described

in Section 4.3, uses search to find the first applicable evaluation rules. Other tactics

attempt to reduce a specific sub-term of a proof goal.

In computation rules that involve pattern matching the notation e �e’/p� describes

a substitution where the free variables of e that occur in the pattern p are instantiated

by the subexpressions of e’ which result from matching the template p against e’.

For p being a variable pattern x, this substitution is the same as the usual term

substitution e [e’/x]. For all other templates it is the result of applying the pattern

evaluation rules described in Table A 7, which are derived from the type theoretical

semantics of (lifted) patterns in Table A 3.

Patterns can only be matched against expressions that are in canonical form

and free of side-effects: function applications, conditionals, and other expressions

occurring in Table A 6 have to be evaluated before symbolic pattern matching can

be applied to them. Pattern matching fails (i.e. returns the expression ↑) if none of

the rules in Table A 7 applies.
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