BULL. AUSTRAL. MATH. SOC. VOL. 30 (1984). 161-167.

METRIC SPACES WHICH CANNOT BE ISOMETRICALLY EMBEDDED IN HILBERT SPACE

YANG LU AND THANG JING-THONG

Let ${}^A_1{}^A_2{}^A_3{}^A_4$ be a planar convex quadrangle with diagonals ${}^A_1{}^A_3$ and ${}^A_2{}^A_4$. Is there a quadrangle ${}^B_1{}^B_2{}^B_3{}^B_4$ in Euclidean space such that ${}^A_1{}^A_3$ < ${}^B_1{}^B_3$, ${}^A_2{}^A_4$ < ${}^B_2{}^B_4$ but ${}^A_i{}^A_j$ > ${}^B_i{}^B_j$ for other edges?

The answer is "no". It seems to be obvious but the proof is more difficult. In this paper we shall solve similar more complicated problems by using a higher dimensional geometric inequality which is a generalisation of the well-known Pedoe inequality (*Proc. Cambridge Philos. Soc.* 38 (1942), 397-398) and an interesting result by L.M. Blumenthal and B.E. Gillam (*Amer. Math. Monthly* 50 (1943), 181-185).

1. Definitions and main result

DEFINITION 1. Let $G = \{A_1, A_2, \ldots, A_{n+2}\}$ be an (n+2)-tuple in E^n . An edge A_iA_j of G is called "red" or "blue" if there exists uniquely a hyperplane $\pi_{ij}(G)$ containing $G\setminus\{A_i, A_j\}$ such that A_i and A_j lie to the opposite sides or the same side of $\pi_{ij}(G)$, respectively.

Received 8 March 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00.

Some edges, of course, may be neither red nor blue.

DEFINITION 2. Let G be an (n+2)-tuple in E^n , (M,d) a semimetric space. A mapping $f:G \to (M,d)$, satisfying

(i)
$$|A_i - A_j| \le d(f(A_i), f(A_j))$$
 if $A_i A_j$ is a red edge of G ,

(ii)
$$|A_i - A_j| \ge d(f(A_i), f(A_j))$$
 if $A_i A_j$ is a blue edge of G ,

and the strict inequality holding at least for one edge red or blue, is called a "skew mapping" of G into (M, d). f(G) is called a "skew image" of G, and G is called a "skew inverse image" of f(G).

The following theorem gives a geometric condition under which a metric space (M, d) cannot be isometrically embedded in Hilbert space.

THEOREM 1. If a metric space (M, d) contains a finite subset R which has a skew inverse image in Euclidean space, then (M, d) cannot be isometrically embedded in Hilbert space l^2 .

We shall prove this assertion in Section 3. Furthermore, its converse theorem is true for separable metric spaces. In fact, the authors have proved in [6] that a separable metric space which cannot be isometrically embedded in ℓ^2 must contain a finite subset which has a skew inverse image in Euclidean space.

The proof [6] of the converse theorem, however, is very long and much more difficult than Theorem 1 itself so we need not repeat it here. The purpose of this note is only to prove Theorem 1 which is sufficient to answer the type of problems analogous to the one posed at the beginning of the present paper.

2. Notations and lemmas

Let
$$G = \{A_1, A_2, \ldots, A_{n+2}\}$$
 and $R = \{B_1, B_2, \ldots, B_{n+2}\}$ be two $(n+2)$ -tuples in E^{n+1} , $a_{ij} = |A_i - A_j|$, $b_{ij} = |B_i - B_j|$ $(i, j = 1, 2, \ldots, n+2)$. By A , B denote the values of the determinants of the following two bordered matrices, respectively:

(1)
$$A = \begin{bmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ 1 & & & & \\ 1 & & & -\frac{1}{2}a_{ij}^{2} & & \\ \vdots & & & 1 & & \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ 1 & & & & \\ \vdots & & & -\frac{1}{2}b_{ij}^{2} & & \\ \vdots & & & & 1 & & \end{bmatrix}.$$

By A_{ij} and B_{ij} denote the cofactors of $-\frac{1}{2}a_{ij}^2$ in A and $-\frac{1}{2}b_{ij}^2$ in B (i, j = 1, 2, ..., n+2), respectively.

LEMMA 1.

(2)
$$\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} a_{ij}^2 B_{ij} \ge 0 , \quad \sum_{i=1}^{n+2} \sum_{j=1}^{n+2} b_{ij}^2 A_{ij} \ge 0 .$$

Proof. If G and R span two non-degenerate simplices in E^{n+1} , denoting by V(G) and V(R) the volumes of G and R, we have ([4], p. 204, Theorem 1, or [5])

(3)
$$\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} a_{ij}^2 B_{ij} \ge 2(n+1) \left((n+1)! \right)^2 V(G)^{2/(n+1)} V(R)^{2-2/(n+1)} .$$

This is a generalisation of the Neuberg-Pedoe inequality which is the case n = 1 in (3).

It is obvious by continuity that (3) holds still when $\,G\,$ or $\,R\,$ is degenerate; hence

$$\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} a_{ij}^2 B_{ij} \ge 0 ,$$

analogously

$$\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} b_{ij}^2 A_{ij} \ge 0 .$$

LEMMA 2. If $G = \{A_1, A_2, \ldots, A_{n+2}\}$ is an (n+2)-tuple in E^n and some cofactor A_{ij} in A is non-vanishing, then A_i and A_j lie to the opposite sides or the same side of the hyperplane $\pi_{ij}(G)$ when $A_{ij} < 0$ or $A_{ij} > 0$.

This lemma is due to Blumenthal and Gillam ([2], p. 183, Theorem 3.1). There are merely a few differences of notation between the two statements.

LEMMA 3. Let $G = \{A_1, A_2, \dots, A_{n+2}\}$ be an (n+2)-tuple in E^n . If an edge A_iA_j is red or blue, then the corresponding cofactor A_{ij} is non-vanishing.

Proof. We apply the following algebraic identity (4) which is very useful in distance geometry ([1], §41, p. 100). Let D be a symmetric determinant, D_{ii} , D_{jj} and D_{ij} be the corresponding cofactors in D, and D_{ij}^{ii} be the sub-determinant obtained by deleting the ith row, the ith column, the jth row and the jth column from D. Then, for $i \neq j$,

$$D_{ii}D_{jj} - D_{ij}^2 = D \cdot D_{jj}^{ii}.$$

Now we apply this well-known identity to determinant A. It has been shown ([4], p. 206, (1.10)) that

(5)
$$A = -((n+1)!V(G))^{2}$$

where V(G) denotes the (n+1)=dimensional volume of the simplex spanned by G. Since G is an (n+2)-tuple in E^n this simplex must be degenerate; hence V(G) = 0 and so A = 0. It follows that

(6)
$$A_{ii}A_{jj} - A_{ij}^2 = 0.$$

Suppose $A_{ij}=0$ for a certain i and a certain j; then either $A_{ii}=0$ or $A_{jj}=0$. Hence either A_j or A_i lies in the hyperplane $\pi_{ij}(G)$. (Since, by analogue with (5) we have $A_{ii}=-(n!V(G\backslash\{A_i\}))^2$, $A_{ii}=0$ implies that the simplex spanned by $G\backslash\{A_i\}$ is degenerate and the points of $G\backslash\{A_i\}$ including A_j lie in the same hyperplane which is just $\pi_{ij}(G)$.)

But, in this case, according to Definition 1, the edge ${}^{A}i^{A}j^{A}$ is neither red nor blue, contradicting the hypothesis, and Lemma 3 has been proved.

3. Proof of Theorem 1

We use reduction to absurdity. Suppose a metric space (M,d) has been isometrically embedded in \mathcal{I}^2 and there exists a finite subset R of M with a skew inverse image G in Euclidean space. From this we conclude that there exists $G = \{A_1, A_2, \dots, A_{n+2}\}$ in E^n and

$$R = \{B_1, B_2, \dots, B_{n+2}\}$$
 in l^2 such that

(i)
$$|A_i - A_j| \le |B_i - B_j|$$
 if $A_i A_j$ is red,

(ii)
$$|A_i - A_j| \ge |B_i - B_j|$$
 if $A_i A_j$ is blue,

and the strict inequality holds at least for one edge A.A. red or blue.

Clearly, $G \subset E^n \subset E^{n+1}$ and $R \subset E^{n+1}$ because the widest position occupied by n+2 points of l^2 is only (n+1)-dimensional. We use the same notation as in Lemma 1: $a_{ij} = |A_i - A_j|$, $b_{ij} = |B_i - B_j|$, and so on.

Since $G \subset E^n$ implies A = 0 (by formula (5)), by simple calculation we have

(7)
$$\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} a_{ij}^2 A_{ij} = 0 ,$$

and applying Lemma 1 we obtain

$$\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} b_{ij}^2 A_{ij} \ge 0 = \sum_{i=1}^{n+2} \sum_{j=1}^{n+2} a_{ij}^2 A_{ij} ;$$

that is

(8)
$$\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} \left(b_{ij}^2 - a_{ij}^2 \right) A_{ij} \ge 0 .$$

First it is easy to verify that every term of the left side of (8) is non-positive:

when $A_{ij} = 0$, $\left(b_{ij}^2 - a_{ij}^2\right) A_{ij} = 0$ and when $A_{ij} > 0$, by Lemma 2 we know that $A_i A_j$ is blue and by hypothesis $a_{ij} \ge b_{ij}$, so we

have
$$\left(b_{ij}^2 - a_{ij}^2\right) A_{ij} \le 0$$
; when $A_{ij} < 0$, $A_i A_j$ is red and by hypothesis $a_{ij} \le b_{ij}$ an we have $\left(b_{ij}^2 - a_{ij}^2\right) A_{ij} \le 0$.

Then, according to the hypothesis of Theorem 1 and Definition 2, there exists at least one red or blue edge A_iA_j such that $a_{ij} \neq b_{ij}$. By Lemma 3 there exists at least one non-vanishing term of the left side of (8). We obtain

(9)
$$\sum_{i=1}^{n+2} \sum_{j=1}^{n+2} \left(b_{ij}^2 - a_{ij}^2 \right) A_{ij} < 0 ,$$

which contradicts (8). This contradiction shows that (M, d) cannot be isometrically embedded in l^2 and the proof of Theorem 1 is complete.

4. A type of problem involving two metric point sets

Now let us answer the quadrangles problem which was posed at the beginning of the paper. Clearly, the mapping ${}^{A}_{1}{}^{A}_{2}{}^{A}_{3}{}^{A}_{4} \rightarrow {}^{B}_{1}{}^{B}_{2}{}^{B}_{3}{}^{B}_{4}$ is a skew mapping. According to Theorem 1, it is not possible to realize such a quadrangle in Euclidean space.

Of course, Theorem 1 may be applied to solve more complicated problem problems. For example: let Ω be a convex 6-faced polyhedron with vertices A_1 , A_2 , A_3 , A_4 , A_5 in E^3 , such that Ω can be dissected into two tetrahedrons $A_1A_2A_3A_4$ and $A_1A_2A_3A_5$. Is there a 5-tuple $\Omega^* = \{B_1, B_2, B_3, B_4, B_5\} \quad \text{in} \quad E^4 \quad \text{such that} \quad A_1A_2 < B_1B_2 \ , \quad A_2A_3 < B_2B_3 \ , \quad A_3A_1 < B_3B_1 \ , \quad A_4A_5 < B_4B_5 \quad \text{but} \quad A_2A_3 > B_2B_3 \quad \text{for other edges?}$

It can be seen easily that ${}^A_1{}^A_2$, ${}^A_2{}^A_3$, ${}^A_3{}^A_1$, ${}^A_4{}^A_5$ are red edges of Ω and other edges of Ω are blue. The mapping ${}^A_1{}^A_2{}^A_3{}^A_4{}^A_5 \to {}^B_1{}^B_2{}^B_3{}^B_4{}^B_5$, therefore, is a skew mapping. By Theorem 1 we can assert that it is impossible to realize such a 5-tuple Ω^* in E^4 .

There are a variety of conditions, each of which is necessary and sufficient to embed isometrically a metric space in Euclidean or Hilbert

space; nevertheless, it is usually difficult to decide practically whether some given metric point set is embeddable or not. Inequalities involving two metric point sets are often of great use for our work.

References

- [1] L.M. Blumenthal, Theory and applications of distance geometry (Chelsea, New York, 1970).
- [2] L.M. Blumenthal and B.E. Gillam, "Distribution of points in n-space", Amer. Math. Monthly 50 (1943), 181-185.
- [3] D. Pedoe, "An inequality for two triangles", *Proc. Cambridge Philos.*Soc. 38 (1942), 397-398.
- [4] Yang Lu and Zhang Jing-zhong, "A generalisation to several dimensions of the Neuberg-Pedoe inequality, with applications", Bull.

 Austral. Math. Soc. 27 (1983), 203-214.
- [5] Yang Lu and Zhang Jing-zhong, "A high-dimensional extension of the Neuberg-Pedoe inequality and its application" (Chinese). Acta Math. Sinica 24 (1981), 401-408.
- [6] Yang Lu and Zhang Jing-zhong, "A geometric criterion of metric embedding and the skew mapping", submitted.

Department of Mathematics,
University of Science and Technology of China,
Hefei,
Anhui,

The People's Republic of China.