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The non-Oberbeck—Boussinesq effects on the stability of a vertical natural convection
boundary layer are investigated using the linearised disturbance equations for air flows up
to a temperature difference of AT = 100 K. Based on the linear stability results, the neutral
curve is shown to be sensitive to the choice of reference temperature. When evaluated
using the film temperature 77, a lower film Grashof number is required to trigger the
linear instability for larger AT. The relative contributions of shear and buoyant production
to the perturbation kinetic energy budget reveals that the marginally unstable modes
are amplified based on different mechanisms: for lower wavenumbers at relatively small
Grashof number, the instability is driven by buoyancy; whereas for higher wavenumbers
and larger Grashof number, the flow becomes unstable due to a shear instability. The
use of reference temperature is found to scale the shear- and buoyant-driven instabilities
differently so that no single reference temperature definition would collapse the neutral
curves. The linear stability result further demonstrates that at a given Grashof number a
higher temperature difference would give a larger amplification rate of the perturbation,
which then leads to an earlier onset of the nonlinearities when evaluated at 7. Finally,
by comparing the amplification rates obtained from direct numerical simulation and the
linear stability results, the extent of the linear regime is determined for AT = 100 K.

Key words: boundary layer stability, buoyancy-driven instability, absolute/convective instability

1. Introduction

Natural convection boundary layer (NCBL) flow is ubiquitous in a vast variety of industrial
and geophysical applications where the temperature difference between a vertical surface
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and the ambient fluid induces a spontaneous fluid motion. The majority of past efforts have
been dedicated to investigating such convective flows with small temperature differences
where the fluid property variations are considered negligible and the buoyancy force
is modelled by a linear variation with local temperature difference (e.g. Versteegh &
Nieuwstadt 1999; Abedin, Tsuji & Hattori 2009; Nakao, Hattori & Suto 2017). However,
many natural convection flows operate at large temperature differences — for instance, the
temperature difference between the surface of a solar thermal receiver and the ambient
air usually exceeds 650K (Ho & Iverson 2014), in which cases, the local fluid density
and properties would vary significantly. In an early study, Siebers, Moffatt & Schwind
(1985) experimentally investigated the heat transfer characteristics of the NCBL along a
vertical isothermal plate up to a temperature difference of 500K for air. Based on their
measurements, they found that the critical Grashof number which marks the onset of the
laminar—turbulent transition, when evaluated at the film temperature T = (1), + To0)/2,
decreases with increasing temperature ratio 7y,/T~ (Where T, is the isothermal wall
temperature and T, is the ambient temperature). Such an observation implies that the
stability results obtained from the Oberbeck—Boussinesq (OB) limit may not be directly
applied to the NCBL with large temperature differences using the film temperature.
While the linear stability for NCBLs under OB conditions has been studied extensively
over decades (see, e.g. Xin & Le Quéré 2001; Tumin 2003; Xin & Le Quéré 2012),
the non-Oberbeck—Boussinesq (NOB) effects on the stability for NCBL flows have
received less attention. Carey & Mollendorf (1978, 1980) analytically demonstrated the
applicability of similarity analysis to NCBLs in liquids wherein the viscosity is assumed
to vary linearly with temperature while treating all other properties as constants. Although
their first-order viscosity variation approximation is only valid when the temperature
difference is small (the viscosity variation itself being small enough), their results suggest
that the temperature-dependent viscosity would have significant effects on the stability
and transition of the NCBL flows by adjusting the mean velocity and temperature profiles.
Carey & Mollendorf (1978) further pointed out that the flow similarity exists only when
the temperature distribution of the flow is fixed (i.e. a self-similar temperature profile).
Sabhapathy & Cheng (1986) numerically investigated the effects of temperature-dependent
viscosity and coefficient of thermal expansion on the linear stability properties of NCBLs
along a vertical isothermal wall for liquids with Prandtl numbers 7 < Pr < 10. In their
study, the variation of viscosity is approximated by a linearised Taylor series expansion
about the film temperature. Using Orr—Sommerfeld eigenvalue formulation, they found
that the variable viscosity stabilises the liquid flow near heated walls and destabilises
the flow adjacent to cooled walls, which appears consistent with the findings of Piau
(1974); while the variable coefficient of thermal expansion would stabilise the flow near
a heated wall locally but destabilise the flow farther downstream. A similar approach
was also adopted by Jiin-Yuh & Mollendorf (1988) who numerically studied the linear
stability of a vertical plate NCBL in ethylene glycol (Pr = 100 at film temperature)
with a temperature difference of 23 K. In their analysis, the linear variation of viscosity
with temperature is incorporated into the Orr—Sommerfeld equation based on self-similar
velocity and temperature base flow profiles. Their numerical results confirmed the findings
of Sabhapathy & Cheng (1986), and showed that the glycol flow is more stable when heated
than the cooled case with same temperature difference and film temperature. Chenoweth
& Paolucci (1985) investigated the vertical NCBL in differentially heated enclosed slots
for gases. Using Sutherland’s law, they analytically obtained the steady-state exact solution
to the laminar flow up to € = 1 with both viscosity and thermal conductivity considered
temperature-dependent, where € = 2(T, — T.)/(T), + T,) is a dimensionless temperature
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difference given by the differentially heated walls 7, and T¢. In their study, they showed
that although the variable property only has minimal effect on the wall heat transfer,
the temperature and velocity distributions are sensitive to the property variations. Their
study was extended by Chenoweth & Paolucci (1986) who numerically investigated the
laminar vertical NCBL in cavities. Using a weakly compressible formulation, Chenoweth
& Paolucci (1986) showed that flow instability may follow different mechanisms with
increasing temperature difference. Suslov & Paolucci (1995b) further investigated NOB
effects on the linear stability. In their analysis, the authors demonstrated that the cavity
NCBL becomes unstable to a shear instability at relatively low temperature difference
and the critical Rayleigh number which marks the onset of flow instability increases with
increasing temperature difference (i.e. stabilising the flow) until a critical temperature
difference €*. For greater temperature differences € > €*, the flow instability is switched
to a buoyancy-driven one, resulting in a sudden reduction in the critical Rayleigh number
(i.e. destabilising the flow) and the most unstable wavenumber. A similar behaviour is
also seen by Suslov & Paolucci (1995a) for mixed convection flows in tall channel. More
recently, Rajamanickam, Coenen & Sédnchez (2017) studied the NOB effects on the linear
stability of an inclined NCBL using a simplified low-Mach-number formulation and the
fluid properties are approximated using a power-law. Their numerical results show that the
NOB air flow can have travelling waves over a significantly wider inclination angle than
those predicted by the Boussinesq limit. Liu et al. (2018) investigated the linear stability in
Rayleigh-Bénard convection, where the NOB effects are found to stabilise (destabilise)
the flow for large (small) aspect ratios. For natural convection in cavities (including
Rayleigh—Bénard systems) and differentially heated channels, the strong influences of the
NOB effects on the flow instability are found mainly due to the breakdown of symmetry
when heated and cooled (e.g. Ahlers 1980; Suslov & Paolucci 1995a,b; Liu et al. 2018);
whereas such a symmetry does not exist for NCBL flows along a vertical plate. Despite
the existing efforts, a fundamental understanding of the NOB effects, induced by the bulk
temperature difference, on the onset of such flow instability remains unclear.

In this paper, the linear stability of a two-dimensional laminar, periodic vertical NCBL
in air is investigated by employing the linearised disturbance equations as an initial value
problem. The periodic parallel flow is practically important to those start-up transient
flows with large downstream distances where the one-dimensional conductive regime
could exist for a significant amount of time before the arrival of the leading edge signal.
The existence of such a one-dimensional conductive flow regime has been confirmed
both experimentally and numerically (e.g. Siegel 1958; Miyamoto 1977; Gebhart 1988;
Sammakia, Gebhart & Qureshi 1982) with analytical solutions made available for the
OB case (Illingworth 1950; Schetz & Eichhorn 1962). In particular, Goldstein & Briggs
(1964) and Joshi & Gebhart (1987) showed that the flow could become unstable and
therefore transition to turbulence before the arrival of the leading edge signal. The linear
stability of such parallel transient flow has been investigated under OB conditions for
NCBL in cavities (Brooker et al. 2000) and along a vertical flat plate (Joshi & Gebhart
1987; Krane & Gebhart 1993; Ke et al. 2019). However, with increasing characteristic
temperature difference, the stability results obtained from the OB studies become largely
unreliable in predicting the flow instability and transition in real-world applications. Using
a weakly compressible formulation (Batchelor 1953; Paolucci 1982), for the first time, we
are able to obtain the marginal stability curve of such a periodic NCBL flow with large
temperature differences (up to 100 K); and provide a detailed insight of the NOB effects
on its instability mechanisms.

The rest of paper is organised as follows. An overview and the mathematical formulation
for this initial-value problem is given in §2. Based on the linear stability results,
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the marginal stability curves for various temperature differences are obtained in § 3.1. The
instability dynamics are further explored in § 3.2 by inspecting the energy budgets for two
representative marginally unstable modes. The linear stability results are re-normalised
using the film temperature in § 3.3 to allow comparisons with observations in the literature.
In §3.4, a direct numerical simulation is carried out to incorporate the unsteady and
nonlinear effects — which is then compared with the linear results in § 3.1 to determine
the linear stability regime. Section 4 briefly summarises the findings in this paper.

2. Numerical formulation

The problem under consideration is a vertical natural convection flow adjacent to an
isothermally heated plate in air. With the use of Squire’s theorem (Squire 1933), the
transient stability problem is reduced to a two-dimensional one. In the analysis that follow,
equations and results are made dimensionless using the intrinsic length scale L o =
£¥23 1(g*B*AT)'/? and velocity scale Us.oo = (E*g*B*AT)!/3 since the temporally
developing parallel flow has no nature length scale. Here, £ represents the thermal
diffusivity, g is the gravitational acceleration, AT is the temperature difference given
by the heated wall T,, and the ambient T, and * indicates the dimensional quantities
that are evaluated at the ambient temperature T,. Fluid density, coefficient of thermal
expansion and specific heats are normalised using the ambient temperature quantities so
that p* = pp3,, B* = BB, and C; = GG

The NCBL flow is governed by the conservation equations with low-Mach-number
approximation in which the sound waves are filtered while allowing arbitrary density
variations (Batchelor 1953; Paolucci 1982). The dimenionless form of these governing
equations read

0 opu;
9 ot 2.1a)
ot 0x;
dou; dpww; I 9ty (p—1
Ipui M:__PJerrMm, (2.1b)
ot 3)6]' 0x; ax]' €
c 00 n ou;0 0 200 " Faw 2.10)
— —_— )= — | k— —_—, dc
PR\ ar T o ) T o Mo ot
@ = p(l+06), (2.1d)

where the subscript i, j = 1, 2 denotes the streamwise (x) and wall-normal (y) directions,
and u1, up = u, v are the streamwise and wall-normal velocity, respectively; « is the
thermal conductivity, w is the dynamic viscosity, p represents the hydrodynamic pressure;
n; is the unit gravitational vector pointing in the —x direction. The viscous stress tensor t;;

is given by
v oxj  0x; 37 0x,

and §;; is the Kronecker delta. The thermal field is made dimensionless using 6 = (T —
Two)/AT, whereas the bulk temperature difference is given by € = AT /T; @ represents
the spatially uniform thermostatic pressure, and I" = (Yoo — 1)/y0 Where yoo = C,/Cy
is the ratio of the specific heats under constant pressure and volume at 7. In the present
study, both dynamic viscosity and thermal conductivity of the air flow are assumed to
vary with the local temperature 6 following Sutherland’s law (Sutherland 1893), which in
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dimensionless form reads

1+8,/Tw
1+€0+S,/Too’
14+ 8¢/Too
14+€e0+S/Too’

where Proo = Cplloo/Keo 1s the Prandtl number evaluated at T, and S, = 111K and
S, = 194K are Sutherland constants for air (Hilsenrath 1955; White 1988). The use
of Sutherland’s law was shown to be able to accurately predict both viscosity and
conductivity for air up to € = 0.6, beyond which its accuracy degrades rapidly (Chenoweth
& Paolucci 1985). For T, = 288 K, this limit corresponds to a maximum A7 = 172 K.
All other properties are considered constant and evaluated at T, (Bergman et al. 2011,
e.g. the specific heat C,, varies by ~1.5 % for a temperature difference of AT = 172K
from T, = 288 K) — similar assumptions have also been invoked in early studies (e.g.
Chenoweth & Paolucci 1985, 1986; Emery & Lee 1999, for NCBL in vertical slots and
cavities).

Since the laminar NCBL flow under consideration is perfectly parallel to the isothermal
wall and homogeneous in the streamwise direction (see figure 1), the wall-normal velocity
and streamwise gradients must vanish v = 9/9x = 0, with which system (2.1) is simplified
to (cf. Suslov & Paolucci 1995a,b)

(2.3a)

1= Proo (1 +€6)%/?

Kk = (14 €6)>? (2.3b)

aU, 10 oU 1—
at Pp 0y ay €
a6, 1 0 a6, r o
b _ R s _zzr’ (2.4b)
at o Cp 0y ay ppCp 0t
()
= , 2.4
Pb= 7 T Ore (2.4c)
1 71
o = dy , 2.4d
(/;; 1+ 6pe ) ( )

where V) is the computational volume; Up, 6, and pp are the streamwise velocity,
temperature and density profiles of the laminar flow. For the purpose of linear stability

analysis, an artificial temperature perturbation 6 is superimposed on the laminar base flow
(Up, 6p) at a designated Grashof number Gro, — at which the base flow is ‘frozen’ (treated
as quasi-steady) since the temporal evolution of the base flow is considered much slower
than that of the perturbations (Otto 1993; Brooker et al. 2000; Ke et al. 2019). The validity
of quasi-steady treatment for the transient one-dimensional periodic NCBL flows has been
extensively discussed in the limit of both short and long waves under OB conditions
(Daniels & Patterson 1997, 2001), where they showed that the quasi-steady approximation
is most accurate for short waves, and the accuracy for the long-wave disturbances will
increase with the amplification rate (or, with increase Reynolds number, Tromans 1978;
Dwoyer & Hussaini 1987). The temporal evolution of the perturbations is then examined
in a similar sense to Ke et al. (2019) as an initial value problem.

Here, the ambient Grashof number Gr,, and the integral velocity boundary layer
thickness is defined by

* 2 % *3 2 ¢3 00
ATS 1) U,
Groo='0°°g P ’ 8:_/ b
0

= — dy, (2.5a,b)
Tooth,? IS Un
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Periodic BC

1

Isothermal wall

X
L y Periodic BC

Figure 1. Systematic sketch of the periodic NCBL problem, where u represents the streamwise velocity and 0
denotes the temperature distribution of the flow; and g is the gravitational acceleration (not to scale).

where U, is the maximum streamwise velocity of the laminar flow. For a parallel
periodic NCBL, both § and Gry are functions of time ¢ only as the flow is invariant
in the streamwise (x) direction but unsteady in time. Notably, the exact solutions to
the boundary layer in (2.4) are analytically difficult to obtain since the flow fields lose
their self-similarity due to the temperature-dependent thermal conductivity (Carey &
Mollendorf 1978). Although the laminar streamwise velocity profile of the NCBL under
different temperature differences do not appear self-similar, the use of the ambient Grashof
number (2.5) allows a direct comparison of these flows with the same dimensionless
boundary layer thickness §. In this study, the laminar base flow profiles are numerically
obtained using a precursor simulation which solves (2.4) simultaneously with the
boundary conditions U, =0, 6, =1 at y=0 and dU,/dy =6, =0 at y = oo (see Ke
et al. 2019, 2020, for numerical details of the precursor DNS), allowing the flow to
develop from quiescence until a designated Gr, is reached. We also note that for larger
temperature difference, a shorter development time ¢ is required to reach a given Gr
than that of the smaller € case, resulting in a lower maximum streamwise velocity
U,,. For the cases considered in the present study, the maximum streamwise velocities
at Groo = 600 are U, = 3.67,3.62,3.38, 3.14 for ¢ = 0 (Oberbeck—Boussinesq case),
0.035, 0.174, 0.347. The streamwise velocity magnitude difference is not as obvious as
for the NCBL flows in cavities and vertical channels: for example, in an open cavity,
Judrez et al. (2011) showed the maximum velocity is decreased by ~30% and the
boundary layer thickness § is increased by ~ 70 % for a 0.3 increase in the temperature
difference € at a given cavity height Rayleigh number (Rag) in the steady state; in a fully
enclosed cavity, Zhong, Yang & Lloyd (1985) showed that there is a ~20 % decrease
in the Uy, for € = 0.1 (although the fluid density is considered constant in their study)
when compared with the OB flows. Notably, the steady-state boundary layer thickness
decreases for the NCBL in cavities at larger Ray since the geometric length scale H
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Figure 2. Laminar base flow (a) streamwise velocity and (b) temperature profiles for the NCBL obtained by
the precursor direct numerical simulation at Gro, = 600. Insets show the magnified view of grey boxes; black
arrows in insets indicate increasing temperature difference €.

and cavity aspect ratio limit the development time to reach steady state for different €
values (Judrez et al. 2011); whereas in our temporally developing flow, the boundary layer
thickness increases with the development time. Typical laminar base flow profiles for our
periodic NCBL are shown in figure 2 at Gro, = 600, where the OB results are shown to
agree well with the low-temperature-difference case (AT = 10K, € = 0.035) indicating
the NOB effects on the base flow profiles are negligible at this temperature difference.
With increasing € (equivalently, AT in dimensional arguments), the laminar base flow
profiles deviate from the OB approximation: as depicted by figure 2(a), with increasing
€, the velocity profile shifts away from the wall (see inset). This trend is consistent with
the observations of Zhong et al. (1985) for the natural convection in a square cavity that
the variable-fluid-property effect would reduce the velocity in the near-wall region but
increase it in the outer region. Temperature profiles, shown in figure 2(b), exhibit a slight
difference from the OB case, where the local temperature is increased with increasing € in
the boundary layer (see inset).

The temporal response of the two-dimensional (as per Squire’s theorem) artificial
perturbations, however, is characterised by the linearised disturbance equations, which
can be obtained by substituting ¢ = ¢p + q; (where ¢ = u,v,0,p, p, 4, k) into (2.1),
dropping out the higher-order nonlinear terms and neglecting the base flow variation in
time

v =0, (2.6a)

E-’_ b£+ ba dy
ou + Uba—ﬁ + TJ@ L [—@ + wp V2 + iviU, + lﬂbi <% + 8—6)
at ax ay 0Ob ox 3" 70dx \dax 0y
M&_ﬁ M% %% + é] (2.6b)
dy ox ay dy  dy Jdy €
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-_ _ = | —— v — ] — -
ot C P x T oy | oy M 3% \ox " By

A dU,  49upd0 2 dup 0t
L Tt AL (2.6¢)
ox dy 3 9y dy 3 9y ox
a0 a0 30 1 - K 00,  dkp 00
Z i, Z 5 = V20 + V20, + 2T L TR CTY (0 6
ot ax ay o Cp dy ady ay ady

where the Laplacian operator V2 = 8%/9x> + 9%/dy*. The temperature perturbation,
which takes the form

6 = 6,A, sin (2nnﬁ) , 2.7)
Ly
is fed into the base flow at time ¢ = 0 and interacts linearly with the base flow following
(2.6). Here, n is the mode number — a real positive integer indicating the wavelength
Ly/n (the dimensionless wavenumber evaluated at ambient temperature T, is therefore
koo = 2mn/Ly); Ay = 1073 is the initial magnitude of the perturbation and L, = L} /L,
the dimensionless streamwise domain length. Perturbations must vanish at the non-slip
wall and decay towards zero in the far-field, giving the perturbation boundary conditions

ii=10=0 =0 at both wall (y = 0) and far-field (y = co). No velocity perturbation is
added at r = 0 in the current study as the temperature perturbation will directly disturb
the velocity field via the buoyancy term in (2.6b). The linearised system (2.6) is solved
numerically for a given wavenumber ks, (or mode number n) with a base flow at
Gro and temperature difference € as an initial-value problem. In the present study, the
NOB effects on the stability properties are explored for 400 < Gro, < 2000, 4 <n <
32 (0.02 < koo < 0.19) and 10K < AT < 100K (equivalently, 0.035 < € < 0.347). The
ambient temperature is set to T, = 288 K with an ambient Prandtl number of Pro, = 0.71
(based on Bergman et al. 2011) for all cases considered. The calculations are carried out in
a computational domain of size L} x L¥ = 1035L; o x 210Ly , using a fractional step
method (Xia et al. 2016; Demou, Frantzis & Grigoriadis 2018) with a collocated finite
volume grid (Ny x Ny, = 1024 x 256). The domain is made sufficiently large so that both
gradients and magnitudes of the flow variables are reduced to their ambient values at
the far-field y = L,. A uniform mesh is employed in the streamwise direction while the
grids in the wall-normal direction are stretched using a Gamma function with a maximum
stretching rate of 1.24 %.

3. Results and discussion
3.1. Linearised disturbance equations

With the laminar base flow at a given ambient Grashof number Gr,, the flow is unstable
(or stable) to the perturbation k if the magnitude of its temporal response grows (or
decreases) with time. Notably, due to the parallel nature of the unsteady periodic flow,
perturbations have no streamwise dependence as would have been seen in the spatially
developing flows (Huerre & Monkewitz 1990). As a result, the perturbations would
become unstable (or stable) simultaneously at the same amplification (or damping) rate
in the flow anywhere, in which sense the convective instability (or stability) of the flow
is global rather than local (see, e.g. later in figures 6 and 8). In this study, the temporal
response to the initial perturbation k is tracked by the time trace of the velocity and
temperature signals (i and §) at an arbitrary location (xp, yp) within the boundary layer
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Figure 3. Temporal responses of the temperature signals at (xp,y,) = (781.6,0.25) for base flow at
Groo =600 and € = 0.174 (AT = 50K) and (a) koo = 0.0486 (n = 8); (b) koo = 0.0971 (n = 16). Black
dotted lines are the envelopes £A; of the signal that follow the exponential growth or decay; red markers
in panel (b) highlight two arbitrarily chosen neighbouring peaks which describes the temporal period At of
the signal.

(see also figure 6 of Ke et al. 2019). Figure 3 shows the typical temporal responses of the
perturbation signals for ko, = 0.0486 (n = 8) and koo = 0.0971 (n = 16) at Gro, = 600
and € = 0.174. As seen in figure 3, at Gro = 600, the oscillatory temporal signals
quickly adjust their magnitude to a fully periodic state within 1 ~ 2 temporal periods (i.e.
receptivity as the flow receives the external perturbation at t = 0). In this fully periodic
state, the envelope of the temporal signals follow an exponential growth (for ko, = 0.0486)
or decay (for koo = 0.0971) with time. The growth rate of the perturbation signals, termed
the amplification rate, is then given by

1 0A;

=2 3.1
A, ot G-

Ok
where A; is the instantaneous magnitude of the perturbation signal at time ¢ (i.e. the
envelope magnitude in figure 3), which is obtained by taking the fast Fourier transform
in the streamwise (x) direction at y = y,. For a given combination of ks and Gry, a
positive oy indicates that the temporal response is amplified by the laminar base flow
while a negative oy represents a damped signal. The neutral curve, which characterises the
minimal Grashof numbers at which the flow is linearly unstable to a given perturbation &,
(i.e. oy = 0), can be traced by bisectioning the amplification rates in the k—Gr plane.

Figure 4 compares the neutral curves (ox = 0) for € = 0.035, 0.174 and 0.347 with the
OB case (Ke et al. 2019). While the neutral curves of all the NOB cases show apparent
qualitative similarity to the OB case, these curves demonstrate a clear e-dependence: with
increasing €, the neutral curve shifts towards higher Grashof numbers at both lower branch
(koo < 0(0.1)) and upper branch (koo > O(0.1)). As seen in figure 4, although the critical
mode ko, = 0.049 in the lower branch has minimal e-dependency, the critical Grashof
number is increased to Groo = 473, 536 and 622 for € = 0.035, 0.174 and € = 0.347,
respectively, when compared with Grs, = 454 for the OB case. At larger wavenumbers
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Figure 4. Neutral curve of the NCBL in air with non-Oberbeck—Boussinesq (NOB) effects under various
temperature differences, compared with OB results obtained by Ke et al. (2019); dimensionless wavenumber
koo and Grashof number Gr, are based on the fluid properties at ambient temperature 7.

in the upper branch (ko > O(0.1)), such a dependency on the temperature difference €
is considerably less than that of the lower branch, where the marginally unstable Grashof
number of koo = 0.12 is increased to Groo = 948, 959 and 980 for ¢ = 0.035, 0.174 and
€ = 0.347, respectively. A similar € dependency of the critical Grashof number has also
been reported by Suslov & Paolucci (1995b) for an NCBL in a differentially heated cavity
when using a reference temperature obtained by averaging the hot and cold walls. Based
on their eigenvalue analysis, Suslov & Paolucci (1995b) found that the critical point (i.e.
critical Gr and k) for the NCBL in a cavity initially locates in the upper branch for
relatively low € and the critical Grashof number would increase with increasing € — until
€ is sufficiently large (¢ > 0.54) such that the critical wavenumber would then shift to
the lower branch. However, in the present study, such a drastic change in the critical
wavenumber is not observed — we will show later in § 3.2 that this is due to a different
instability mechanism in the cavity.

Since the perturbation wavelength A is fully determined by the mode number n and
the streamwise domain length L., the temporal response signal in figure 3 allows further
examination of the wave speed of the perturbation travelling wave v,

A Ly

o_ A _ L (3.2)
k AT nAt

Up

where w is the oscillation frequency and At is the dimensionless time interval between
two neighbouring peaks of the response signal, as shown in figure 3(b). Based on linear
theory, the interaction between the perturbation and its base flow is linear so that At is
constant for a given choice of Gry, ko and €. Figure 5(a,b) compare the maximum base
flow velocity U,, with the wave velocity obtained by (3.2) at Groc = 600 and Gro, = 1000,
respectively. For all temperature differences and base flows considered, the wave velocity
decreases with increasing wavenumber and temperature difference €; and the NOB effects
on the phase velocity appear more apparent for higher wavenumbers. Notably, Daniels &
Patterson (1997, 2001) showed that for vertical NCBL flows, the ‘less accurate’ long-wave
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Figure 5. Wave speed of the perturbations v, against (a,b) wavenumber ky, at Groo = 600 and Groo = 1000;
and (c,d) amplification rate oy at Groo = 600 and Grs, = 1000. Inset in panel (b) shows the magnified view
for the amplified modes; black dotted lines indicates oy = 0 and v,/Uy, = 1.

perturbations will always have a phase speed greater than the maximum base flow velocity
(vp/Un &~ 2); whereas the phase velocity for the short-waves are always less than the
maximum base flow velocity (v, < Up). In this sense, perturbations considered in our
study are mostly short-wave disturbances, with a small portion of the ‘less accurate’
intermediate-long waves (since v,/U, ~ 1.2 <2 in figure 5a,b) whose accuracy is
improved with increasing Grashof (Reynolds) number. At Gro, = 600, the critical mode
koo = 0.049 (cf. figure 4) is found to have a wave speed close to the maximum base flow
velocity U,,. This observation is consistent with the findings of Armfield & Patterson
(1992) in which the authors showed that the travelling waves amplified by the OB base
flow have a wave speed close to the maximum base flow velocity; and with the eigenvalue
analysis for the OB case (Ke ef al. 2019) from which the phase velocity of the critical
point is found to be equal to Uy,. Such a result is seen more clearly in figure 5(c), where
the amplification rate oy is plotted against the wave speed v,. From figure 5(c), only a

988 A44-11


https://doi.org/10.1017/jfm.2024.478

https://doi.org/10.1017/jfm.2024.478 Published online by Cambridge University Press

J. Ke, S.W. Armfield and N. Williamson

small band of wavenumbers are amplified by the base flow (o > 0) at Gro, = 600 — all of
which are shown to have a wave speed close to the velocity maximum in the base flow U,,,
regardless of the temperature differences. Figure 5(c) also shows apparent NOB effects
on the amplification rates: the base flow is unstable to koo = 0.049 (v,/U,, = 0.98) and
koo = 0.061 (v,/Uy = 0.89) for ¢ < 0.174, but appears stable for ¢ = 0.347 (see inset).
At Groo = 1000, the base flow becomes unstable to a broader band of wavenumbers at the
lower phase velocity range at v,/U,, ~ 0.55 (i.e. shorter waves with higher wavenumbers).
As shown in figure 5(d), while the critical mode ks = 0.049 remains the most amplified
mode at Groo = 1000, its phase velocity is decreased to v, /U, = 0.88.

3.2. Energy budgets for the buoyancy-driven and shear-driven modes

In figure 4, the lower wavenumbers demonstrate a greater sensitivity to the temperature
difference € compared with the upper branch (i.e. larger wavenumbers ko, > 0(0.1)),
indicating potential differences in their instability dynamics. In this subsection, we
examine the instantaneous perturbation field as well as the perturbation kinetic energy
budget of the representative modes in the lower and upper branches to identify and discern
the underlying driving mechanisms for these two branches.

Figure 6 depicts the instantaneous contours of the temperature and velocity
perturbations of the critical mode koo = 0.049 at Groo = 600, which is representative
of the lower branch instabilities. For brevity, only € = 0.174 is shown here since all
other temperature differences show qualitatively similar structures. From figure 6, it is
seen that the velocity fluctuations extend farther out from the wall than the temperature
fluctuations, and both instantaneous fluctuation fields have their peaks located beyond
the maximum base flow velocity location — indicating that the instability is strongest in
the outer part of the boundary layer. There also exists a secondary emerging peak in
the velocity perturbation field at y ~ 16, which can be seen more clearly in figure 6(c),

where the Reynolds normal stress uu profile is normalised by its instantaneous maximum
(denoted by subscript ,,). Here, ¢ denotes the spatial average of flow variable ¢ over the
homogeneous direction. Although it is difficult to make a direct quantitative comparison
due to flow differences, a similar velocity perturbation structure has also been observed
in earlier OB stability results for spatially developing natural convection in air (Versteegh
& Nieuwstadt 1998; Aberra et al. 2012) and water (Brooker, Patterson & Armfield 1997;
Brooker et al. 2000).

To further understand the energy contributions to the perturbation pattern shown in
figure 6, we inspect the two-dimensional perturbation energy E = (ii* 4+ ©2)/2 budget
for this critical mode at Gro, = 600. With streamwise homogeneity, the energy budget
equation can be obtained by summing (2.60) multiplied by & and (2.6¢) multiplied by v.
The resulting budget equation for our temporally developing NCBL reads

oE

E=P+B+Db+8b+n+2, (3.3)
where P is the shear production, B is the buoyancy production; Dj is the base flow
diffusion; ¢, is the base flow viscous pseudo dissipation; I7 is the pressure transport; X
represents the effects due to spatial variation in fluid density and properties. These terms
read

U ip 1 22 4922
P=_fot gt p B 70 (3.4a—c)
dy 23 2pp \ 3y 3 0y?
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Figure 6. (a) Temperature and (b) velocity perturbation contours of the critical mode ko, = 0.049 at
Groo = 600 and ¢ = 0.174. Contour lines are equally spaced (10 %, 40 % and 70 % of the maximum), and the
red solid, blue dashed and black dotted contour lines indicate positive, negative and zero levels. (c) Streamwise
Reynolds normal stress uir profile normalised by its instantaneous maximum #ii,,. Vertical dash-dotted lines
indicate the maximum base flow velocity location &, (green).
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Here, G, and G, are the viscosity gradient effects due to the base flow and local
instantaneous viscosity fluctuation, respectively; and D, is diffusion due to viscosity
fluctuation:
1 dup (002 49302 30 4 _ou
= — e (T 2T 0t ), (3.5a)
20, 0y \ dy 3 dy ax 3 ox

(3.5b,c)

Figure 7(a) demonstrates the individual contributors to the energy budget (3.3) for the
critical mode ko, = 0.049 at Gro, = 600. In linear analysis, the perturbations are allowed
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Figure 7. (a) Perturbation kinetic energy budget for the critical mode in the lower branch ko, = 0.049 at
Groo = 600 and ¢ = 0.174; (b) contributors involving spatial variation in fluid properties (note change in scale);
(¢) rate of change dE/dt. All quantities are normalised in such a way that D, = 1 aty = 0. Vertical dash-dotted
lines indicate the maximum base flow velocity location &,, (green).
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to grow/decay indefinitely, resulting in a time-dependent scale for the energy budget.
However, we note that it is the relative contributions of the terms in (3.4) to the energy
budget, rather than the scales, that is of crucial importance to the understanding of the
instability mechanisms. In the present study, the energy budgets are normalised in a way
such that the base flow viscous diffusion D, at the wall (y = 0) is one. As shown in
figure 7(a), the buoyancy production B, being the dominant term in driving the instability,
correlates well with the peak of the uu seen in figure 6(c); whereas the shear production,
‘P, makes only a small contribution at the peak location and acts as a sink for y > 7.
The production terms shown here behave differently to what is observed in fully turbulent
flow where the buoyancy production is usually negligible and negative, and the turbulence
is predominantly maintained by shear production (for Pr < 1, see Janssen & Armfield
1996; Versteegh & Nieuwstadt 1998; Ke et al. 2023). The strong buoyancy production is
often seen in the onset of the buoyant instabilities of the unstable atmospheric surface
layers (e.g. Leclerc et al. 1990, although the gravitational vector aligns differently to the
mean flow direction). The high level buoyancy production in figure 7(a) suggests that the
instability of the critical mode ko, = 0.049 at Gro, = 600 is buoyancy driven. However,
the effects of local viscosity gradient and fluctuations X only have minimal effect on the
balance. The contributors to X', given by (3.5), are shown in figure 7(b). It is seen that the
viscosity fluctuation gradient effect G, is negligible; while other terms are two orders of
magnitude smaller than those in figure 7(a). The buoyancy production is then balanced
by base flow viscous diffusion D, and pressure transport /7, redistributing the production
to the near-wall region and the outer free-shear layer. The sum of the contributors, giving
the temporal growth of the perturbation kinetic energy E, is shown in figure 7(c). The net
energy gain peaks beyond the velocity maximum location §,, with a secondary peak at
y & 16. These energy peaks correlate well with those of the instantaneous uu profile in
figure 6(c).

At Groo = 1000 and ko = 0.12, which is representative of the upper branch
instabilities, a fundamentally different perturbation field is seen in figure 8. An additional
peak in the velocity contour is apparently observed in the near-wall shear layer (y & 2), as
shown in figure 8(b,c). The strong oscillations in the velocity perturbation correlate well
with the critical layer locations (marked in violet in figure 8), where the local base flow
velocity Uy =~ 0.55U,, (cf. figure 5d) matches the phase velocity v, of koo = 0.12 (see also
in, e.g. Mack 1984; Wall & Wilson 1996). The existence of such a near-wall peak gives rise
to a stronger shear stress and marks the onset of a shear instability for the wall-bounded
NCBL (see also figure 8 of Janssen & Armfield 1996), rather than the buoyant instability
as seen in the lower branch. This can be more clearly seen in the perturbation energy
budget, depicted by figure 9(a), where the kinetic energy is shown driven predominantly
by shear and buoyancy production near the outer critical layer at y &~ 8. Unlike the buoyant
instability mode shown in figure 7, for Gro, = 1000 and ko, = 0.12, the shear production
grows in strength and demonstrates a similar peak magnitude to that of the buoyancy
production B. In the region close to the base flow velocity maximum location §,, (green
dotted lines in figure 9), B and P are slightly negative — the near-wall energy is mainly
sustained by the pressure transport from the outer critical layer. Near the production
peaks (i.e. outer critical layer), both the base flow viscous dissipation and diffusion are
relatively small; and the overall production is balanced by the pressure transport, which
redistributes the excessive kinetic energy towards the near-wall and outer shear layers.
A similar distribution is also seen by Versteegh & Nieuwstadt (1998) for a vertical natural
convection in a differentially heated channel, where the near-wall peak of the redistributive
pressure term is shown to increase the flow anisotropy near the non-slip wall. The strong
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Figure 8. (a) Temperature and (b) velocity perturbation contours of the marginally unstable mode ko, = 0.12
at Groo = 1000 and ¢ = 0.174. Contour lines are equally spaced (10 %, 40 % and 70 % of the maximum), and
the red solid, blue dashed and black dotted contour lines indicate positive, negative and zero levels. Panel
(c) shows the streamwise Reynolds normal stress it profile normalised by its instantaneous maximum ity
Vertical dash-dotted lines indicate the maximum base flow velocity location §,, (green) and the locations of the
critical layers (violet).

pressure transport in the near-wall region (cf. figure 9a) also results in an additional peak
for the temporal evolution dE/d¢ around the near-wall critical layer, shown in figure 9(c).
Figure 9(b) demonstrates the terms involving spatial fluid property variations. Similar to
the buoyant instability in figure 7(b), these contributors to X' are at least two orders of
magnitude smaller than those of the dominant terms in the kinetic energy budgets. While
G, remains negligible, an extra local maximum is developed for D,, and G, close to the
critical layer in the near-wall region, which is also suggestive of a change in the energy
generation in the near-wall region.

With the kinetic energy budgets, one is able to discern the driving mechanisms for
arbitrary modes by comparing the relative contribution (defined by the R) of shear
production P to the buoyancy production B across the boundary layer,

o0
d
R = M (3.6)
fo Bdy

The production ratio R conveniently distinguishes the flow regimes by the relative
strength that drives the instabilities on the neutral curve: R > 1 for shear-driven instability
and R < 1 for buoyancy-driven instability. As shown in figure 10(a), the shear-driven
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Figure 9. (a) Perturbation kinetic energy budget for the marginally unstable mode ko, = 0.12 at Gro = 1000
on the upper branch of the neutral curve (¢ = 0.174); (b) the contributors involving spatial variation in fluid
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instability occurs at relatively large wavenumbers in the upper branch and it occupies
increasingly greater area in the k—Gr plane with increasing Groo as the base flow gains
more momentum. The buoyant instability, however, mainly happens at relatively low Groo
and small wavenumbers ko, in the lower branch. This result is consistent with the findings
in a differentially heated cavity (Suslov & Paolucci 1995b). However, we shall point out
that the onset of shear and buoyant modes observed by Suslov & Paolucci (1995b) may
be due to a different mechanism — Suslov & Paolucci (1995b) observed that the flow is
first unstable to the shear-driven modes in the upper branch due to the breakdown of odd
symmetry at the mid-span of the differentially heated cavity. For NCBLs in differentially
heated cavities and channels, the shear-driven instability is typically stationary (with
a phase velocity of v, = 0), while the buoyancy-driven modes are oscillatory in the
Boussinesq limit (Suslov & Paolucci 1995b; McBain & Armfield 2003). With NOB
effects, Suslov & Paolucci (1995b) showed that the resulting shear-driven mode has a
negative wave speed v, < 0 (i.e. propagating against the base flow) for cavity flows;
whereas in the present study, perturbation waves are travelling in the direction of the
base flow (v, > 0, cf. figure 5). Notably, for our NCBL, there also exists a region at
low wavenumbers where the shear production is negative (resulting in R < 0). In this
region, the instability is driven entirely by buoyancy (see, e.g. the critical mode budget
in figure 7a, where P has a peak value an order of magnitude smaller than that of
B and acts as a sink in the outer shear layer). Figure 10(b) depicts the temperature
difference effects on the R contours. Evidently, with increasing temperature difference
€, the R contours are shifted to higher Gro, and larger ko, effectively expanding the
buoyancy-driven region in the k—Gr plane. Such a result is not surprising as the buoyancy
effect becomes increasingly strong with greater temperature differences and therefore
results in a broadened buoyancy-driven instability region in figure 10. The growing
strength of buoyant instability with increasing e is also seen by Suslov & Paolucci (1995b),
where the critical point (minimum G7, at which the flow becomes marginally unstable to
any perturbation) changes from shear driven to buoyancy driven when € is large enough.
However, for the temperature differences considered here up to € = 0.347, we have not
observed such a sudden change of the critical mode since the unsteady NCBL is unstable to
the buoyancy-driven mode first and larger € would only strengthen the buoyant instability
— we conjecture that such a change in critical mode is more likely to occur in NCBLs with
higher Prandtl number where the flow might become unstable to the upper shear-driven
branch first.

3.3. Neutral curves re-normalised using the film temperature

In the context of NCBL literature, flow field characterisation parameters, such as Grashof
number Gr and Rayleigh number Ra, are often evaluated at the film temperature
Ty = (T + T)/2 for practical purposes. Earlier investigations on the NOB NCBL
revealed that greater temperature differences would destabilise the gaseous boundary layer
flows with a lower transition Grashof number when evaluated at 7¢ (e.g. Chenoweth &
Paolucci 1986; Sabhapathy & Cheng 1986; Jiin-Yuh & Mollendorf 1988), suggesting an
earlier onset of instabilities at larger € for air. As shown in figure 4(a), our linear stability
results show that a higher Gry, is needed to trigger the instability for greater temperature
differences €, i.e. increasing € would stabilise the NCBL. However, these results do not
imply that our calculations contradict earlier investigations as the neutral curves in figure 4
are normalised using the ambient temperature. Figure 4(a) can be re-normalised using fluid
properties at Ty, as shown in figure 11. Here, ky and Gry are the dimensionless wavenumber
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Figure 10. (a) Ratio of integrated shear production to the buoyancy production overlaid on the neutral curve
for € = 0.174. Red dash-dotted line (R = 1) divides the shear-driven (upper) and buoyancy-driven (lower)
instability regions; blue dotted line indicates R = 0, below which shear production is negative P < 0. (b)
Dependence of R = 1 and R = 0 contours on the temperature differences. Colours represent the temperature
differences: (green) € = 0.035, (blue) € = 0.174 and (red) ¢ = 0.347; dash-dotted lines represent R = 1 and
dotted lines denote R = 0.

and the film Grashof number,

I3 2/3 2
ke = koo ( S’°°> = koo <K°°pf> . Gry=Groo <M) . (3.7a,b)
Ly Kf Poo If Poo

As depicted by figure 11, while the neutral curves for the e-range reported still share a
similar shape, it is evident that with increasing €, the critical Grashof number decreases —
indicating the air NCBL flow, when evaluated by the film temperature 77, is destabilised
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Figure 11. Neutral curves and R =1, R = 0 contours re-normalised using film temperature Ty = (7,, +
Tso)/2. Colours represent the temperature differences: (green) € = 0.035, (blue) € = 0.174 and (red) € =
0.347; dash-dotted lines represent R = 1; dotted lines denote R = 0.

when a larger temperature difference is applied to the base flow. Unlike figure 4(a),
when normalised by 7y, the shear-driven instability demonstrates a greater dependence
on the temperature difference €. For instance, the marginally unstable Grashof number for
kr ~ 0.12 is decreased from Gry = 892 ate = 0.035 to Gry = 564 at € = 0.347; however,
the critical Grashof number for the buoyancy-driven instability in the lower branch
decreases slightly to Gry = 355 at € = 0.347 from Gry = 445 at € = 0.035. Figure 11
indicates when evaluating at 77, the NOB effects due to heating are to destabilise the air
flow, prominent for the shear-driven modes but to a lesser extent for the buoyancy-driven
modes. These results are consistent with the earlier linear stability investigations for
NCBLs along vertical plates, e.g. Sabhapathy & Cheng (1986) and Jiin-Yuh & Mollendorf
(1988) reported heating (decreasing viscosity and conductivity) would stabilise the liquid
flows (7 < Pr < 100). Note the viscosity and conductivity for liquid flows decrease with
increasing temperature, which is different from the gaseous flow described by Sutherland’s
law.

3.4. Direct stability analysis

With the linear stability results obtained in § 3.1, the extent of the linear regime where
a perturbation of choice, ko, interacts linearly with the base flow can be identified by
comparing the direct numerical solution to the perturbed system (2.1) in three-dimensional
form. By imposing the boundary conditions as impermeable isothermal wall at y = 0, and
the quiescent ambient aty = L,

u=v=w=0, 6=6,, aty=0, (3.8a)
ou W _p—0. at (3.8b)
—_—=Y) = — = =V, a = . .

% 5 y=1L,

With periodic boundary condition applied in the spanwise z direction, the
three-dimensional direct numerical simulation (DNS) is carried outinan Ly x Ly X L, =
1035L;,00 x 207Lg, o0 x 129Lg oo computational domain with an Ny x Ny x N, = 1024 x
256 x 128 Cartesian grid (stretched in the y direction but uniform in the homogeneous
directions x and z, with the same stretching strategy as used in the linear stability runs
in § 2). The temperature perturbation, given by (2.7), is fed into the flow at Gro, = 250
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Figure 12. (a) Temporal signal of the instantaneous temperature ¢ (left axis) and the temperature fluctuation
0 (right axis) which is obtained by subtracting the spatial average 6 from the instantaneous value 6; (b)
instantaneous magnitude of the temperature fluctuation against the ambient Grashof number Gro.

with n = 8 (so that koo = 0.049 is obtained) and A, = 10~3. The ambient temperature
is set to Too = 288K and the bulk temperature difference is set to AT = 100K to
enable a direct comparison with the linear stability results for ¢ = 0.347. For the DNS,
the perturbation field of a flow variable ¢ is obtained by subtracting the homogeneous
spatial average of a flow variable ¢ from its instantaneous value ¢, ie. ¢ = ¢ — .
Figure 12(a) shows the instantaneous and the fluctuation signal of the temperature at
(Xp, yp, 2p) = (781.6, 0.25, 64.5). Although the temperature fluctuation demonstrates a
similar oscillatory behaviour as shown in the linearised solutions (e.g. figure 3), nonlinear
developments become visible at & 120 (which corresponds to Gro, ~ 2.2 x 10*). This
can be clearly seen in figure 12(b), where the instantaneous amplitude of the temperature
fluctuation signal A; is plotted against the Grashof number Gry,. From figure 12(b), the
temporal signal follows an adjustment immediately after the temperature perturbation is
fed into the flow. Similar adjustments are also seen in the linearised solutions (cf. figure 3)
and typically end at ¢t &~ 50. During this process, the temperature fluctuation is tuned
to an appropriate magnitude and phase condition in a way that it does not follow the
linear amplification or decay as the boundary layer receives external artificial perturbation
(also known as the receptivity process, see Reed, Saric & Arnal 1996; Saric, Reed &
Kerschen 2002; Ke et al. 2019). For the unsteady DNS, a development time of ¢t = 50
for the base flow corresponds to Gra, &~ 7 x 103, as shown in figure 12(b). Beyond this
inevitable initial receptivity, the temperature fluctuation is amplified almost linearly in the
log—log plot as the mean flow continues to develop — up until the onset of nonlinearity at
Groo ~ 1.7 x 10%.

This limit of the linear range can be seen in figure 13, where the amplification rate,
oy, of the LNS is compared with the DNS results. With increasing €, the NOB LNS
solutions are shown to have a slightly lower amplification rate than that of the OB case
for Groo < 5 x 10%; however, at greater Groo, the perturbation is amplified at a much
faster rate. This indicates that a larger bulk characteristic temperature difference would
result in the infinitesimal perturbations being amplified more quickly as the flow continues
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Figure 13. Amplification rate o} comparison for wavenumber ko, = 0.049. Lines represent the OB case based
on the Orr—Sommerfeld eigenvalue analysis of Ke et al. (2019) (black dotted), and linear stability (LNS) results
obtained in § 3.1 for € = 0.035, ¢ = 0.174 and € = 0.347. Markers denote the direct stability results for ¢ =
0.347. Vertical lines mark the end of receptivity tuning (left) and the start of nonlinear regime (right).

to evolve in time, and potentially would lead to an earlier onset of nonlinearities and
laminar—turbulent transition. The DNS data, however, show good agreement with the

linear stability results after its initial receptivity process at Gro, & 7 x 10°. Notably, there
are instantaneous fluctuations showing up in the DNS amplification data as there have
been weakly nonlinear effects due to the interactions between the perturbation field and
property/density fluctuations, all of which, being the higher order nonlinear terms, have
been dropped in the linear disturbance modelling (2.6). However, this nonlinear effect is
considered negligibly weak since it only has minimal impact on the amplification rates
obtained by DNS. By comparing the amplification rates obtained from the DNS and
the linear stability results, the linear regime for ¢ = 0.347 is identified to be up until
Greo ~ 1.7 x 10* (or, equivalently Gry =~ 9.7 x 10 when evaluated using Ty) — beyond
this point, the linear stability result diverges from the DNS data since nonlinearity takes
over the perturbation amplification mechanism. The onset of nonlinearity, when evaluated
at film temperature, is found to be earlier than that of the OB case, whose linear range
extends up to Gr = 1.3 x 10* for an initial perturbation amplitude of A, = 10~3 (Ke et al.
2019). Such a result is indeed consistent with the observation of Siebers et al. (1985),
where they experimentally found that for a fixed T, the film Grashof number Gry at which
transition occurs decreases with increasing wall temperature 7, (and thus the temperature
difference AT).

4. Conclusions

In this paper, the linear stability of a vertical natural convection boundary
layer was investigated using both direct numerical simulation and the linearised
disturbance equations. The non-Oberbeck—Boussinesq effects are accounted for by
using a weakly compressible formulation (Batchelor 1953; Paolucci 1982) with the
temperature-dependent fluid viscosity and conductivity modelled by Sutherland’s law. The
linear stability results show that with increasing temperature difference €, the onset of
flow instability occurs at a higher ambient Grashof number Gro,. However, such a neutral
curve is sensitive to the reference temperature used to normalise the flow: when evaluating
at the film temperature Ty = (7, + T)/2, a lower critical film Grashof number Gry is
found for greater €, suggesting a greater temperature difference destabilises the air flow.
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This observation at Ty is fully consistent with earlier investigations for liquid NCBL flows
(Sabhapathy & Cheng 1986; Jiin-Yuh & Mollendorf 1988).

The instability dynamics of the perturbations are further explored by investigating
the energy budgets for the marginally unstable modes at Groo = 600, koo = 0.049 and
Groo = 1000, koo = 0.12, representing the lower and upper branches of the neutral curve,
respectively. By comparing the relative contributions of the shear and buoyancy production
to the kinetic energy, we show that the marginally unstable mode near the critical point
in the lower branch (Grs = 600, ks, = 0.049) is driven by buoyancy; whereas the
instability at the upper branch (Gro, = 1000, ks, = 0.12) is shear driven. With increasing
temperature difference, the buoyancy-driven instability region occupies an increasingly
greater region in the stability diagram due to stronger buoyancy; while the shear-driven
instability region expands with increasing Grashof number as the base flow gains more
momentum. It is also shown that the buoyancy-driven modes are more sensitive to the
temperature difference when normalised by T; while the shear-driven modes are more
sensitive to the temperature difference when normalised by T¥.

Finally, the extent of the linear regime is identified by comparing the linear stability
results with a three-dimensional DNS for € = 0.347 and ko, = 0.049. Although the
amplification rate obtained from DNS shows slight instantaneous fluctuations due to
higher order nonlinear interactions between the fluid properties and density variations,
it still demonstrates good agreement with the linear stability results after its initial
receptivity, suggesting the linear regime extends up to Groo ~ 1.7 x 10*. When evaluating
at the film temperature, this corresponds to Gry = 9.7 x 10% and the onset of nonlinearities
is found to be earlier than that of the OB case (Ke et al. 2019), which is consistent
with earlier observations (e.g. Siebers et al. 1985, the film Grashof number Gry at which
transition occurs decreases with increasing wall temperature 7).
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