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Extreme point properties of

fixed-point sets

Rodney Nillsen

We consider a semigroup S acting as affine continuous maps on

a compact convex set X . F denotes the corresponding set of

fixed points. Let exX and exF denote the corresponding sets

of extreme points. If X is a simplex, conditions are given

which ensure that when x d F , the maximal measure representing

x is invariant under S . We also prove exF = F n exX under

conditions involving extreme amenability of 5 . Topological

properties of exF are also studied.

1. Definitions and notation

S will denote a semigroup and L the space of all bounded real

valued functions on S . For s t S and f t L^ , If £ L^ is defined

by: I f(.t) = fist) . L denotes a closed subspace of Lm , containing the

constant functions and such that I L c L for each s i. S . By a mean y
S •""

on L i s meant an element u t L* such that y 2 0 and y(l) = 1 (hence

||y|| = 1 ). Such a mean y f L* i s called lef t invariant if l*\i = y for
o

all s (. S . When such a y exists, L is said to be left amenable. If

L is an algebra and a left invariant y exists which is also

multiplicative (that is, V-(fg) = \i(f)v(g) for /, g € I ) , L is said to

be extremely left amenable. S is said to be (extremely) left amenable if
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242 Rodney Ni I I sen

Lm is (extremely) left amenable. M denotes the set of means on L - it

is a compact convex set in the weak* topology.

X shall denote a compact convex set situated in some Hausdorff

locally convex topological vector space E . A{X) denotes all affine

continuous real valued functions on X . K{x) denotes all convex

continuous real valued functions on X . A representation of S as a

semigroup of continuous affine maps on X is assumed to be given. We

define F to be {x d X : sx = x for all s i S) , and it is the fixed

point set associated with the given representation of S . F is a compact

convex subset of X . exX and exF denote the sets of extreme points of

X and F respectively.

Given s 6 X , define Tg : A(X) •* L^ by (Tj) (S ) = f(sz) for

f £ A(X) , s € £ . T is a positive linear operator of norm 1 . If

z

z € X i s such t h a t TU{X)) C L , T* maps L* i n t o A{X)* - i n f a c t

i f p i s a mean on L , T*\l w i l l be a mean on A{X) and c o r r e s p o n d s t o

an e v a l u a t i o n g i v e n by a p o i n t of X ( [ 7 ] ) . Hence i f T (A(X)) <£L, T*

c a n be r e g a r d e d as mapping t h e means on L i n t o X .

F o r i n f o r m a t i o n on Choquet s i m p l i c e s e t c . , s e e [ 7 6 ] . For X - a n a l y t i c

and K-Borel s e t s s e e [ 7 3 3 .

2. The extremely amenable case

LEMMA 2.1 ([7]). Let u be a left invariant mean on L and z € X

be such that T [A(X)) C L . Then T*u ( F . If S is left amenable, F

is non void.

Proof. For each / € A(X) and each s € S we have:

Since A(X) separates points of X , S[T*\I) = T*\i for all s € S ; that

is, T*\i i F .
z

The last statement is due to Day [5], and follows from T [A(X)) C L^

for all z .
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For a given compact Hausdorff space T , p(T) shall denote all

regular Borel probability measures on T . We define

I = {y € p(X) : y o S~
X = y, all s € S) .

I is a weak* compact convex subset of p{X) , and F is non void if and

only if J is non void. Given v t X let S = {s € 5 : sv € exX} .

Define SQ = fl S . SQ is a subsemigroup of 5 . A subset S of
vtexX

S is said to be left near thick if, given t £ S , there is s (. S such

that ts t S1 .

LEMMA 2.2. Let X be a Choquet simplex and suppose that S. is

left near thick in S . Let x € X and V € p(X) be its (unique)

representing maximal measure. Then if x (. F , u € J ; and if x e exF ,

u € exJ .

Proof. By Theorem 1 of Jellett [JZ], if s{exX) <=_ exX and V d p{X)

is maximal, then u o s is maximal. Hence if x 6 F and y is its

representing maximal measure, y o s is maximal and represents sx = x ,

provided s (: SQ . By the uniqueness of representing maximal measures ,

y = y o s~ for all s i S~ .

Now if t i S choose s f 5 such that ts £ S . Then

y o t" = y o s" o £~ = y o (ts)" = y

as ts € S ; that is, y 6 J .

If now x f exF , let y be its representing maximal measure. Let

y , y € J and 0 < X < 1 be such that y = Xy + (l-X)y . If

/ i. K[X) , y maximal implies V>(f-f) = 0 . Since f - f i 0 , we have

V±(f-f) = V2(f-f) = 0 . Hence for each f € K(X) , y^/) = V^f) and

V2(7) = V2(f) • It now follows (Phelps 1171, p. 6U) that y and U2 are

maximal. Let x. , a;? respectively be the resultants of \i , \l . Because

y i ' y 2 ^ J ' X l ' X 2 € F ' a n d X = ^ 1 + ^1~X^X2 • S i n c e x € exi? »
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x = x = Xr> . By uniqueness of representing maximal measures,

P = yi = V2 ' Hence v 6 exT .

LEMMA 2.3. Let L be left amenable. Let y € I be such that, for

each f,gt C(x) , the function on S defined by s •*• y((/ o s)g\

belongs to L . Then the following are equivalent:

(1) V € exJ ;

(2) for each left invariant mean m on L and f , g t C(X) ,

mis ->• v[{f ° s)g)\ = v(fMg) ;

(3) for some mean m on L we have mis •*• y((/ o s)g)\ = v(f)u(g)

for all f, g € C{x) .

Proof. This can be adapted from L4J, Theorem 2.1.

THEOREM 2.4. Suppose that:

(1) L is left amenable;

(2) each element of S has a right zero;

(3) X is a Choquet simplex;

(h) SQ is left near thick in S ;

(5) for y € I and f, g i C(X) , the function s •* y((/ o s)g)

belongs to L .

Then F n exX = exF .

Proof. We obviously have exX n F c exF . Conversely l e t x € exF

and l e t u $ p(X) be i t s representing maximal measure. By Lemma 2.2 ,

y 6 exT and Lemma 2.3 gives that for each lef t invariant mean m on L ,

and f,g* C(X) , mis -»• y(( f o s )^) j = v(fMg) . By (2) choose t f 5

such that st = t . Then y ( ( / ° s)g) = y((.fe) o t) = y(/g) . Then for

f,gt C(X) , Vtfg) = V(f)\i(g) • Hence there is xQ t X such that

/ ( x Q ) = \i[f) for / € C(X) ; tha t i s , y = e . Because y was chosen

t o be maximal, a;Q € exX (Phelps [ 7 7 ] , p . 8 ) ; and for / € A(x) ,

f(x) = y ( f ) = f[xQ} • Hence a; = xQ € exX so t h a t exF cFn exX . We
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deduce exF = F n exX .

COROLLARY 2.5. A semigroup S is extremely left amenable if and

only if S is left amenable and each element of S has a right zero.

Proof. If 5 is extremely left amenable, Granirer [8] has shown that

any finite subset of 5 has a common right zero. Hence each element of 5

has a right zero. Conversely, apply Theorem 2.1*. For X take the means

on Lx . Represent S as a semigroup of continuous affine maps on X by:

s -*• l*s , s £ S . exX is the set of multiplicative means on Lm and

l*(exX) c exA" for all s Z S is clear. All the conditions of Theorem 2.k
s ™~

hold so we may deduce that y € exX exists such that l*V - V for all
s

s d S . But this simply says that 5 is extremely left amenable.

REMARKS. (l) In view of the characterizations in [S] and [J3],

p. 66, the result of the corollary is that a semigroup has the common fixed

point property on compacta if and only if it has the individual fixed point

property on any set and the common fixed point property (continuous affine

maps) on compact convex sets. There are many semigroups in which each

element has a right zero but which are not left amenable. For example, for

each natural number n , let S be the semigroup of continuous maps from

the closed unit sphere of Euclidean M-space into itself. The Brouwer

fixed point theorem ensures that each element of S has a right zero.

However, S is obviously not extremely left amenable. It follows that

S is not left amenable, n = 1, 2, 3

(2) The conditions of Theorem 2.U are fulfilled if 5 is extremely

left amenable, X is a simplex and s(exX) c exX . The conclusion

exF = F n exX then extends the main result of MitchelI [/?] and Theorem 6

(b) of Granirer [9].

3. Topological properties of exF

The action of S on X is said to be weakly'almost periodic if for

each f € C(X) , if o s : s i S) is relatively weakly compact in C{X) .

We introduce Mo , the set of maximal measures in p{X) . Define

Io = I n Mo . r : p(X) •* X denotes the resultant map, and it is
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continuous. We give conditions which ensure that P is a Choquet simplex.

We are also interested in the way in which the properties of exX

influence those of exF .

THEOREM 3.1. Suppose that X is a Choquet simplex and that S is

left near thick in S . Then F is a Choquet simplex.

Proof. The resultant map r : Jo •*• F is injective and by Lemma 2.2

it is also onto F . r is also affine so that F will be a Choquet

simplex if Io is a Choquet simplex. Let

A, u € Jo = (oty : a > 0, y € Io) . Then A, u € J = {ay : a > 0, y 6 1}

and J is a simplex (Phelps L171, p. 80). Let yQ be the greatest lower

bound in I of X, u € I . Then it follows from £77], p. 65, that YQ

is maximal (since Y_ 5 A in the usual ordering). So y f Jo and we

immediately see that Yo is "the greatest lower bound of A, p in Io .

Hence Io is a simplex. By our earlier remarks, F is a simplex.

LEMMA 3.2. Let exX be a K-Bovel set in X . Then Mo is a

K-Borel set in p(X) . (Of course p(X) has the weak* topology in which

it is a compact Hausdorff space.)

Proof. We introduce the family A whose elements are Borel subsets

of X . We define a Borel set A in X to be in A if and only if for

each real a , {y € p{X) : ]i(A) > a} is £-Borel in p(X) . If A c X

is compact then {\i € p(X) : v(A) 2 a} is compact in p(X) for all real

a . Hence A contains the compact subsets of X .

Now let (A.) be a sequence in A such that A . •V A . Then

{u € p(X) : U(A) 2 a} is simply fl Ui € p(X) : y(^) > oA , which is

X-Borel as A. € A for all i . If (B .) is a sequence in A with

Bi + B , for each (m, n) define tf^ ^ = hi t p{X) : v[B^ > a - M .

Since (M € p U ) : p(B) 2 a} is just fl U K, A , which is X-Borel
n=l lffl=n vm'n;J

as S. € A , we must have B f A ,
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We have now shown that A contains compact sets and is closed under

countable increasing unions and countable decreasing intersections.

Because the compact sets are closed under finite unions and finite

intersections it follows (in much the same way that Halmos [70] proves his

Theorem B, p. 27) that A contains the smallest family closed under

countable unions and intersections and containing the compact sets; that

is, A contains the #-Borel sets. Hence for each #-Borel set A ,

{u € p(X) : v(A) = 1} is X-Borel in p{X) . Hence

{u € p{X) : v(exX) = l} is K-Borel in p(X) . However this set is just

Mo ([77], p. 122).

THEOREM 3.3. Suppose that

(1) X is a Choquet simplex;

(2) L is left amenable;

(3) S is left near thick in S ;

(It) the action of S on X is weakly almost periodic;

(5) for y € I and f,g£ C{X) the function s •* y((/ o s)g)

belongs to L .

Then if exX is compact, exF is compact. If exX is K-Borel in X ,

exF is K-analytic in F .

Proof. We may clearly assume that F is non void. We have

Io = I n M so clearly exJ n Mo c exJo . However if p f exi"o ,

Px, u2 € I and 0 < X < 1 with u = A ^ + (l-X)y2 , then U±, P2 t Mo

(since Y € p(X) is maximal if and only if y(f-f) = 0 for all

/ i K(X) , [77], p. 6U). u 6 exlo now gives y = u = u • Hence

exJo c exJ n Mo . We deduce that exJo = exJ n Mo .

Now the proof of Theorem U.5 of [4] can be modified so that when

applied in this situation we deduce that exJ is compact. If exX is

compact, Mo = {y € p(X) : y(exJ) = l} is compact, so that exJo is

compact. Then exF , being the continuous image of exJo under the

resultant map, is compact.

If exJ is X-Borel, Lemma 3.2 gives that Mo is X-Borel. Hence

exl is X-Borel in I . exF is now X-analytic, because it is the
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continuous image of exJo under the resultant map (see [2]).

• REMARKS. The conditions of Theorem 3.3 are satisfied if G is an

equi-continuous group of affine homeomorphisms of the simplex. In this

case the role of L is played by the bounded almost periodic functions on

G - this admits a left invariant mean by [77], p. 250.
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