GENERALISATIONS OF SOME HYPERGEOMETRIC FUNCTION TRANSFORMATIONS

by T. M. MACROBERT
(Received 3rd January, 1949)

§ I. Introductory. The formulae

$$
F\binom{\alpha, \beta ; x}{\gamma}=F\left\{\begin{array}{c}
\frac{1}{2} \alpha, \frac{1}{2} \beta ; 4 x(1-x) \tag{1}\\
\gamma
\end{array}\right\},
$$

where $\gamma=\frac{1}{2}(\alpha+\beta+1)$, and

$$
F\binom{\alpha, \beta ; x}{\gamma}=(1-x)^{-\alpha} F\left\{\begin{array}{c}
\frac{1}{2} \alpha, \frac{1}{2}+\frac{1}{2} \alpha-\beta ; \frac{-4 x}{(1-x)^{2}} \tag{2}\\
\gamma
\end{array}\right\},
$$

where $\gamma=1+\alpha-\beta$, were given by Gauss (Ges. Werke, iii, pp. 225, 226). It is here proposed to find the corresponding expressions for the hypergeometric function when γ has general values (not zero or negative integral). These will be derived in section 2 by applying Lagrange's expansion

$$
\begin{equation*}
F(x)=F^{\prime}(\lambda)+\sum_{n=1}^{\infty} \frac{w^{n}}{n!} \frac{d^{n-1}}{d \lambda^{n-1}}\left[F^{\prime}(\lambda)\{\phi(\lambda)\}^{n}\right] \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
x=\lambda+w \phi(x), \tag{4}
\end{equation*}
$$

and that root of equation (4) in x is taken which is equal to λ when $w=0$. Two generalisations of Whipple's Transformation will be obtained in section 3.
§ 2. Expressions for the Hypergeometric Function. Let $x=\frac{1}{2}\{1-\sqrt{ }(1-\xi)\}$, so that

$$
x=\frac{1}{4} \xi(1-x)^{-1} ;
$$

and in Lagrange's Expansion put $\lambda=0, w=\frac{1}{4} \xi=x(1-x)$ and $\phi(x)=(1-x)^{-1}$. Then

$$
\begin{aligned}
& F\binom{\alpha, \beta ; x}{\gamma}=1+\sum_{n=1}^{\infty} \frac{w^{n}}{n!}\left[\frac{d^{n-1}}{d \lambda^{n-1}}\left\{F^{\prime}\binom{\alpha, \beta ; \lambda}{\gamma}(1-\lambda)^{-n}\right\}\right]_{\lambda=0} \\
& \quad=1+\sum_{n=1}^{\infty} \frac{w^{n}}{n!}\left\{\frac{(\alpha ; n)(\beta ; n)}{(\gamma ; n)}+{ }^{n-1} C_{1} \frac{(\alpha ; n-1)(\beta ; n-1)}{(\gamma ; n-1)}(n ; 1)+\ldots\right\},
\end{aligned}
$$

where $(\alpha ; 0)=1$ and $(\alpha ; n)=\alpha(\alpha+1) \ldots(\alpha+n-1)$.
Thus

$$
\begin{equation*}
F\binom{\alpha, \beta ; x}{\gamma}=\sum_{n=0}^{\infty}\{x(1-x)\}^{n} \frac{(\alpha ; n)(\beta ; n)}{n!(\gamma ; n)} F\binom{1-n, n, 1-\gamma-n ; 1}{1-\alpha-n, 1-\beta-n} . \tag{5}
\end{equation*}
$$

This formula is the generalisation of (1). If the order of the terms in the generalised hypergeometric series on the right is reversed the expansion may be written

$$
\begin{equation*}
F\binom{\alpha, \beta ; x}{\gamma}=1+\frac{\alpha \cdot \beta}{\gamma} \sum_{n=1}^{\infty}\{x(1-x)\}^{n} \frac{(2 n-2)!}{n!(n-1)!} \psi(n ; \alpha, \beta ; \gamma), \tag{6}
\end{equation*}
$$

where

$$
\psi(n ; \alpha, \beta ; \gamma)=\text { first } n \text { terms of } F\binom{\alpha+1, \beta+1,1-n ; 1}{\gamma+1,2-2 n} .
$$

In considering the convergence of the series on the right, it is convenient to use form (6). Then

$$
\begin{aligned}
|\psi(n ; \alpha, \beta ; \gamma)| & \leqq \sum_{r=0}^{n-1}\left|\frac{(\alpha+1 ; r)(\beta+1 ; r)}{r!(\gamma+1 ; r)}\right| \frac{1}{2^{r}} \\
& <\sum_{r=0}^{\infty}\left|\frac{(\alpha+1 ; r)(\beta+1 ; r)}{r!(\gamma+1 ; r)}\right| \frac{1}{2^{r}}=K,
\end{aligned}
$$

where K is a positive number independent of n. Hence the modulus of the nth term in the series on the right of (6) is less than

$$
|4 x(1-x)|^{n} \frac{\left(\frac{1}{2} ; n-1\right)}{n!} K ;
$$

and, consequently, by the comparison and ratio tests, the series converges absolutely if

$$
|4 x(1-x)|<1 .
$$

Conversely, let $\xi=\frac{1}{2}\{1-\sqrt{ }(1-x)\}$, so that $x=4 \xi \cdot \frac{1}{2}\{1+\sqrt{ }(1-x)\}=4 \xi(1-\xi)$; and, in Lagrange's Expansion, put $\lambda=0, w=4 \xi, \phi(x)=\frac{1}{2}\{1+\sqrt{ }(1-x)\}$; then

$$
F\binom{\alpha, \beta ; x}{\gamma}=1+\sum_{n=1}^{\infty} \frac{(4 \xi)^{n}}{n!}\left[\frac{d^{n-1}}{d \lambda^{n-1}}\left\{F^{\prime \prime}\binom{\alpha, \beta ; \lambda}{\gamma}\left(\frac{1+\sqrt{ }(1-\lambda)}{2}\right)^{n}\right\}\right]_{\lambda=0}
$$

But [Phil. Mag., Ser. 7, xxvi, p. 86], if α is not a positive integer,

$$
\left\{\frac{1+\sqrt{ }(1-\lambda)}{2}\right\}^{\alpha}=F\binom{-\frac{1}{2} \alpha, \frac{1}{2}-\frac{1}{2} \alpha ; \lambda}{1-\alpha}
$$

Hence, when $\alpha \rightarrow n$, a positive integer,

$$
\left\{\frac{1+\sqrt{ }(1-\lambda)}{2}\right\}^{n}=\text { the first } \frac{1}{2} n+\frac{1}{2} \text { or } \frac{1}{2} n+1 \text { terms of } \boldsymbol{F}\binom{-\frac{1}{2} n, \frac{1}{2}-\frac{1}{2} n ; \lambda}{1-n}
$$

+ terms of degree not less than n in λ.
Therefore,

$$
\begin{equation*}
F\binom{\alpha, \beta ; x}{\gamma}=\sum_{n=0}^{\infty}[2\{1-\sqrt{ }(1-x)\}]^{n} \frac{(\alpha ; n)(\beta ; n)}{n!(\gamma ; n)} F\binom{-\frac{1}{2} n, \frac{1}{2}-\frac{1}{2} n, 1-\gamma-n ; 1}{1-\alpha-n, 1-\beta-n} . \tag{7}
\end{equation*}
$$

On interchanging x and ξ, it is seen that

$$
F\left\{\begin{array}{c}
\alpha, \beta ; 4 x(1-x) \tag{8}\\
\gamma
\end{array}\right\}=\sum_{n=0}^{\infty}(4 x)^{n} \frac{(\alpha ; n)(\beta ; n)}{n!(\gamma ; n)} F\binom{-\frac{1}{2} n, \frac{1}{2}-\frac{1}{2} n, 1-\gamma-n ; 1}{1-\alpha-n, 1-\beta-n} .
$$

The series on the right is convergent if $|x|<\frac{1}{2}$ [Cf. previous paper].
Again, in the formula

$$
\left.F\binom{\alpha, \beta ; x}{\gamma}=(1-x)^{-\alpha} F\binom{\alpha, \gamma-\beta ;}{\gamma}, \frac{x}{x-1}\right)
$$

apply (5) to the hypergeometric function on the right and get

$$
\begin{equation*}
F\binom{\alpha, \beta ; x}{\gamma}=(1-x)^{-\alpha} \sum_{n=0}^{\infty}\left\{\frac{-x}{(1-x)^{2}}\right\}^{n} \frac{(\alpha ; n)(\gamma-\beta ; n)}{n!(\gamma ; n)} F\binom{1-n, n, 1-\gamma-n ; 1}{1-\alpha-n, 1-\gamma+\beta-n} \ldots \tag{9}
\end{equation*}
$$

This series, which is convergent for x small and $\left|4 x /(1-x)^{2}\right|<1$, is the generalisation of (2).

Note.-Formulae (1) and (2) may be deduced from (5), (8) and (9) by using Saalschutz's ;heorem or Whipple's theorem (W. N. Bailey, Generalized Hypergeometric Series, p. 16).
§3. Generalisations of Whipple's Transformation. Whipple's Transformation may be written

$$
F\left(\begin{array}{c}
-\nu, \nu+1 ; \tag{10}\\
\mu+1
\end{array} \frac{1-x}{2}\right)=\left(\frac{1+x}{2 x}\right)^{\mu} x^{\nu} F\left(\frac{\mu-\nu}{2}, \frac{\mu-\nu+1}{2} ; 1-\frac{1}{x^{2}}\right) .
$$

Now, if x is small,

$$
\begin{equation*}
(1-x)^{-\frac{1}{2} \alpha} \sum_{n=0}^{\infty}\left(\frac{x}{x-1}\right)^{n} \frac{(\alpha ; n)(\beta ; n)}{n!(\gamma ; n) 4^{n}} F\binom{1-n, n, 1-\gamma-n ; 1}{1-\alpha-n, 1-\beta-n}=\sum_{n=0}^{\infty} \phi(n ; \alpha, \beta ; \gamma) x^{n}, \ldots \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi(n ; \alpha, \beta ; \gamma) \\
& \quad=\sum_{r=0}^{n} \frac{\left(\frac{1}{2} \alpha+n-r ; r\right)(\alpha ; n-r)(\beta ; n-r)}{r!(n-r)!(\gamma ; n-r)(-4)^{n-r}} F\binom{r+1-n, n-r, r+1-\gamma-n ; 1}{r+1-\alpha-n, r+1-\beta-n} .
\end{align*}
$$

This formula can be established by expanding the powers of $(1-x)$ in (11) in powers of x and picking out the coefficient of x^{n}. Hence, on replacing x by $x /(x-1)$, we have

$$
\begin{equation*}
\stackrel{\infty}{\Sigma} \frac{(\alpha ; n)(\beta ; n)}{n!(\gamma ; n) 4^{n}} F\binom{1-n, n, 1-\gamma-n ; 1}{1-\alpha-n, 1-\beta-n} x^{n}=(1-x)^{-1} \times \sum_{n=0}^{\infty} \phi(n ; \alpha, \beta ; \gamma)\left(\frac{x}{x-1}\right)^{n} \tag{12}
\end{equation*}
$$

Now, apply (5) to the hypergeometric function on the right of the identity

$$
F\binom{\alpha, \beta ; \frac{1-x}{2}}{\gamma}=\left(\frac{1+x}{2}\right)^{\gamma-\alpha-\beta} F\binom{\gamma-\alpha, \gamma-\beta ; \frac{1+x}{2}}{\gamma}
$$

and it becomes

$$
\begin{align*}
& F\left(\begin{array}{c}
\alpha, \beta ; \\
\gamma
\end{array} \frac{1-x}{2}\right)=\left(\frac{1+x}{2}\right)^{\gamma-\alpha-\beta} \\
& \times \sum_{=0}^{\infty} \frac{(\gamma-\alpha ; n)(\gamma-\beta ; n)}{n!(\gamma ; n) 4^{n}} F\binom{1-n, n, 1-\gamma-n ; 1}{1-\gamma+\alpha-n, 1-\gamma+\beta-n}\left(1-x^{2}\right)^{n} . \tag{13}
\end{align*}
$$

Next, apply (12) to the R.H.S. of (13), and so obtain

$$
F\binom{\alpha, \beta ; \frac{1-x}{2}}{\gamma}=\left(\frac{1+x}{2}\right)^{\gamma-\alpha-\beta} x^{\alpha-\gamma} \sum_{n=0}^{\infty} \phi(n ; \gamma-\alpha, \gamma-\beta ; \gamma)\left(1-\frac{1}{x^{2}}\right)^{n} .
$$

This is the first generalisation of (10), to which form it can be reduced when $\alpha+\beta=1$ by applying Whipple's formula.

The second generalisation can be derived as follows. In formula (7) replace x by $1-x^{2}$ and replace β by $\gamma-\beta$; then

$$
F\left(\begin{array}{c}
\alpha, \beta ; \tag{15}\\
\gamma
\end{array} 1-\frac{1}{x^{2}}\right)=x^{2 \alpha} \sum_{n=0}^{\infty}\{2(1-x)\}^{n} \frac{(\alpha ; n)(\gamma-\beta ; n)}{n!(\gamma ; n)} F\binom{-\frac{1}{2} n, \frac{1}{2}-\frac{1}{2} n, 1-\gamma-n ; 1}{1-\alpha-n, 1-\gamma+\beta-n} .
$$

Now it can easily be verified that

$$
\begin{align*}
(1-x)^{2 \alpha+2 \beta-\gamma} \sum_{n=0}^{\infty}(4 x)^{n} \frac{(\alpha ; n)(\beta ; n)}{n!(\gamma ; n)} F\binom{-\frac{1}{2} n, \frac{1}{2}-\frac{1}{2} n, 1-\gamma-n ; 1}{1-\alpha-n, 1-\beta-n} \\
=\sum_{n=0}^{\infty} \chi(n ; \alpha, \beta ; \gamma)(4 x)^{n} \tag{16}
\end{align*}
$$

where

$$
\begin{align*}
& \chi(n ; \alpha, \beta ; \gamma)=\frac{(\alpha ; n)(\beta ; n)}{n!(\gamma ; n)} \sum_{r=0}^{\infty} \frac{(\gamma-2 \alpha-2 \beta ; r)(-n ; r)(1-\gamma-n ; r)}{r!(1-\alpha-n ; r)(1-\beta-n ; r)} \cdot \frac{1}{4^{r}} \\
& \times F\binom{\frac{r-n}{2}, \frac{1+r-n}{2}, 1-\gamma+r-n ; 1}{1-\alpha+r-n, 1-\beta+r-n} \cdot \cdots . \tag{16a}
\end{align*}
$$

Here replace x by $\frac{1}{2}(1-x)$ and β by $\gamma-\beta$ and substitute on the right of (15); then

$$
\begin{equation*}
\sum_{n=0}^{\infty} \chi(n ; \alpha, \gamma-\beta ; \gamma)\left(4 \frac{1-x}{2}\right)^{n}=\left(\frac{1+x}{2 x}\right)^{2 \alpha-2 \beta+\gamma} x^{\gamma-2 \beta} F\binom{\alpha, \beta ; 1-\frac{1}{x^{2}}}{\gamma} . \tag{17}
\end{equation*}
$$

When $\gamma=\alpha+\beta+\frac{1}{2}$, formula ($16 a$) can be simplified by applying Saalschutz's theorem. Formula (10) is thus obtained as a particular case.
University of Glasgow

