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1. Introduction. Considering Cauchy's functional 
equation 

f(z + z J = f(z ) + f ( z J , 
1 2 1 2 

where f(z) is an entire function of z, we have the following 
functional equation: 

(1) |f(x+iy)| = |f(x)+f(iy)|, 

where x and y are r e a l . 

R. M. Robinson [ l] proved the following interest ing 
theorem: If f(z) is regular for | z | < r, and satisfies the 
functional equation (1) for all rea l values of x and y, then 

f(z) = Az, f(z) = Asin(bz), or f(z) = Asinh(bz), 

where A and b a re constants and b is r e a l . 

In § 2 we shall give a new proof of the above theorem. 

In § 3 we shall solve the following functional equation by 
using the method of R. M. Robinson [ l ] : 

(2) |f(x+iy)| = |f(x)-f(iy)|, 

where x and y are rea l and f(z) is an entire function of z. 

In a previous paper "On Ivory's Theorem" ([2], cf. [3]) 
we discussed the functional equation Jf(x+y)-f(x-y) J = 
|f(x+y)-f(x-y) | connected with Ivory 's Theorem. In § 4 we 
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s h a l l solve two func t iona l equa t ions connec ted wi th I v o r y ' s 
T h e o r e m the second of which s h a l l be solved by applying the 
r e s u l t of § 3. 

2 . New proof of the T h e o r e m of R . M . Rob inson , 

P r o o f . We m a y a s s u m e that f(z) f c o n s t a n t . Using the 
+ 00 

p o w e r s e r i e s f(z) = S a , z P (a 4 0) in | z | < r and 
n=0 P + n P 

equat ing the t e r m s of d e g r e e 2p wi th r e s p e c t to x and y in 
(1), we have p = 1. 

Pu t t ing g(z) = L in | z | < r , we have in | z | < r 
a i 

2 3 n 
(3) g(z) = z + b z + b z + . . . +b z + . . . . 

2 3 n 

We have b = 1. We u s e induc t ion to p r o v e that b 
1 n 

(n = 1, 2, 3, . . . ) a r e r e a l . The r e s u l t i s t r u e for the i n t e g e r 1. 
Suppose tha t i t i s t r u e for 1 , 2 , 3 , . . . , m . 

Since g(z) = ^ , by (1) we have in | x + i y | < r 
a i 

(4) | g ( x + i y ) | 2 = | g ( x ) + g ( i y ) | 2 . 

By (3) we have in | x + i y | < r 

2 3 
(5) g(x+iy) = (x+iy) + b 2 (x+iy) + b 3 ( x + i y ) + . 

/ . x m i / . v i r i+1 
+ b (x+iy) + b J (x+iy + 

m m+1 

. *2 , T . . x3 (6) g(x+iy) = (x- iy) + b (x- iy) + b (x- iy) + . . . 

, 7 / • \ m , T / . Nm+1 
+ b m ( x - i y ) + b m + 1 ( x - i y ) + . . . 

2 3 
= (x- iy) + b (x- iy) + b (x- iy) + . . . 

. u / . ,m , - , . x m+l , 
+ b m ( x - x y ) + b m + 1 U - x y ) + . . . 
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where by inductive hypothesis b = b . b . = b„, . . . , b = b 
2 2 3 3 m m 

By (5), (6) the coefficient of x y in the left side of (4) is 

,-x m+1 . m + 1 . - . .r 
1 m+1 m+1 1 m+1 m+1 

Since |g(x) + g(iy) J = (g(x) + g(iy)) (g(x) + g(iy))f the coefficient 

of x y in the right side of (4) is 

(8) -ib +ib 
m+1 m+1 

Since (7) = (8), we have b t = b 
m+1 m+1 

The resu l t now follows by induction. 

If x and y a re real , then by the above resul t we have in 
|x+iy | < r 

(9) g(x+iy) = g(x-iy), 

(10) iû) = g(x), 

( ID g(iy) = g(-iy). 

By (4), (9), (10), (11) we have in | x + i y | < r 

2 
(12) g(x+iy)g(x-iy) = g (x)+g(x)g(-iy)+g(iy)g(x)+g(iy)g(-iy). 

Differentiating (12) twice with respec t to y and putting 
y = 0, by g(0) = 0 we have in jx | < r 

(13) g(x)g"(x) - g'2(x) = g"(0)g(x) - g '2(0) . 

2 
Equating the coefficients of xy of both sides of (4), we 

g l ! ( 0 ) i i 
have b = " J, * = 0. Hence by (13) we have in x < r 2 21 

(14) g(x)g"(x)-g'2(x) = - g ' 2 ( 0 ) . 

Since g(z) is a regular function of z, by the identity theorem 
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and (14) we have in jz J < r 

g ( z ) g " ( z ) - g , 2 ( z ) = - g , 2 ( 0 ) . 

Solving th is d i f f e r en t i a l equa t ion , the t h e o r e m is p r o v e d . 

3 . On the func t iona l equa t ion | f (x+iy) | = | f(x)-f(iy) | . 

In th is s e c t i o n we s h a l l so lve the func t iona l equa t ion 

(2) |f(x+iy)j = | f (x ) - f ( iy ) | , 

w h e r e x and y a r e r e a l and f(z) i s a r e g u l a r funct ion of z . 

T H E O R E M 1. If f(z) i s r e g u l a r for | z | < r , and 
s a t i s f i e s the func t iona l equa t ion (2) for a l l r e a l v a l u e s of x and . 
y, then the so lu t ions of (2) a r e the following and only t h e s e : 

2 
f(z) = Az+Bz , 

or f(z) = As inaz + B c o s a z - B , 

or f(z) = As inh^z + B c o s h a z - B , 

w h e r e A, B a r e a r b i t r a r y c o m p l e x c o n s t a n t s and a. i s an 
a r b i t r a r y r e a l c o n s t a n t . 

P r o o f . By (2) we have in j z | < r 

(15) | f ( x + i y ) | 2 = | f ( x ) - f ( i y ) | 2 , 

w h e r e x, y a r e r e a l . We m a y a s s u m e tha t f(z) ^ 0. 

+00 

Using the power s e r i e s f(z) = 2 a zr (a 4 0 
n = 0 P + n ? 

w h e r e p i s a n a t u r a l n u m b e r ) in | z | < r and equat ing the t e r m s 
of d e g r e e 2p wi th r e s p e c t to x and y in (15), we have p = 1. 

f (z) 
Pu t t ing g(z) = in |z J < r , we have in |z | < r 

a 
1 

(16) g(z) = z + b z + b 0 z + . . . + b z + . . . . 
2 3 n 

By (15) we have in |z I < r 
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(17) g(z)g(z) = ( g ( ^ ) . g ( - £ ^ ) ) ( g ( ^ ) - g ( ^ ) ) . 

3_ 
Subs t i tu t ing (16) in (17) and equat ing the coef f ic ien ts of z z of 
both s i d e s , we have 

Hence we h a v e b = b . Hence b i s r e a l . 

Subs t i tu t ing (16) in (17) and equat ing the coef f ic ien ts of 
n_ of both s i d e s for n > 3, we have 

z z 

2 n - l _ n 

— b = P (b , b , b , . . . , b , b b , b , . . . , b ) , 
^ n - 1 n 2 3 4 n - 1 2 3 4 n - 1 

w h e r e n(> 3) i s even and P i s a p o l y n o m i a l in the e a r l i e r 
coef f ic ien ts b ^ ; b ^ , b , . . . , b , b , b , b , . . . , b , and 

2 3 4 n - 1 2 3 4 n - 1 

-2 ^ b - - ^ b = P ( b ? , b b . . . , b b b b . . , b ), 
n - 1 n n - 1 n 2 3 4 n - 1 <: 3 ** ^ J. 

ù £> 

w h e r e n( > 3) i s odd, and P i s a p o l y n o m i a l in the e a r l i e r 
coef f ic ien ts b_ , b , b , . . . , b , b , b 0 , b , . . . , b . 

2 3 4 n - 1 2 3 4 n - 1 

Since 2 n ~ 1 - n 4 0 ( > 0), 2 n ~ 1 - ( n + l ) 4 0 ( > 0) and 
n - 1 

2 - ( n - 1 ) 4 0 ( > 0) for n > 3 the r e m a i n i n g coef f ic ien ts 
b (n > 3) a r e un ique ly d e t e r m i n e d in t e r m s of b , b w h e r e 

n 2 3 
b i s r e a l . 

On the o t h e r hand 
b b 

1 /—7— 2 2 
g ( 2 ) = — — — sin N/ - 6b z + —— cos \l - 6b z ^ ^ 6 b - 3 3 b 3 3 3 b 3 

2 3 
= z + b z + b z + . . . , 

b b 
2 , rrr- 2 or g(z) = s inh \ / 6b z + —— c o s h \l 6b z -

*/6bT 3 3 b 3 3 3 b 3 

477 

https://doi.org/10.4153/CMB-1966-058-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-058-x


2 3 
= z + b z + b„z + . . . , 

2 3 

2 
or g(z) = z + b z , 

respect ively, are normalized solutions of the functional equation 
|g(x+iy)| = |g(x) - g(iy) | , if b is negative or positive or 0. 

Since the remain ing coefficients b (n > 3) are uniquely 
n 

determined in t e rms of b , b , there can be no other normalized 

solutions. Thus the theorem is proved. 
4. On Ivory 's Theorem. In a previous paper MOn Ivory 's 

Theorem" ([2], cf. [3]) we discussed the functional equation 
|f(x+y)-f (x-y) | = |f(x+y) - f(x-y) j connected with Ivory 's Theorem. 
In this section we shall solve two functional equations connected 
with Ivory's Theorem. 

LEMMA. If H(z) is one-valued and regular in | z | < 6 

where ô is a positive constant and A(t) = JH(te ) | where 
t, cp {cp fixed) are rea l , then we have 

A1 '(0) = 2Re(e y I T '(0)H(0) + 4e Y H" '(0) H'(0)) + 6 |H"(0) j \ 

Proof. Since this is easy, we omit i t . 

THEOREM 2. Let us assume that ABCD is an a rb i t r a ry 
rectangle (whose sides are para l le l to the coordinate axes) with 

the constant intersect ing angle 2<p (0 < cp < — ) of the two diago

na ls . We put A' = f(A), B ! = f(B), C = f(C), D' = f(D) where 

W = f(z) is an entire function of z. If A ' C = B'D' in the 
2 

W-plane for all such A, B, C, D, then f(z) = az + bz + c or 
f(z) = asin(ciz) + bcos (oz) + c or f(z) = asinh(oz) + bcosh(oz) + c 
where a, b, c are a rb i t r a ry complex constants and a is an 
a rb i t r a ry r ea l constant, and only these . 

Proof. By the condition A1 C1 = B 'D' we have the 
following functional equation: 

(18) Iflx+te1^) - ffx-te1*) | = |f (x+te"1*' ) - f (x-te" i<P ) | , 

where x is an a rb i t r a ry complex number and t is an a rb i t r a ry 
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r ea l number , {cp is a r ea l constant with 0< <p < ~r . ) 

By (18) we have 

(19) Iftx+te1*) - f ( x - t e ^ ) | 2 = Iffx+te"1*) - f ( x - t e ' 1 * ) | 2 . 

Differentiating (19) four t imes with respect to t and 
putting t = 0, by the above Lemma we have 

2Re(l6e2lÇ?f f ! î (x)V~(xj) = 2Re(l6e"2 l Ç ?f" ' (x)PTxJ) . 

Hence, by sin 2 <p j 0 we have 

(20) Im(f,M {x)F(x)) = 0. 

We may assume that f(x) f 0. Then there exists a 
vicinity V where f(x) j 0. Hence, by (20) we have in V 

^ ( "T(x ) ) = 0-

Hence, we have in V 

(21) i ^ ^ = K 

where K is a r ea l constant. 

Solving this differential equation (21), the theorem is 
proved. 

THEOREM 3. Let us assume that AB CD is an a rb i t r a ry 
rectangle (whose sides are para l le l to the coordinate axes) and 
one of four ver t ices A, B, C, D is a fixed point which r e p r e 
sents a complex constant y . We put A1 = f(A), B' = f(B), 
CT - f(C), D* = f(D) where W = f(z) is an entire function of z. 
If A'C ! = B'D' in the W-plane for ail such A, B, C, D, then 

2 
f(z) = az + bz + c or f(z) = asinorz + bcosaz 4- c or f(z) = 
asinhaz +bcoshaz + c where a, b, c are a rb i t r a ry complex 
constants and car is an a rb i t ra ry rea l constant, and only these . 

Proof. By the condition A'C' = B'D1 we have the 
following functional equation: 

(22) | f ( y + x + i y ) - f (y ) | = | f (v+x) - f ( \ + i y ) | , 
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where x, y a re r e a l . Putting g(z) = f( y + z) - f( y ), by (22) we 
have 

(23) |g(x+iy)| = |g(x) - g(iy) | , 

where x, y are r e a l . By (23) and Theorem 1 in § 3 the theorem 
is proved. 
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