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Compositional Simulation with the AD-OO Framework

olav møyner

Abstract

The compositional module in the MATLAB Reservoir Simulation Toolbox (MRST)
implements two different formulations of a three-phase compositional system that
consists of a pair of multicomponent phases and an optional immisicible phase.
In petroleum engineering, the aqueous phase is taken to be immiscible and the
hydrocarbon liquid and vapor phases are governed by an equation of state (EoS).
The overall composition formulation uses pressure and overall mole fractions
as primary variables, whereas the natural variable formulation relies on solving
for phase mole fractions and phase saturations simultaneously. Thermodynamic
behavior is modeled using K-values or a (standard) cubic EoS. In the chapter, you
will learn about the model equations, choice of primary variables, and numerical
strategies for solving the thermodynamic problem, alone or coupled to the flow
equations. We discuss details of the implementation, which builds upon the object-
oriented, automatic differentiation (AD-OO) framework and utilizes state functions
and generic model classes for increased modularity. We also present a few relatively
simple simulation examples to illustrate typical behavior and teach you how to set
up simulation cases yourself.

8.1 Introduction

The predominant approach to simulate recovery of hydrocarbons from the subsur-
face has been to use a black-oil-type model in which chemical hydrocarbon species
are lumped into into two pseudocomponents, gas or oil, depending on whether
the species are found in gaseous or liquid form at standard surface conditions. At
reservoir conditions, the two pseudocomponents generally form a gaseous/vapor
phase and an oleic liquid phase. To describe the pressure–volume–temperature
(PVT) behavior of the two fluid phases and the distribution of the oil and gas
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components across these two phases one uses correlations and/or (tabulated) data,
which are interpolated as functions of pressure. In the MATLAB Reservoir Simula-
tion Toolbox (MRST), such models have been implemented in the ad-blackoil
module, which constitutes an important part of the object-oriented, automatic dif-
ferentiation (AD-OO) simulator framework, as described in detail in the first MRST
textbook [21].

For many recovery processes, and miscibility flooding in particular, black-oil-
type models are not sufficient to describe important flow physics. Instead, one needs
to represent how individual hydrocarbon species (or a larger set of lumped species,
and possibly other nonhydrocarbon reservoir gases like carbon dioxide, nitrogen,
and solvents) flow as two or more hydrocarbon phases and exchange components
across these phases. In compositional simulation, one therefore simultaneously
studies the coupled process of multiphase flow, multicomponent transport, and
thermodynamics at the high-pressure, high-temperature conditions typically found
in the hydrocarbon-bearing layers of the subsurface. Compositional flow simulation
is also needed in other subsurface applications like CO2 storage, geothermal energy,
hydrosystem engineering, subsurface contamination and remediation, etc., particu-
larly when accurate description of dissolution and mixing processes is important to
understand and predict the flow system.

Compositional simulation generally uses an equation of state to compute equilib-
rium compositions and densities of the individual chemical components that make
up the fluid system. Once these are known, other necessary fluid properties can
be computed using known correlations and/or interpolated as a function of pressure
from tabulated black-oil fluid models. As such, compositional simulation is the
most mechanistically correct description of a multiphase, multicomponent system.
Simpler models like black-oil and immiscible flow equations can be shown to be
special cases that can be represented within the general compositional framework.
One particular challenge with black-oil-type models is that one can easily end
up with an inconsistent and incorrect description of the phase behavior if PVT
properties are extrapolated outside their intended domain of validity (see, e.g.,
subsection 11.8.3 in the MRST textbook [21]). Provided that the equation of state
is properly tuned to experimental data, a compositional model can predict the
correct phase behavior, for both miscible and immiscible conditions. By utilizing
the optional prediction of densities and phase behavior from an equation of state
(EoS), it is generally easier to formulate a consistent and accurate description of a
complex multiphase flow problem using a compositional formulation than with a
black-oil equation. Compositional simulations are thus often used to run fine-scale
reference simulations to generate the tabulated data necessary for the simplified
PVT description of a black-oil model. In many cases, compositional simulators also
include the effects of interfacial tension, molecular diffusion, convective dispersion,
and nonisothermal conditions.
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The improved physical realism of a compositional simulation has a price. As
you will see in some of the examples discussed later in this chapter, compositional
systems tend to contain a complex combination of waves (shocks, rarefactions,
and contact discontinuities) that must be resolved to predict displacement and fluid
injection/recovery accurately. Among these, it is particularly challenging to resolve
linear or weakly nonlinear waves, which typically require (very) high grid resolu-
tion (or higher-order discretizations) to avoid excessive smearing, as also discussed
in Chapter 7. The second disadvantage of compositional simulators is that they
are computationally expensive. Even without extra grid resolution, a compositional
simulation will generally contain many more unknowns per cell than a black-oil
simulator and thus incur significantly higher computational cost. Coupling of flow
and thermodynamics can also introduce severe nonlinearities that result in slow
iterative convergence. It is therefore important to develop numerical formulations
that reduce the number of nonlinear iterations and their cost as much as possible.
A key to this end is the choice of primary unknowns, for which there are many
possibilities.

The compositional module in MRST implements a standard three-phase com-
positional model, consisting, by default, of two multicomponent phases (vapor and
liquid) and one immiscible phase. In this chapter, we will introduce you to the
governing flow and thermodynamics equations for the two-phase multicomponent
part and discuss the numerical procedures used to solve the thermodynamic equa-
tions both as a standalone problem and as part of a coupled flow–thermodynamics
system. We also present a set of illustrative numerical examples and describe how
the equations and numerical algorithms are implemented in the AD-OO framework
of MRST using the generic model classes and the state functions introduced in
Chapter 5. To benefit from the discussions of implementation details, you should be
familiar with the AD-OO framework and conventions used therein and preferably
have read Chapters 8, 11, and 12 from the MRST textbook as well as chapter 5
herein.

8.2 Governing Equations

A compositional model for multiphase flow enables you to track numerous species
that make up different fluid phases. In the following description, we limit our
discussion to the case of two-phase liquid–vapor flow, for which a system of N

individual species is described. We note that the MRST implementation also sup-
ports the optional inclusion of an additional immiscible phase, but because this
additional pseudo-component does not interact with the EoS, we omit it from the
discussion herein.
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Each species can exist in both the liquid and vapor phases. We denote the molar
fraction of component i in the liquid and vapor phases as xi and yi , respectively.
The overall mole fraction of a component is denoted zi . We can then relate the three
via the liquid- and vapor-phase mole fractions L and V ,

xiL+ yiV = zi, L+ V = 1. (8.1)

8.2.1 Basic Flow Equations

Our starting point is the general form of the discrete conservation equation defined
in each cell of a computational grid for a system made up of N components,

Mn+1
i − Mn

i

�tn
+ div(Vi) − Qi = 0, i ∈ {1, . . . ,N}. (8.2)

Here, the vectors Mi and Qi have one entry per cell, whereas Vi has one entry per
interface in the grid. This equation was also discussed in Chapter 5, and you may
recall that div denotes a discrete version of the divergence operator that essentially
summarizes flux contributions over all faces delimiting each cell; this operator is
defined more precisely in subsection 4.4.2 of the MRST textbook [21].

To define the total cell mass Mi and total mass flux Vi for each component, we
take the sum over the two phases and introduce the mass fractions Xi and Y i ,

Mi = �
(
ρ�S�Xi + ρvSvY i

)
, Vi = −Tf

(
λ

f

i,��� + λ
f

i,v�v

)
. (8.3)

Here, ρα, Sα, and �α denote the density, saturation, and phase potential of phase
α; λ

f

i,α is the component mobility, evaluated at the cell interfaces; � is the cell-wise
pore volume; and Tf is the vector (or matrix) of intercell transmissibilities.

We can relate the mass fractions to the mole fractions via the molar masses mi as
Xi = mixi/

(∑N
i mixi

)
. To solve the system (8.2)–(8.3), we have to know the phase

saturations and the N mole fractions for both phases. In addition, the flow potential
and any dependence on the pressure for densities will require knowledge of both
phase pressures. Additional closure relations can be introduced by assuming that
the fractions sum up to unity and that the liquid pressure is the reference pressure,

N∑
i

xi = 1,
N∑
i

yi = 1, S� + Sv = 1, pv = p� + pcv�. (8.4)

If we consider a single cell so that the phase state is uniquely defined, we see that
after eliminating one variable from each of these relations, we need to at least solve
for 2(N − 1) mole fractions, the reference pressure, and one saturation, giving a
total of 2N unknown variables. If we also make the assumption that we are under
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single-phase conditions – i.e., that S� = 0 or Sv = 0 – the number of unknowns
reduces to N variables from the requirement that the phase mobility is zero for
zero saturation. We have so far only introduced the N governing equations in the
form of mass conservation, indicating that we will have to introduce additional
relationships for the system to be well posed if both phases are present.

8.2.2 Thermodynamics

To determine the composition of a multicomponent hydrocarbon system at a given
pressure, one must first determine whether the system exists in a single-phase or
two-phase state. This is either done by using a so-called phase stability test [26]
or a saturation–pressure calculation [28]. When the system is in a two-phase state,
molecules will continuously vaporize from the liquid phase and condense from
the vapor phase. If the phases are not in equilibrium, pressures and temperature
may differ between the phases and chemical species will condense and vapor-
ize at different rates. Given enough time, however, the two phases will reach a
state of thermal equilibrium (same temperatures), mechanical equilibrium (same
pressures), and chemical equilibrium (condensation rate equals vaporization rate
for all chemical species).

The exact degree to which each component appears in each of the two phases at
equilibrium is key to the behavior of the system and depends in the most general
case on pressure, temperature, and the other components present. The problem of
splitting a total composition into phase compositions (i.e., determining xi , yi , and
L or V from known zi values) is referred to as a flash calculation [27] and can be
carried out using two different approaches.

K-value Methods

The simplest approach to calculate the compositions of each phase is to assume that
components partition across phases according to a fixed ratio; i.e., we introduce so-
called equilibrium constants Ki that relate the phase mole fractions to each other
[9]. The K-values are usually assumed to be functions of pressure and temperature
only, and the relationship Kixi = yi can be derived from the isofugacity condition,
which we will come back to shortly when discussing equations of state. This linear
form is convenient if the molecular makeup of each phase is tabulated (e.g., from an
experiment), but K-values can also be obtained from various correlations. When the
K-values also depend on the solution variables, the name “equilibrium constant” is
somewhat misleading and it is more natural to refer to the values as just K-values.

The K-value approach is implemented in most commercial compositional
simulators. In isothermal simulations, the K-values are usually set to depend on
pressure only, and this approach is adequate for displacement problems in which the
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true K-values are weak functions of composition [9, 13]. For thermal simulation,
the K-values depend on pressure and temperature and may also include liquid–
liquid interactions to account for the fact that hydrocarbon components can
dissolve in the water phase; see, e.g., [56]. A motivation for introducing K-values
is that it separates the flow equations from the phase-equilibrium equations during
the nonlinear iteration process. This simplifies the phase stability test and can
significantly speed up the computations. The main disadvantage is that the
K-values typically do not account for dependencies on composition and do not
provide a way to evaluate compressibility factors on their own.

Equation of State Methods

When a suitable EoS is known (these will be discussed more in Subsection 8.3.4),
we can instead minimize the Gibbs free energy [14] of the system:

G(p,T ) = U + pV + T S. (8.5)

Here, G is the free energy as a function of internal energy U , pressure p, volume V ,
temperature T , and entropy S [51]. In the context of a mixture described by mole
fractions and fugacities as a function of pressure, temperature, and mole fractions,
we can simplify the expression of the Gibbs free energy to known quantities, here
in the normalized form [51]:

g∗ = G/RT =
N∑

i=1

zi ln fi(z,p,T ). (8.6)

Though it is possible to minimize the Gibbs energy directly as an unconstrained
optimization problem (see, e.g., [47]), most simulators instead work with the first-
order conditions for chemical equilibrium. To do so, we simply replace the K-value
condition with the implicit relationship fi� = fiv, which requires that the fugacity
of the component in the liquid phase is equal to the fugacity of the component in
the vapor phase. In the limit of an ideal gas, the component fugacity is equal to
the partial pressure, and in general the fugacity can be considered as a chemical
potential that measures the tendency of a species to escape from one phase to
another. The isofugacity constraint implies equality of chemical potential between
the two phases, a necessary condition for chemical equilibrium. In practice, when
allowed general dependence on all solution variables, K-values and fugacities can
produce exactly the same system behavior. In summary, the full set of so-called
flash equations can be written as a system of 2N + 1 equations: first, N equations
for chemical equilibrium, choosing one of the two forms:

Ei = 0, Ei =
{

Kixi − yi, (for K-values),

fi� − fiv, (for isofugacity),
(8.7)
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and then N + 1 additional closures for molar balance between the phases:

Bi = xiL+ yi(1 − L) − zi = 0, (8.8)

C =
N∑

i=1

(xi − yi) = 0. (8.9)

We can summarize the flash problem by defining a set of N fixed variables η ∈
R

N together with the set of flash primary variables β ∈ R
2N+1 under isothermal

conditions so that the flash itself is then the solution of the system:

G(η,β) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1(η,β)

...

EN(η,β)

B1(η,β)

...

BN(η,β)

C(β)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0, η =

⎡⎢⎢⎢⎣
p

z1
...

zN−1

⎤⎥⎥⎥⎦ , β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L

x1
...

xN

y1
...

yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.10)

Altogether, these equations are solved for 2N liquid and vapor mole fractions
together with the liquid mole fraction L.

8.3 Solving the Flash Problem

As a prelude to describing the coupled problem of both flow and thermodynamic
equilibrium, we will first describe the process for solving only the local equilibrium.
The example introToVaporLiquidEquilibrium used throughout this section
demonstrates many of the techniques in some detail. In much of the following, we
are primarily concerned with the two-phase state in which both liquid and vapor
are present.

8.3.1 Rachford–Rice: Determination of Vapor–Liquid Equilibrium

Let us for a moment assume that we know the K-values and would like to find the
liquid fraction so that both the K-value relation (8.7) and the overall mole balance
(8.1) are fulfilled. By combining the two relations and solving for either xi or yi

and taking the sum over all components, we can obtain a pair of objective functions
for the vapor–liquid equilibrium (VLE),
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O1 =
N∑

i=1

zi

1 + V (Ki − 1)
− 1 and O2 =

N∑
i=1

Kizi

1 + V (Ki − 1)
− 1. (8.11)

We could attempt to use the standard Newton machinery to solve either O1(V )= 0
or O2(V ) = 0 for V as a primary variable. Unfortunately, neither function is
monotone in terms of the vapor fraction V and Newton’s method does not easily
converge. Taking the difference between the two objective functions was suggested
in 1952 in a seminal single-page paper by Rachford and Rice [42], which results in
the eponymous Rachford–Rice objective function,

O2 −O1 = ORR =
N∑

i=1

(Ki − 1)zi

1 + V (Ki − 1)
. (8.12)

This function is locally monotone away from the N singularities located at V =
1/(1 − Ki). The solution is found in the interval [(1 − Kmax)

−1,(1 − Kmin)
−1]

(see [52]) and can be solved by Newton’s method. If the Newton update brings the
value outside the solution interval, an unconditional root-finding solver is used; in
MRST, we use a simple bisection algorithm. A converged value for V outside of
(0,1) indicates a single-phase condition.

As an example, we can think of a two-component system made up of heavy (h)
and light (l) molecules so that Kh = 1/10,Kl = 10: Under two-phase conditions,
the heavy component will mostly be present in the liquid phase, with one mole in
the vapor phase for every 10 moles in the liquid. The light component reverses the
situation, with one out of 11 molecules ending up in the liquid phase. In MRST, the
solveRachfordRice function solves the objective function for given K-values.
We span the range of possible mole fractions for the light component and solve the
objective function:

n = 50; % Number of samples
K = [0.1, 10]; % First component is heavy, second is light
z_light = linspace(0, 1, n)'; % Go from 0 -> 1
L = solveRachfordRiceVLE([], K, [1 - z_light, z_light]); % No initial guess

The vapor mole fraction is plotted in Figure 8.1. We observe a linear increase from
zl = 0.1 to zl = 0.9. If the mole fractions of each component are equal to the
corresponding K-values, we get a trivial (pure liquid or vapor) solution. The three
objective functions O1, O2, and ORR are plotted together for varying values of V

for zl = zh = 0.5 in Figure 8.2. We observe that the Rachford–Rice function is
indeed monotone in the physically meaningful interval V ∈ [0,1], whereas O1 and
O2 are mirror opposites with nonmonotone regions. The minima of O1 and O2

coincide, and ORR takes on the expected zero value at this point.
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Figure 8.1 Vapor mole fraction V as function of the overall mole fraction of the
light fluid in a system consisting of a light and a heavy species with K-values of
10 and 0.1, respectively.
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Figure 8.2 Plot of the objective functions O1 and O2 from (8.11) and ORR from
(8.12) as a function of vapor mole fraction V at zl = zh = 0.5 for the system with
light and heavy species with equilibrium values of 10 and 0.1, respectively.

8.3.2 Updating the Thermodynamic Equilibrium

If we know both the K-values and suitable relationships for the density of each
phase as a function of composition, Rachford–Rice is a sufficient implementation
of VLE for the solution of two-phase flow. If we want to use the local equilibrium
of some EoS to predict density and K-values, we require additional constraints in
the form of the isofugacity condition (8.7) that defines the K-values at equilibrium.

Let us define a suitable flash problem before we detail the solution process used.
We use the TableCompositionalMixture class to instantiate a three-component
mixture with each species given by name. The class supports 122 named properties,
for which the tables were generated by the CoolProp library1 [3]

1 Valid component names are listed by calling TableCompositionalMixture.getFluidList.

https://doi.org/10.1017/9781009019781.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.014


Compositional Simulation with the AD-OO Framework 333

mixture = TableCompositionalMixture({'CarbonDioxide', 'Methane', 'n-Decane'});
disp(mixture)

TableCompositionalMixture:

3 component mixture (CoolProp - Tabulated):

Name | p_c [Pa] | T_c [K] | V_c [m^3] | acf | mw [kg/mol]

--------------------------------------------------------------------

CarbonDioxide | 7.38e+06 | 304.1 K | 9.412e-05 | 0.224 | 0.0440098

Methane | 4.60e+06 | 190.6 K | 9.863e-05 | 0.011 | 0.0160428

n-Decane | 2.10e+06 | 617.7 K | 6.098e-04 | 0.488 | 0.1422817

--------------------------------------------------------------------

No non-zero binary interaction coefficients.

The custom disp implementation provides us an overview of how the mixture is
specified: pressure (p_c), temperature (T_c), and volume of a single mole (V_c) at
the critical point, together with acentric factors (acf) that account for a deviation
from a spherical shape and the mass per mole or molecular weight (mw). This high-
lights one attractive aspect of compositional models, for which a limited number of
clearly understandable quantities replace complex tables for PVT behavior.

We next set up an EoS class instance, specifying the Peng–Robinson (PR) EoS:

peng_robinson = EquationOfStateModel([], mixture, 'Peng-Robinson');

The EoS is derived from PhysicalModel and mostly uses the standard AD-OO
features to define the flash problem. The first argument to the constructor is
normally used to specify the computational grid the model is defined over, which
we do not need to specify here, because we are not going to use the class instance
for flow simulation. Note that the flash equations require all components to
have compositions above zero. The EoS class therefore contains the property
minimumComposition that defaults to 10−8.

We can perform a flash either by setting up a state and calling solveTimestep

with a nonlinear solver or by using a convenience function that does this for us:

[L, x, y] = standaloneFlash(25*barsa, (273.15 + 30)*Kelvin, c, peng_robinson);

The inputs are the pressure and temperature given as either a single value or as
one value per composition, the overall mole fraction as a matrix with one column
per composition, and the EoS itself. We create a matrix c that contains varying
combinations of the three components. We limit the output to the liquid mole
fraction and the phase mole fractions. The routine can also produce compressibility
factors and densities if additional outputs are requested.

We plot the resulting liquid fraction in the ternary diagram in Figure 8.3. We
observe that, under the specified conditions, the EoS predicts that no mixture only
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Figure 8.3 Ternary diagram of liquid fraction for a system consisting of carbon
dioxide (CO2), methane (C1H4), and n-decane (C10H22), predicted by the PR EoS
with properties generated by CoolProp.

composed of the light components CO2 and C1H4 will be able to form a liquid
phase. On the other end, mixtures that are made up of mostly the heavier C10H22

component are single-phase liquids, with the lighter components fully dissolved.
We now switch to another mixture taken from the benchmark suite included with

MRST. We get the mixture from the Fifth SPE Comparative Solution Project [18]
by name together with information about the initial conditions from the paper and
display the mixture:

[spe5, info] = getBenchmarkMixture('spe5');
disp(spe5)

CompositionalMixture:

6 component mixture (SPE5 benchmark):
Name | p_c [Pa] | T_c [K] | V_c [m^3] | acf | mw [kg/mol]
-----------------------------------------------------------
C1 | 4.60e+06 | 190.6 K | 9.978e-05 | 0.013 | 0.0160400
C3 | 4.25e+06 | 369.8 K | 2.004e-04 | 0.152 | 0.0441000
C6 | 3.01e+06 | 507.4 K | 3.697e-04 | 0.301 | 0.0861800
C10 | 2.10e+06 | 617.7 K | 6.297e-04 | 0.488 | 0.1422900
C15 | 1.38e+06 | 705.6 K | 1.042e-03 | 0.650 | 0.2060000
C20 | 1.12e+06 | 766.7 K | 1.341e-03 | 0.850 | 0.2820000
-----------------------------------------------------------
Binary interaction coefficients:

0 0 0 0 0.0500 0.0500
0 0 0 0 0.0050 0.0050
0 0 0 0 0 0
0 0 0 0 0 0

0.0500 0.0050 0 0 0 0
0.0500 0.0050 0 0 0 0
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Liquid fraction SSI iterations

Figure 8.4 The left plot shows the p/T -phase diagram for the SPE 5 benchmark
mixture. The right plot shows the number of successive substitution iterations
necessary to compute each point in the phase diagram.

The six-component fluid includes PR binary interaction coefficients between the
lightest and heaviest components. For more than three components, visualizing
the liquid fraction as a function of compositions becomes more difficult. Another
important type of plot is the p/T -phase diagram in Figure 8.4 that displays the
phase behavior for fixed composition. (This is exactly the same type of diagram
discussed for binary substances in section 11.4 of the MRST textbook [21].) The
two-phase region is bounded below by pure liquid and above by pure vapor.
The two regions meet at the critical point, beyond which the single-phase fluid is
supercritical and the distinction between liquid and vapor is meaningless.

Now that we are familiar with the output of the flash, we turn our attention
toward how the flash is performed. The exact nature of the stepFunction in the
EoS changes based on the algorithm in use. We start off the flash by selecting an
initial guess for the K-values. Unless we already have an estimate from, e.g., a
previous solve, MRST uses Wilson’s correlation [53] from the critical pressures
and temperatures as the initial guess:

Ki ≈ pci

p
exp

[
5.37(1 + ωi)(1 − Tci/T )

]
. (8.13)

K = estimateEquilibriumWilson(eos, p, T)

From the initial guess, we can next proceed to solve for the K-values and liquid
fraction, and consequently the mass distribution in each phase.

Successive substitution iteration: The successive substitution iteration (SSI)
method is an algorithm for the VLE problem that alternates between solving
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Figure 8.5 Overview of the flash procedure. The figure demonstrates the order
of operations for flash with stability testing for all possible starting points
for the phase state (unknown, single-phase, or two-phase). The green blocks
correspond to the specific choice of successive substitution iteration to converge
the isofugacity constraints. If Newton’s method is used, the green blocks are
replaced with a single linearization that solves for both the liquid fraction and
the ratio between liquid and vapor mole fractions.

Rachford–Rice to determine the liquid fraction and updates to estimated K-values.
By observing that the fugacity ratio must be one at convergence, we can define an
update to the K-values at iteration k,

Kk+1
i = Kk

i

f�(p,T ,xk)

fv(p,T ,yk)
, xk

i =
zi

L+ (1 − L)Kk
i

, yk
i = Kk

i xk
i . (8.14)

The scheme is derivative free and exhibits first-order unconditional convergence.
SSI adjusts the component to become more vapor-like if the liquid fugacity is
larger than the vapor, and vice versa, before enforcing mass balance by solving
Rachford–Rice with the estimated K-values. The advantages of SSI are the ease of
implementation, low cost per iteration, and unconditional convergence. The disad-
vantage is that a very large number of iterations may be required near the boundary
of the two-phase region and particularly near the critical point, as seen in the right
plot of Figure 8.4. The flash procedure, starting from stability testing, is outlined in
Figure 8.5 with SSI as the method.

Newton’s method: We could also treat the system (8.7) together with (8.8) and
(8.9) as a standard nonlinear system G(η,β) = 0 and solve it with Newton’s method
for the primary variables β. The quadratic convergence of Newton’s method is
attractive, but this method is unfortunately only conditionally convergent for this
system of equations. Assembling the Jacobian comes at some cost, especially
for systems with many components. If Newton’s method is used, the light green
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Figure 8.6 Comparison of the cost of using SSI and an adapted algorithm for the
flash calculation that switches from SSI to Newton after five iterations.

boxes in Figure 8.5 are replaced by a single simultaneous update to all quantities.
In MRST, setting the method property of the EoS model instance to 'newton'

will use Newton for all cells. The linearization of the flash equations will be
performed by the AD backend of the model, as described in Chapter 6. The
conditional convergence of Newton’s method means that this option is primarily
for testing purposes or if you know that your conditions ensure that Newton
is safe to use.

Alternative schemes: Both SSI and Newton are essentially deficient schemes for
VLE in their own way: Whereas SSI is reliable, it is slow to converge and, likewise,
whereas Newton can converge fast, it often requires stabilization techniques to do
so reliably. Altogether, this indicates that flash equations constitute a challenging
problem to solve.

The body of work on accelerating two-phase flash and extending it to multiple
phases contains many alternative techniques (for example, [32, 34, 35, 37, 41]).
Most of these techniques start from either SSI and/or Newton’s method and extend
these to accelerate convergence near the critical point. MRST includes the option
of dynamically switching to Newton’s method when an iteration threshold spec-
ified by the maxSSI property is exceeded. (At the time of writing, this is the
only accelerated method implemented in MRST.) By setting maxSSI to 5, we see
significantly improved convergence in Figure 8.6. However, each Newton iteration
is significantly more expensive and, accordingly, the total runtime with our fastest
AD backend is still higher than regular SSI. With the adaptive implementation of
the flash solver, the benefit of vectorization drops off as fewer and fewer points
remain unconverged, and the overhead inherent in any AD backend (see Figure 6.6
from Chapter 6, for instance) implies that the cost of using automatic differentiation
becomes large relative to the cost of SSI for few points. The stability test does not
use linearization and thus the cost is the same for both flashes.
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8.3.3 Phase Stability Testing

The equations used for Newton or SSI are written assuming that there are two
phases present. Normally, an equally important part of the VLE is how to efficiently
decide whether a single-phase fluid mixture will split into two phases once pressure,
temperature, and compositions have changed. This is the so-called phase stability
test from Michelsen [26]. The essence of the algorithm is to perform two partial
flashes for the overall composition z by letting x ← z (and y ← z) and then solving
to see whether a second vapor (liquid) phase can form with positive saturation. This
flash is only a partial flash, because the iterations are aborted once a conclusion
about phase state is made: Either when the solution approaches a trivial solution(∑N

i (ln Ki)
2 < εt

)
or the fugacity ratio approaches unity within the tolerance

chosen for stability. If the phase is unstable, the estimates for phase mole fractions
may be used as initial guesses for the full flash. The calling signature of the stability
test is reminiscent of that for the standalone flash:

[stable, x, y] = phaseStabilityTest(eos, z, p, T, K)

Here, K is either the K-values or an empty array if these values are to be estimated.
Additional options for tolerances and so on can be set via keyword arguments. The
first output argument, stable, contains a Boolean that signifies the stability of each
entry, and the other outputs are estimates for x and y. An alternative is to let the
flash converge to negative saturations, the so-called negative flash strategy [16, 52],
and use, e.g., compositional space adaptive tabulation as an efficient procedure to
compute a good initial guess; see [17] for details. This approach is not yet supported
in MRST.

8.3.4 Equation of State

Equations of state are thermodynamic equations relating state variables that
describe the state of fluids, mixtures of fluids, solids, etc., under given physical
conditions. In compositional simulation, these equations are used to provide con-
stitutive relationships between state variables such as mass, pressures, temperature,
and volumes at thermodynamic equilibrium. In the oil and gas industry, it is com-
mon to use so-called cubic EoS; i.e., equations that you can write as cubic functions
of the molar volume Vm = V/n = M/ρ, involving constants that depend on
pressure pc, temperature Tc, and the molar volume Vc at the critical point, at which
the following condition holds (subscript T means that temperature is held fixed):(

∂p

∂V

)
T

=
(

∂2p

∂V 2

)
T

≡ 0. (8.15)
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Cubic EoS can all be traced back to the groundbreaking Van der Waals EoS, first
proposed in 1873, and the most widespread examples within reservoir simulation
are the PR [40] and the Soave–Redlich–Kwong (SRK) [39, 46] equations and vari-
ous modifications thereof. The most basic examples are implemented in MRST, and
in the following subsections we discuss the implementation in some more detail.

Despite their widespread use, the way cubic EoS are used in reservoir engineer-
ing has some important shortcomings. These include low accuracy when modeling
complex fluid mixtures with strong molecular interactions and (large) differences in
molecular sizes, imprecise calculation of liquid densities, and a general dependence
on fitting to the critical point, which may not be well defined for all fluid systems.
In recent years, equations based on statistical associating fluid theory (SAFT) [6, 7]
have attracted much interest. To predict the effect of molecular size/shape and
hydrogen bonding on fluid properties and phase behavior, the SAFT EoS represents
molecules as spherical particles that can chain up and associate. The perturbed-
chain (PC) extension of SAFT proposed by Gross and Sadowski [15], in which the
spherical particles of the original SAFT EoS are replaced by a hard-chain fluid, has
become particularly popular. In recent work, Masoudi et al. [24, 25] used MRST to
extend PC-SAFT to also include ionic interactions (electrolyte PC-SAFT or simply
ePC-SAFT), and work is underway to include this EoS in the public release.

Cubic EoS

The flash requires the fugacities of each component in each phase. The fugacities
themselves typically need the compressibility factors also used to predict density.
We define the compressibility factor of a phase as the ratio between the volume
of the actual gas and an ideal gas under the same conditions. In an isothermal
multiphase system with a unique pressure we have

Vα = Zα

nαRT

p
, (8.16)

where V is the volume, nα is the number of moles of phase α, T is temperature,
and R is the universal gas constant. We have so far not specified how fugacities f

or compressibility factors Z are computed; the proceeding is general for any order
of EoS.

We will now specify the general cubic EoS implemented by default in MRST as
EquationOfStateModel. The name cubic refers to the highest order term of the
scalar polynomial equation for the phase compressibility factor Zα,

Z3
α + aZ2

α + bZα + c = 0. (8.17)

A specific cubic EoS is uniquely determined by the definition of the terms a,b,c as
functions of pressure, temperature, and composition for a given mixture.
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Generalized cubic EoS: The default EoS in MRST is implemented by way of
the generalized cubic form from Martin [23] that covers several well-known cubic
EoS. The notation here is the one used by Coats [10].

a =(m1 +m2 − 1)B − 1,

b =A − (m2 +m2 −m1m2)B
2 − (m1 +m2)B,

c =− (AB +m1m2B
2(B + 1)).

Here, m1 and m2 change when selecting a specific EoS. Constants A and B are both
dimensionless quantities that account for attractive and repulsive molecular forces,
respectively; A is computed with a quadratic mixing rule and B with a linear rule,
here given for the liquid phase:

A =
N∑
i,j

xixjAij, Aij = (AiAj )
1/2(1 − δij ), Ai = ωa,i

p̄i

T̄ 2
i

, (8.18)

B =
N∑
i

xiBi, Bi = ωb,i

p̄i

T̄i

p̄i = p

pc
i

, T̄i = T

T c
i

. (8.19)

To derive A and B for the vapor phase, you substitute x with y. The superscript c

refers to the static critical property (pressure or temperature) for a given species.
The reduced pressures p̄i and temperatures T̄i for each component are dimension-
less, and δij are the binary interaction coefficients between each pair of components
i and j , limited to the symmetric case δij = δji with zero diagonals, δii = 0. Binary
interaction coefficients can be tuned for a specific mixture to improve accuracy and
the coefficients are specific to the EoS in question. The coefficient matrix, unlike
the basic molecular properties, does not have a meaningful physical interpretation
and the values vary depending on the EoS used. If you are using values found in
the literature, please make sure that they were calibrated for the same EoS.

This general form of the cubic EoS makes the differences between EoS fairly
compact. For instance, if we want to work with the PR EoS [40], the following
definitions completely determine the cubic equation:

m1 = 1 +
√

2, m2 = 1 −
√

2, ωa = 0.4572355, ωb = 0.0779691,

ωa,i = ωa

[
1 + (0.37464 + 1.54226ωi − 0.26992ω2

i )(1 − T̄
1/2
i )

]2
,

ωb,i = ωb.

Solving and differentiating Zα: Now that we have defined A,B and m1,m2, we
can solve (8.17) for the compressibility factor Zα, which should be positive and
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real. MRST contains cubicPositive, a vectorized solver that finds the nonneg-
ative cubic roots. There can either be a single valid root or two. If two roots are
present, we pick the root that minimizes the Gibbs free energy (see (8.5)): Usually,
this amounts to selecting the lowest valued real candidate for the liquid phase and
the largest real value for the vapor phase. The explicit check for Gibbs energy
minimization can be disabled by setting eos.selectGibbsMinimum to false,
skipping the calculation of (8.6) for each phase in regions with multiple real roots.

Once we have the compressibility factors, we can compute fugacities and densi-
ties. From the point of view of an SSI flash, we are now done. If we want to couple
the flash to a robust flow solver or use Newton’s method, we are going to need
derivatives of Zα as well. The polynomial solver requires a number of non-AD-
compatible operations and does not provide derivatives. Obtaining the derivatives
of Zα with respect to arbitrary primary variables is instead done by differentiating
(8.17) with respect to some unknown x and rearranging the terms to find

∂Zα

∂x
= −

∂a
∂x

Z2
α + ∂b

∂x
Zα + ∂c

∂x

3Z2
α + 2Zαa + b

. (8.20)

MRST implements this through the EoS member function setZDerivatives

that inputs A and B as AD variables and Z as a double and produces Z as an
AD variable with the correct derivatives. Alternatively, we could have used the
same approach as in (8.26) to obtain the derivatives for the more general case of
noncubic EoS.

Fugacity: We can write the expression for fugacity,

ln

(
fiα

pxi

)
= ln ψi → fiα = pxi exp

(
ln ψi

)
, (8.21)

where the generalized cubic EoS yields

ln ψi = − ln(Zα − B)+ Bi

B
(Zα − 1)

+ ln

(
Zα +m2B

Zα +m1B

)
A

(m1 −m2)B

⎛⎝ 2

A

N∑
j=1

Aijxj − Bi

B

⎞⎠ .

Cubic EoS implemented in MRST: At the time of writing, the compositional
module implements four different cubic EoS. You can choose which one to use
through the last parameter of the constructor:

eos = EquationOfStateModel([], mixture, eosname);
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where eosname is either:

• 'pr' or 'peng-robinson' for the PR EoS [40],

• 'prcorr' or 'peng-robinson-corrected' for a corrected PR EoS for large
acentric factors, identical to the PRCORR keyword for ECLIPSE E300 [44],

• 'rk' or 'redlich-kwong' for Redlich–Kwong [43], and

• 'srk' or 'soave-redlich-kwong' for the SRK EoS [46].

Phase Properties

Once we have computed the Z-factors by solving the cubic EoS, we need to com-
pute various phase properties. The following subsections explain how this is done.

Density: The mass density is predicted from the pressure, temperature, compress-
ibility factor, and mole fractions by introducing the phase molar volume Ṽ to (8.16)
and weighting the reciprocal volume by the amount of mass per mole of the phase.
With the liquid phase as an example, we have

ρ� = 1

Ṽ�

N∑
i

ximi, Ṽ� = V�

n�

= RT Z�

p
−�Ṽ�, �Ṽ� =

N∑
i

xiCi . (8.22)

Here, �Ṽ� is an optional volume correction term [39] that adjusts the predicted
volume based on the composition. The advantage of the volume shift as an addi-
tional parameter per component is that it introduces additional parameters that
only impact the value of the density. Cubic equations of state can first have their
interaction coefficients adjusted to match the VLE behavior of the system, followed
by tuning of the volume shift to match observed densities of the mixtures. To use
volume shift, you should specify the volumeShift parameter for the EoS class
instance’s property model with one entry per component:

eos.PropertyModel.volumeShift = [C1, C2, C3]; % Three-component-values for rho

In addition, simulation cases set up from ECLIPSE-style input with the SSHIFT

keyword will automatically configure the property. To see how this shift works, you
can check computeMolarDensity in the CompositionalProperty

Model class.

Saturations: The phase saturations in the two-phase region can be found from
the predicted volumes

S� = V�

V� + Vv

= Z�n�RT/p

Z�n�RT/p + ZvnvRT/p
= Z�n�

Z�n� + Zvnv

. (8.23)
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If we divide by the total number of liquid and vapor moles, we obtain an expression
that only depends on the mole fraction and not on the mole numbers themselves,

S� = Z�L

Z�L+ Zv(1 − L)
. (8.24)

In a three-phase context, the saturations should be corrected by the volume occu-
pied by the phase(s) not predicted by the EoS, which are usually independent
variables. For instance, for a three-phase system in which the water phase is inde-
pendent of the EoS we write the saturations as

So = (1 − Sw)
Z�L

Z�L+ Zv(1 − L)
, Sg = 1 − So − Sw. (8.25)

Note that the predicted saturations in MRST are not impacted by the volume shift,
if present. Saturation is computed by the EoS model as part of the initialization of
the AD state at the beginning of every linearization.2

Viscosity: Viscosity is typically not predicted by the EoS, and some correlation
or table is needed together with the relative permeability to compute the mobil-
ity during flow simulations. For hydrocarbon mixtures, the Lohrenz–Bray–Clark
correlation [22] is most commonly used. Phases not governed by the EoS use the
function handle stored in the fluid struct, (e.g., muW(p)) to calculate viscosity. As
with most functional relationships in AD-OO, the viscosity is calculated through a
state function that stores computed values and associated Jacobians in the state

structure. The state function can be replaced by another user-defined function if
required. Substitution of state functions is described in detail in Chapters 5 and 7.

8.4 Coupled Flow and Thermodynamics

We have so far only considered the isolated problem of thermodynamic equilib-
rium. Though this is interesting in its own right, our primary motivation in this
book is reservoir simulation where the aforementioned relationships provide phase
behavior and property prediction for mixtures flowing in a porous medium. If for
brevity we assume that flow is driven purely by boundary conditions and source
terms, the system of equations is made up of two parts: (i) the N conservation
equations (8.2) for each component in the system and (ii) the N isofugacity or
K-value constraints (8.7) for cells in which two phases are present, in addition
to the closures in (8.9). The mass-balance equations are time dependent and the

2 The next section discusses the choice of primary variables, and you will see that saturation is a primary
variable in the so-called natural variable formulation and a dependent variable (that has an associated
Jacobian) in the so-called overall composition formulation.
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residual values in each cell depend on the fluxes in its neighbors. The flash equa-
tions are entirely local to each cell but can require a very large number of iterations
if the conditions in the cell are close to the critical point. The flash equations are
also trivial to solve under single-phase conditions. Different strategies for solving
the coupled system of equations can significantly impact the nonlinear solution
process; the governing equations are the same regardless of any strategy chosen,
and the converged solution should be the same, but the number of iterations until
convergence can be significantly impacted.

The literature contains a number of different choices for primary variables and
governing equations for compositional flow. Many of these are fundamentally sim-
ilar and only have apparent differences due to the large number of possible choices
that at a first glance may seem arbitrary; for example, whether one is solving for
liquid fraction or saturations or whether one uses mole fractions instead of mass
fractions as variables for the same set of equations. There are, however, substantial
differences in the overall strategy between what is often termed natural variables
and molar or overall composition variables. Representative versions of both of
these choices are implemented in MRST. Because MRST is a research tool, each
formulation is implemented in two different ways (see Table 8.1 on page 354): as
a relatively large monolithic class that follows the AD-OO layout described in the
MRST textbook [21] and as a much more modular implementation that utilizes
the new framework of generic model classes described in Chapter 5. Many of the
more advanced features supported by the compositional module require the use of
the latter implementation. This includes separators for surface conditions, selecting
which phase is vapor or liquid, and using different discretizations as discussed
in Chapter 5.

The two compositional formulations in MRST are essentially identical for cells
in single-phase state. The distinction between the phase mole fractions and overall
mole fraction disappears, the saturations are trivial, and we linearize and solve the
N conservation equations with η as the primary variables; i.e., pressure and N − 1
overall mole fractions. Once pressure and compositions have been updated, the
phase-stability test from Subsection 8.3.3 is performed to determine whether the
new values result in multiple phases forming. At this point, the treatment begins to
differ between the solvers.

8.4.1 Overall Composition Formulation

The overall composition formulation uses pressure p and N − 1 overall mole
fractions zi as primary variables and is an example of the class of molar formu-
lations. Many different formulations have been proposed in the literature; e.g., by
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Fussell and Fussell [13], Young and Stephenson [54], Acs et al. [1], Chien et al.
[8], and Collins et al. [11]. In the thermal case, the set of variables also includes
total enthalpy.

Primary variables: The overall composition formulation starts from the assump-
tion that the flash equations are, in some sense, more difficult to converge than
the flow equations. In this formulation, the flash equations (8.7)–(8.9) are solved
as a nested nonlinear system. This means that for every linearization of the flow
equations, the nonlinear flash system G(η,β) is solved to within the strict tolerances
expected when the system is fully converged. We can then select η as our N primary
variables for the remaining N flow equations after eliminating the closures in (8.4).
The flash in single-phase cells is limited to the stability test if the computed states
are determined to be stable. If the stability test predicts that a cell passes from
a single-phase state to a two-phase state, the computed values are used as initial
guesses to the flash, as described in Figure 8.5.

Flash derivatives: A small problem remains, because the flash does not directly
provide the derivatives of the flash outputs β (made up of phase mole fractions and
liquid mole fractions) with respect to the primary variables η of pressure and overall
mole fractions. These values can be found via implicit differentiation, assuming that
the function is sufficiently smooth so that the implicit function theorem holds:

G
(
η,β(η)

) = 0 → dG
dη

= ∂G
∂η

+ ∂G
∂β

∂β

∂η
= 0 → ∂β

∂η
= −

(
∂G
∂β

)−1
∂G
∂η

. (8.26)

This system is local to each cell and is only required in two-phase cells. In MRST,
the EoS member function getPhaseFractionDerivativesPTZ calculates the
derivatives of phase fractions with respect to pressure, temperature, and overall
compositions in all two-phase cells. If you are working with AD variables – for
instance, inside a flow solver – getPhaseFractionAsADI calls this function
and applies additional chain-rule calculations if the primary variables are different
than the pressure and mole fractions. Now that we know how to compute all
of the relevant quantities, we can summarize the overall molar composition
formulation:

1. Solve the flash problem G(η,β) = 0 for β with η kept fixed. In practice, we
solve the flash problem to within some tolerance, which must be tight to ensure
accurate derivatives in the next step.

2. Use (8.26) to obtain derivatives of the flash outputs with respect to the flow
primary variables, ∂β/∂η.
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3. Compute phase saturations (8.25) and phase mass densities (8.22). Saturations
are determined by the liquid fraction L and compressibility factors Z� and Zv.

4. Assemble the discrete residual equations (8.2) for flow in terms of pressure and
overall molar compositions (η). If the flow equations are converged, we have
achieved simultaneous convergence of both the mass-balance equations and the
flash equations and we continue to the next timestep. Otherwise, we perform
a single Newton iteration using the linearized residual and Jacobian, before
returning to step 1.

Configuration options: In addition to limits on pressure changes, the MRST
classes for overall composition can limit the maximum allowable change in overall
mole fraction with the dzMaxAbs property. The compositional base class contains
the EoS class instance in the property EOSModel. All of the options described in
Section 8.3 for the flash can be adjusted to alter the performance of the overall
composition model, for instance by switching between SSI and Newton.

Convergence criteria: The overall composition model uses standard criteria
from the base compositional model only. Convergence of the flash is determined
by the EoS model, and we thus only need to check the pressure increment
(εp relative to incTolPressure) and the mass-balance error (εm relative to
nonlinearTolerance):

‖�p‖∞
max(p)− min(p)

< εp, �t

∥∥∥∥∥ Ri∑N
j Mj

∥∥∥∥∥
∞

< εm ∀i ∈ 1, . . . ,N . (8.27)

In simulations with three phases, we exclude all cells in which S� + Sv < 10−4

from this check and assume these to be converged irrespective of residual value, to
avoid division by zero.

8.4.2 Natural Variables Formulation

In the natural variable formulation, first proposed by Coats [9], the unknowns
consist of pressures, saturations Si , and phase compositions xi and yi . In the thermal
case, the set of variables also includes temperature. Using natural variables usually
provides better nonlinear convergence for immiscible displacement cases [48].

Primary variables: In the natural variables formulation, we converge the
flow equations and the thermodynamic equilibrium simultaneously using the
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Figure 8.7 The phase transition procedure for the natural variables formulation.
Starting from either of the possible phase states (single-phase liquid in blue,
single-phase vapor in red, and two-phase in pink), the simulator can transition
to other phase states by monitoring saturation changes and mixture stability.

procedure described in Figure 8.7 for the transition between single-phase and
two-phase states. Once a single-phase cell is determined to be unstable in the
stability test, the previously absent EoS phase is set to a small value εs . Likewise,
transition to a single-phase state occurs when the saturation of the other phase
becomes negative after the Newton update. The formulation relies on solving
simultaneously for all phase mole fractions and the phase saturation by the natural
primary variable set

ηN = (p,x1, . . . ,xN−1,S�,y1, . . . ,yN−1). (8.28)

These 2N primary variables are paired with the N mass-balance equations (8.2)
and the N isofugacity or K-value constraints (8.7) before the system is linearized.

Schur complement: The resulting linearized system is twice as large as the over-
all composition system, but we can exploit the structure by noting that the last N

isofugacity equations are local to each cell and use a Schur-complement proce-
dure to express the flow equations (mass conservation) as functions of the primary
variables only. To explain the procedure, we partition the variables (8.28) into
disjoint primary and secondary sets, xp and xs . We denote the Jacobian of the
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mass balance and isofugacity residual equations as Jm∗ and Je∗, respectively, where
∗ ∈ {p,s} denotes that the derivatives are taken either with respect to xp or xs . With
this notation, we can define a Schur complement (i.e., perform a block-Gaussian
elimination) that reduces the system to an N ×N linear system:

−
[
Jmp Jms

Jep Jes

] [
�xp

�xs

]
=
[

rp

rs

]
→ (Jmp − JmsJ

−1
es Jep)�xp = rp − JmsJ

−1
es rs .

(8.29)

This system can be solved with standard constrained pressure residual-type precon-
ditioned iterative solvers described in Chapter 6. After solving for xp, the additional
values are recovered:

xs = J−1
es (rs − Jep�xp). (8.30)

The action of the inverse of Jes is required both for the reduction and for the
recovery. For this reason, MRST performs a single lower–upper factorization and
stores the factors. The Schur complement requires that Jes is invertible. This is
not the case if we use the variable ordering in (8.28) as is. We therefore reorder
the variables slightly before performing the Schur complement by swapping the
saturation with an arbitrarily chosen liquid mole fraction:

xp = (p,x1, . . . ,xN−2,S�), xs = (xN−1,y1, . . . ,yN−1). (8.31)

We also refer you to Cao [5] for an early comprehensive description of natural
variables in practice.

The Schur-complement reduction is automatically performed by MRST so that
when the linear solver calls getLinearSystem on the linearized problem (see [21,
subsection 12.3.1]), it outputs the reduced system. The eliminated variables are
also automatically recovered when storeIncrements is called inside the linear
solver (see [21, subsection 12.3.4]). You can disable this behavior by setting the
property reduceLinearSystem of your natural variable model class to false;
for example, if you wish to examine the full system.

Configuration options: The natural variables class in MRST contains several
options that alter the nonlinear behavior of the solver. These include changing
the definition of εs through saturationEpsilon, performing additional stability
tests when cells switch to single phase (checkStableTransition), as well as
deciding whether cells switching to the two-phase conditions should use a full flash
to initialize the saturations and phase molar fractions (flashFromSinglePhase).
In addition to the limits on changes for pressure and overall mole fractions present
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in the overall composition model, the natural variables model limits changes in
phase mole fractions according to dzMaxAbs and the saturation. Assuming that you
have a natural variable class object called natural, the following code overrides
the default settings:

natural.reduceLinearSystem = false; % Return full LinearizedSystemAD
natural.checkStableTransition = true; % Perform extra stability tests
natural.saturationEpsilon = 1e-8; % Max dS during phase change
natural.flashFromSinglePhase = true; % Flash for single-phase cells

We discuss the implementation of model classes in more detail in Subsection 8.4.4.

Convergence critera: In addition to the tolerances for pressure increment and
component-mass balance described in Subsection 8.4.1, the natural variables for-
mulation needs to check the fugacity values in two-phase cells:

‖(S� + Sv)(fi� − fiv)‖∞ < εf ∀i ∈ {1, . . . ,N}. (8.32)

The convergence check uses a tolerance (εf , prescribed in fugacity
Tolerance) that is scaled by barsa when tested, because the isofugacity is
given in terms of the default pressure unit of Pascal, which becomes large for
typical subsurface simulations.

8.4.3 Comparison between Different Formulations

Let us summarize the two previous subsections: The natural variable formulation
uses a variable substitution approach, in which we assemble the full nonlinear
equations (mass conservation (8.2) and isofugacity equations (8.7) with constraints
(8.9) used to eliminate one mole fraction per phase) in each cell that contains two
phases. We then use a Schur-complement technique to reduce the corresponding
linearized system for the 2N primary variables so that we can solve for only N

variables in each cell. If one of the phases disappears, one must perform a variable
switching to eliminate the corresponding saturation and reduce the overall system.
With the overall composition formulations, the flow and thermodynamic equations
are solved as a nested nonlinear system so that the nonlinear flash problem is solved
fully nonlinearly for each outer iteration on the flow equations.

In the following, we first use a single-cell problem to compare and contrast the
behavior of the two formulations before making some more general comments. We
also encourage you to consult Voskov and Tchelepi [48] for a more comprehensive
(computational) comparison of the two formulations implemented in MRST, as
well as a set of other molar formulations.
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A two-component example: The showNaturalOverall script contains a small
test case that demonstrates the difference between the two formulations in practice,
as well as how to set up the solvers. We create a single-cell problem:

G = computeGeometry(cartGrid(1)); % Single cell 1 m^3 grid
rock = makeRock(G, 0.5*darcy, 0.5);

We define a two-phase fluid and disable the 'blackoil' optional parameter to
avoid adding viscosities and shrinkage factors to the fluid struct. To aid in the
visualization of the results, we keep the model simple as a two-component water–
CO2 mixture3:

f = initSimpleADIFluid('phases', 'wg', 'blackoil', false, 'rho', [1000, 700]);
mixture = TableCompositionalMixture({'Water','CarbonDioxide'}, {'Water','CO2'})

We next define the inputs to the constructor classes. The mandatory input arguments
are the same irrespective of the choice of formulation. In the optional inputs, we set
the water and gas phases as active and set the model to use those as the liquid and
vapor phases, respectively, to obtain a two-component, two-phase model:

arg = {G, rock, f, ... % Standard arguments
mixture,... % Compositional mixture
'water', true, 'oil', false, 'gas', true,... % Water-Gas system
'liquidPhase', 'W', 'vaporPhase', 'G'}; % Water=liquid, gas=vapor

% Construct models for both formulations. Same input arguments
overall = GenericOverallCompositionModel(arg{:}); % Overall mole fractions
natural = GenericNaturalVariablesModel(arg{:}); % Natural variables

The code for setting up the initial state and boundary conditions is similar to what
you may have encountered for other multiphase problems. The only difference is
that, in addition to pressure and saturations, we need to specify the composition
and temperature:

p = 50*barsa; T = 273.15 + 30; s = []; z = [1, 0]; % p, T, s, z
bc = fluxside([], G, 'xmin', 1/day, 'sat', [0, 1]); % Flux
bc = pside(bc, G, 'xmax', p, 'sat', [0, 1]); % Standard bc
bc.components = repmat([0, 1], numel(bc.face), 1); % Boundary z
state0 = initCompositionalState(overall, p, T, s, z); % Initialize state

3 Using the default PR configuration for water–CO2 VLE without volume shift or other parameter adjustments
is somewhat questionable. For the purpose of this example, however, we simply think of the two as heavy and
light components, respectively.
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Figure 8.8 Solution paths for the natural variable and overall compositions
formulations for the single-cell problem plotted in (zw,�p) space (left) and in
(S�,�p) space (right). The color sectors in both plots represent isocontour lines
for S� = 0.1,0.2, . . . ,1.

The compositional solvers support the way of specifying standard boundary con-
ditions, source terms, and wells in MRST, provided that the components field is
added to the corresponding structures to specify inflow compositions.

Once the scenario has been set up, we solve a single timestep that brings the cell
from pure water to a condition of mostly gas. The single-cell problem is entirely
determined by the water mole fraction and the pressure difference from the bound-
ary or, equivalently, by liquid saturation and pressure difference. Figure 8.8 reports
the paths the two solution procedures take in (zw,�p) and (S�,�p) space. We
observe that both solvers initially overshoot the pressure as they transition from
the initial single-phase liquid state. The jump across the phase boundary is typical
in miscible problems, because the derivatives of the Jacobian contain disconti-
nuities at the phase boundary. For example, (8.26) means that the liquid fraction
and, by extension, the saturations have derivatives with respect to pressure in the
two-phase region but do not have any derivatives in the single-phase regions. The
second observation is that the path for the overall composition model is regular
in compositional space due to the default value of dzMaxAbs=0.1 but makes
large jumps in saturation space. For the natural variables model, the compositional
changes are small, because the limit on saturation updates (dsMaxAbs=0.1) forces
the algorithm to advance in regular saturation steps. Altogether, the overall compo-
sition model uses 10 iterations and the natural variables 12, but the numbers could
equally well have been reversed if large changes in composition had resulted in
small changes in the saturation.

The differences between the formulations are also apparent if we inspect the
convergence output in verbose mode. For natural variables, the residuals for the
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fugacity constraints are included in addition to the pressure increment and the
residual for the component-mass balances:

===============================================================
| It # | deltaP | Water | CO2 | f_Water | f_CO2 |
===============================================================
| 1 | Inf |*2.56e-15 | 1.66e+02 |*0.00e+00 |*0.00e+00 |
| 2 | 3.61e-01 | 9.95e+01 | 1.44e+02 | 3.31e-02 | 2.89e+02 |
| 3 | 5.86e-02 | 8.44e+01 | 1.48e+02 | 2.95e-02 | 2.03e+02 |

:

The fugacity residuals are exactly equal zero initially when the cell is at single-
phase conditions but become nonzero once the vapor phase appears. The fugacity
values are absent in the overall composition output, because these are handled by
the separate nonlinear solve from the EoS:

=========================================
| It # | deltaP | Water | CO2 |
=========================================
| 1 | Inf |*2.69e-16 | 1.66e+02 |
| 2 | 3.61e-01 | 8.22e+01 | 1.55e+00 |
| 3 | 1.29e-01 | 4.15e+01 | 1.02e+02 |

:

We can also examine the final state after the solution to see what the standard
outputs are for a compositional model:

disp(solMole)

:
pressure: 5.0012e+06

s: [0.0145 0.9855]
components: [0.1928 0.8072]

L: 0.1921
K: [0.0017 320.8334]

Z_V: 0.6862
Z_L: 0.0424

x: [0.9969 0.0031]
y: [0.0017 0.9983]

flag: 0
T: 303.1500
:

For brevity, we have omitted a few standard fields that are common to all states
produced in AD-OO, but we can still see the familiar pressure, temperature, and
phase saturations for each cell. In addition, we have the components field that
stores the overall mole fraction for each component, the liquid and vapor phase
mole fractions given in x and y, as well as the phase compressibility factors Z_L
and Z_V. Strictly speaking, the system is completely determined by these values,
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but we also store the K-values, the liquid mole fraction L, and the phase state as
flag to make the EoS coupling easier. In the single-phase region, the K-values
stored will be the values from the last multiphase solution in that cell, which can be
used as an initial guess if multiphase conditions occur again.

Choice of formulation: Picking the right formulation depends on the scenario
to be simulated. The advantages of the overall composition formulation should be
clear around the critical point, where a large number of local flash iterations may
otherwise impede the convergence of the global system of equations. The formu-
lation is also less involved to implement, because there are no variable switches
and the integration with new types of flash is less invasive, especially if source
code for the flash calculation is not available. The difference in implementation
complexity is readily apparent: At the time of writing, the natural variables base
class accounts for approximately 500 lines of code, whereas the overall composi-
tion code consists of less than 200 lines of code. A primary disadvantage is that
the flash can spend significant time to converge for intermediate mass distributions
in physical space, unless one uses a parameterization approach like compositional
space adaptive tabulation [49, 50]. Likewise, saturations cannot be directly relaxed
to alleviate convergence issues associated with sharp gradients in the flux functions
arising from large mobility contrasts or the form of the relative permeability curves.
Instead, the solver limits the maximum allowable overall composition change but,
as we have seen, the relationship between changes in composition and saturation
can be highly nonlinear.

The primary advantage of the natural variables formulation is that the scheme
produces a standard Newton method in the two-phase region where all variables can
be safely relaxed, a crucial feature for steep relative permeability curves and strong
capillary pressure. The Schur complement in (8.29) is analogous to the equation for
differentiation of secondary properties in (8.26) for the overall composition formu-
lation. The natural variables formulation is in practice somewhat more expensive in
terms of the total assembly cost, because additional derivatives are required for the
mass-balance equations to perform the Schur complement. As a rule of thumb, the
assembly of the full set of natural variable equations is approximately 10% more
expensive with the fastest AD backend options described in Chapter 6 for models
with more than 100 000 cells. In addition, the Schur complement must be performed
for many of the linear solvers. For further comparisons of various compositional
formulations, we refer you to Voskov and Tchelepi [48], Zaydullin et al. [56], and
references therein.
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Table 8.1 Model classes implemented in the compositional module of MRST.

Class name Formulation Note

ThreePhaseCompositionalModel — Virtual base class
OverallCompositionCompositionalModel Overall composition
NaturalVariablesCompositionalModel Natural variables
GenericOverallCompositionModel Overall composition Generic model
GenericNaturalVariablesModel Natural variables Generic model

Computer exercises

1. If the variable maxChange is declared in showNaturalOverall, the value is
used for the maximum allowable changes for saturations and compositions. How
does the path change with the value? Are there any large values for which the
solvers are unable converge?

2. We used a very simple two-component mixture. The showNaturalOverall2

example runs a similar experiment with a choice of many different mixtures
from the literature. Experiment by varying the mixture, pressure, and temper-
ature conditions. When does the natural variables formulation outperform the
overall composition formulation and vice versa?

8.4.4 Implementation as Generic Models

As explained in the introduction to this section, the compositional module offers
two different implementations of the natural variables and overall composition
formulations; see Table 8.1. The first implementation follows the principles set
out for the black-oil models in section 12.2 of the MRST textbook [21]; that is,
ThreePhaseBlackOilModel and simplified versions thereof implemented in the
ad-blackoil module. When developing similar compositional classes, we real-
ized that even though the original AD-OO framework has a lot of useful abstrac-
tions that greatly simplify the process of prototyping simulators for new types
of flow physics, describing model equations and computing fluid properties and
accumulation, flux, and source terms using large pieces of monolithic code was
not an optimal choice and made inclusion of new features unnecessarily compli-
cated. This spurred research into new approaches for further modularization, which
resulted in the new concept of state functions and generic model classes introduced
in Chapter 5.

Herein, we do not discuss the monolithic implementation in any detail; the cor-
responding model classes are considered to be legacy code but are kept as part of
the official MRST release for backward compatibility, because the generic models
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inherit functionality from them, and because they form a basis for the shale mod-
ule described in Chapter 10.

Generic compositional components: The monolithic implementation assumes
that an aqueous phase and two hydrocarbon phases (liquid and vapor) are always
present by default and uses if statements scattered throughout the code to treat
special cases when any of these phases are not present. The generic approach, on
the other hand, builds the configuration of the flow model at runtime as a collection
of individual components that each may belong to certain predefined categories
exhibiting specific behavior.

From black-oil models, we have immiscible and black-oil components (see
Subsection 5.4.2), whereas the derived models for chemical EOR introduce
the additional category of concentration components (see Subsection 7.3.3).
The compositional module introduces an additional component called
EquationOfStateComponent. To better understand the design of the com-
positional module, let us look in detail at how this component computes densities
for two phases at VLE, according to the formula:

ρi,α =

⎧⎪⎨⎪⎩
Xi,�ρ�, if α = �,

Xi,vρv, if α = v,

0, otherwise.

(8.33)

We have already presented the member function that computes this formula in
Subsection 5.4.2, but let us present it explicitly again for completeness:

function c = getComponentDensity(component, model, state, varargin)
c = component.getPhaseComposition(model, state, varargin{:});
rho = model.getProps(state, 'Density');
for ph = 1:numel(c)

if ~isempty(c{ph}), c{ph} = rho{ph}.*c{ph}; end
end

end

The interesting part is how we compute the phase composition. This is done by
another member function (presented in a slightly condensed form):

function c = getPhaseComposition(component, model, state, varargin)
massFractions = model.getProps(state, 'ComponentPhaseMassFractions');
for ph = 1:size(massFractions, 2)

mf = massFractions{component.componentIndex, ph};
if ~isempty(mf), c{ph} = mf; end

end
end
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Figure 8.9 Computation of component mass fractions for a generic EoS
component.

The component mass fractions Xi,α are computed through a combination of state
functions and member functions from the associated EquationOfStateModel,
as shown in Figure 8.9. The code excerpts in the figure have been edited and
simplified to get rid of data conversion and special cases that obscure the expres-
sions in use. If we try to analyze the code, we see that the primary state function,
shown to the upper right, starts by calling the secondary state function, shown
to the upper left, to compute component mole fractions. All that the part shown
here of this state function does is to extract the mole fractions for each phase
from the state object and store them in a cell array that runs over all compo-
nents and all phases; we have purposely edited out the parts that insert ones in
the correct places for non-EoS components. Once the mole fractions are com-
puted, the primary state function then iterates over all components and calls on
a member function from the EoS model to compute the mass fractions, using the
expression Xi = mixi/

(∑N
i mixi

)
. The member function does this irrespective

of whether molfraction is a cell array or an ordinary array of doubles, and
here we only present the latter variant for pedagogical purposes, because it is
more compact than the cell-array equivalent (which is the one usually called when
executing the code).

Instantiating compositional components: In Subsection 5.4.2, we explained
how the individual components that make up the flow model are instantiated
by validateModel and showed the relevant code. We follow exactly the same
approach for the compositional case, here from the overall composition class:
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for ci = 1:nc
name = names{ci};
switch name

case {'water', 'oil', 'gas'}
ix = model.getPhaseIndex(upper(name(1)));
c = ImmiscibleComponent(name, ix);

otherwise
c = getEOSComponent(model, p, T, name, ci);

end
model.Components{ci} = c;

end

The logic of this function is that components named 'water', 'oil', and 'gas'

represent single-component, immiscible fluid phases that can be instantiated
directly. All other components are assumed to be part of the hydrocarbon phases
that can be found in liquid and vapor form. Notice that we cannot instantiate
these components directly but must instead first determine how each component
splits across the phases found at the present temperature and pressure. This is
done in the separate utility function shown in Listing 8.1, which first performs a
standalone flash as discussed in Subsection 8.3.3 to compute the liquid-phase mole
fraction and the phase densities and then subsequently uses these to instantiate
the component.

8.4.5 State Functions for Compositional Models

The compositional module implements state functions for evaluating flow and
thermodynamic properties and discretization terms in flow and facility equations
based on the principles outlined for black-oil models in Chapter 5 and discussed
in detail for chemical EOR in Chapter 7. We will therefore not discuss their com-
positional counterparts in any detail here; instead, we encourage you to study the
source code yourself.

A good way to understand the inner workings of MRST has traditionally been
to pick a tutorial example and use the debugger in the MATLAB editor to run the
code lines in the accompanying script step by step. By stepping into each function
call, you can follow the exact execution of the code and thus understand the logic
of the implementation. This approach will not be as intuitive for simulator scripts
implemented with the AD-OO framework as for the procedural parts of MRST,
because the abstractions and inheritance that greatly aid you when implementing
enhanced or new functionality also introduce many layers in the code that may be
quite overwhelming to step through; indeed, at least the first few times you try,
it will feel like peeling a cabbage or an onion. This is particularly true for the
new state-function framework, which involves a lot of overhead code to implement
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Listing 8.1 Perform initial flash and instantiate EoS components.

function c = getEOSComponent(model, p, T, name, ci)

mixture = model.EOSModel.CompositionalMixture;
hcpos = strcmp(mixture.names, name);
z = zeros(1, numel(mixture.names)); z(hcpos) = 1;

% Flash calculation to obtain molar fractions and densities
[L, ~, ~, ~, ~, rhoL, rhoV] = standaloneFlash(p, T, z, model.EOSModel);
Lm = L.*rhoL./(rhoL.*L + rhoV.*(1-L));
frac = zeros(1, model.getNumberOfPhases());

% Assign mass fractions and phase densities
Li = model.getLiquidIndex(); Vi = model.getVaporIndex();
frac(Li) = Lm; frac(Vi) = 1-Lm;
rho(Li) = rhoL; rho(Vi) = rhoV;

% Densities for any non-EoS components
extra = model.getNonEoSPhaseNames();
phases = model.getPhaseNames();
for i = 1:numel(extra)

rho(phases == extra(i)) = model.fluid.(['rho', extra(i), 'S']);
end

c = EquationOfStateComponent(name, p, T, ci, frac, rho, ...
mixture.molarMass(hcpos));

end

the very useful compute-cache mechanism and efficient evaluation of constitutive
relationships for cases with multiple fluid and/or PVT regions.

The display and plotting functionality discussed in Subsection 5.4.1 has been
introduced for the exact purpose of remedying this situation, and using this to
display the exact state functions used and view different parts of the simu-
lator as graphs is our recommended approach to understand the logic of the
compositional module. To illustrate, let us revisit the example from Subsec-
tion 8.4.3 (script: showNaturalOverall.m) and use the overall compositional
formulation as an example. Once the overall class object is constructed, we can
extract its state-function groupings:

ogroups = overall.getStateFunctionGroupings()

ogroups =
1x4 cell array

Columns 1 through 2
{1x1 FlowPropertyFunctions} {1x1 PVTPropertyFunctions}

Columns 3 through 4
{1x1 FlowDiscretization} {1x1 FacilityFlowDiscretization}
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These are the same four groupings as shown for the black-oil case in Figure 5.7.
We start by inspecting the flow properties:

state
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Density
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s

The graph is reproduced so small here that it is difficult to see details, but if you
repeat the exercise and plot it using the command

plotStateFunctionGroupings(ogroups{1})

on your own computer, you will see that it has four “end nodes”: capillary pressure
and mobility, phase density, and total mass for each component. The state function
CapillaryPressure computes the saturation-dependent capillary pressure func-
tions Pc(S). This quantity is defined in the same way for our compositional model,
as in the black-oil case, and is thus inherited from the previous implementation.

Moving on to the component quantities, we see that the yellow lines in the graph
show that these all depend on thermodynamic properties, but the graph does not
offer any details of how these prerequisites are computed. To also include the
interdependencies of the thermodynamic quantities, we can redo the plot as follows
to produce Figure 8.10:

endnodes = {'CapillaryPressure', 'ComponentPhaseDensity',...
'ComponentTotalMass','ComponentMobility'};

plotStateFunctionGroupings(ogroups(1:2),'Stop',endnodes,'label','name');

We have already discussed the computation of component phase density (8.33) in
Subsection 8.4.4, which is implemented inside the EquationOfStateComponent
class. The graph enables us to trace all dependencies: The first dependence is on the
Density function in the PVT group, which in turn depends on PhasePressures

and p and T from the state object. In the general case, PhasePressures would
also depend on the CapillaryPressure just discussed, but this dependency
is disregarded when the capillary pressures are turned off, as in this particular
example.

The second dependence is on phase mass fractions, which we previously have
discussed in detail and shown in Figure 8.9. At this point you may ask why there
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Figure 8.10 State-function diagram for the FlowPropertyFunctions group,
including dependencies from the PVT property group. Solid lines denote depen-
dencies between state functions, and dashed lines are dependencies on properties
from the state object. End nodes – i.e., state functions that do not provide input
to any other functions in the flow property group – are marked with a blue frame.
(Notice also that the TikZ code exported from MRST has been edited a bit to
improve the visual presentation.)

is no trace of the EoS in the graph. The reason is that all EoS models known to the
compositional module are implemented as a monolithic class without the use of
state functions and hence none of the internal function calls implemented in this
class show up in the current graph.

We end this discussion by pointing out one important limitation of this plotting
functionality. It does not do any kind of automatic code analysis to detect dependen-
cies but instead relies on dependencies documented when coding each individual
state function or component class. Such dependencies are registered in the con-
structor of each state function or component. We can take the EoS component class
as an example. Here, the constructor reads:

function c = EquationOfStateComponent(name, p, T, cindex, ..)
:
c = c.functionDependsOn('getPhaseComposition', ...

{'ComponentPhaseMassFractions'}, 'PVTPropertyFunctions');
c = c.functionDependsOn('getComponentDensity', ...

{'Density','ComponentPhaseMassFractions'}, 'PVTPropertyFunctions');
end
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Looking back at how getComponentDensity is implemented on page 355, we
see that the dependence on the component mass fractions does not appear in the
function itself but is introduced through the call to getPhaseComposition. It
must nonetheless be registered explicitly also for getComponentDensity, and it
is essential that such dependencies are traced out and registered diligently for the
plotting functionality to be accurate and useful.

Computer exercises

1. Use the approach just outlined to familiarize yourself with the other three state-
function groupings that make up the compositional simulator classes.

2. Try to make a plot similar to the one shown in Figure 5.7 that displays the
interdependencies among all of the quantities you need to evaluate to compute
accumulation, fluxes, and source terms. (Hint: To distinguish state functions
with the same name from two different groupings, you must prepend the group
name; e.g., FlowDiscretization.ComponentTotalFlux.)

8.4.6 Limitations and Caveats

The compositional module in MRST has sufficient complexity to model a range of
different multicomponent scenarios. Chapter 10 discusses how the module can be
extended with sorption, diffusion, and geomechanics effects and be combined with
embedded discrete fracture modeling to describe recovery from unconventional oil
and gas reservoirs. In the interest of clarity, however, we mention a few features not
present in the module. These features may come in the future – or you may be the
one who contributes to any of them.

The compositional model neglects capillary pressure in the phase-equilibrium
calculations. For modeling of hydrocarbon mixtures, this is quite reasonable and
is standard in commercial compositional simulators, but it is less reasonable for
VLE involving water or CO2. There are a number of recent works [33, 45] that
incorporate these effects that could inform an MRST extension.

Cubic EoS are generally favored for their efficiency and limited number of
parameters, but significant interest has also been devoted to PC-SAFT-type
equations [15] derived from statistical mechanics. The official release of MRST will
soon include the ePC-SAFT version [24, 25], which requires five molecular-based
parameters per component for associating fluids and only three for nonassociating
ones. Generally, PC-SAFT-type equations describe liquid systems better than
traditional cubic EoS. PC-SAFT is more accurate to predict derivative properties,
reducing errors by a factor of up to eight [12, 20], while reducing density
prediction error by one half. PC-SAFT (or ePC-SAFT) provides good agreement
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between calculated and experimental properties of reservoir fluids, natural gas, and
asphaltene phase behavior [4, 38]. On the other hand, PC-SAFT has issues related,
e.g., to root finding and is known to increase the computational time [4, 12, 20, 38].

The compositional module does not take thermal effects into account, in
that the description is fully isothermal. A natural future extension would be to
incorporate the conservation of energy in the solver, which may necessitate the
introduction of a flash that uses enthalpy instead of temperature [55] to model
internal energy.

Several other smaller features would be easy to implement, given the flexibility
of AD together with state functions. One is to finish the partially implemented
Zudkevitch–Joffe–Redlich–Kwong EoS [57] that adds temperature dependence to
the static Redlich–Kwong parameters, another is to introduce changing relative
permeabilities and capillary pressure curves during the transition to fully miscible
flooding (e.g., the Eclipse keyword MISCIBLE that implements the rule from Coats
[9]). Yet other features are supported, but automatically setting these options from
input files is not tested to the degree you may be used to from other solvers in
MRST. Please report issues and fixes through the usual MRST channels.

8.5 Examples

This section goes through a number of examples to demonstrate how you can use
functionality from the compositional module to set up relatively complex fluid
cases. We also verify the simulator against a commercial simulator and another
research code to demonstrate its correctness. All examples come with complete
source code, which you can find in the book-ii example directory of the module.
To keep the discussion as simple as possible, we only present 1D examples, but the
solvers in the module are fully capable of simulating cases posed on complex and
unstructured grids in 2D and 3D as long as your computer has sufficient memory
and processing power. (Notice that use of external, iterative solvers and the acceler-
ated AD backends discussed in Chapter 6 is particularly important when attempting
to simulate large 2D/3D cases.)

8.5.1 Validation of MRST’s Simulators

We begin by comparing MRST with other reservoir simulators with compositional
capability in the compositionalValidationSimple example. This test case
is taken from Voskov and Tchelepi [48] and was originally reported for MRST
in [31]. Here, pure CO2 is injected over 500 timesteps into a 1D reservoir made
up of 1 000 cells. The reservoir initially contains a CO2–methane–decane mixture
mostly in the liquid phase, with CO2 forming a supercritical phase under reservoir
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Figure 8.11 Mole fractions after 6 years and 175 days computed by three different
simulators for the validation case from Voskov and Tchelepi [48].

conditions of 423.15 K and 75 bar. No K-values are used, which means that the
component behavior and phase properties are predicted by the default PR EoS.

The overall mole fractions are plotted for all three simulators: MRST, AD-GPRS
[48], and ECLIPSE (E300) [44]. To be as close as possible to E300 in formula-
tion, MRST and AD-GPRS are both set to use the overall composition as primary
variables with a fully implicit temporal discretization. Both wells operate at fixed
bottom-hole pressures. In computed mole fractions reported in Figure 8.11 we can
observe that there is a large two-phase region beyond the region where the supercrit-
ical CO2 front fully saturates the medium. The relative permeabilities are of Corey
type, with quadratic exponents, but the front structure is significantly more complex
than in the immiscible Buckley–Leverett case from subsection 10.3.1 in the MRST
textbook [21]. The variable density, viscosity, and phase mole distribution make
this a highly challenging numerical problem to solve. The three simulators are in
excellent agreement when formulations and timesteps are comparable. This simple
1D example is just a small sample of the extensive validation performed in-house
on the MRST compositional solvers.

8.5.2 Numerical Accuracy

The previous example showed that MRST agrees with a commercial and a state-
of-the-art academic simulator for a challenging case with complex phase behavior.
As an extension of this, we also compare different formulations for the same case.
In compositionalAccuracyExample, we set up two additional solvers: a fully
implicit natural variables solver and an explicit overall composition solver. The
upper part of Figure 8.12 reports mole fractions for all three solvers. The two fully
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Figure 8.12 Mole fractions (top) and vapor saturation (bottom) for the validation
case from Voskov and Tchelepi [48] plotted for three different formulations: fully
implicit natural and overall variables and explicit overall variables. The choice
of temporal discretization has a large impact on the resolution of the solution,
whereas the choice between formulations only matters for the required number of
nonlinear iterations.

implicit solvers produce identical results at roughly comparable iteration numbers
of 1 466 for natural variables and 1 575 for the overall composition formulation.
For the explicit solver, we see a significant improvement in the sharpness of the
discontinuities not only for the two trailing discontinuities but in particular for the
leading, weak discontinuity positioned at x ≈ 545. We can also discern that fine
details ahead of this front are lost in the fully implicit solvers. We can see these
more clearly in the saturation profile plotted in the lower half of Figure 8.12. The
nonmonotone saturation is due to the production well, where additional vapor is
formed as light components escape the fluid phase when the pressure decreases
closer to the producer.

Note that whereas the two fully implicit simulations match perfectly, they ended
up smearing out important features, even for a high-resolution setup with 500
timesteps on a 1 000-cell grid. Compositional problems are highly susceptible to
numerical diffusion, in particular when the pertinent dynamics consists of com-
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Figure 8.13 Plots of key flow properties along the front demonstrate the behavior
of a compositional description: phase viscosities and densities change signifi-
cantly depending on the composition in each point.

ponents being advected in the single-phase regions as discontinuities with no or
weak associated self-sharpening mechanisms. (Poor resolution of such waves is
also discussed in Chapters 3 and 7.) A full review of the wave structure for such
problems is outside the scope of this chapter, but the interested reader is directed to
the excellent textbook by Orr [36] on the subject.

Figure 8.13 reports densities and viscosities for both phases together with the gas
saturation and CO2 mole fraction. The density and viscosity change significantly
beyond the CO2 front, as different components move at different speeds toward the
producer, depending on their dynamic liquid solubility.

8.5.3 Surface Volumes and Separators

One especially attractive feature of compositional models is that the PVT descrip-
tion is general and can be used for conditions others than those typically found
inside a hydrocarbon reservoir. Other models, such as the black-oil model, use
tabulated values that often have a limited range of validity and are only given for
a specific gas composition. Compositional models can also accurately represent
liquid and vapor mixtures that vary spatially and temporally throughout a simula-
tion, which makes it easier to get accurate production data.

There is, in general, no limit to how complex models for production facilities
can be for geoenergy applications. Well-developed gas fields can, in particular,
have very complex pipe networks that transport produced gas out from the field
or back for reinjection. MRST includes a basic implementation of separators for
the purpose of controlling wells by surface rates in cases when the relationship
between composition and surface phase formation is strong for produced mixtures.
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The default behavior in the compositional module performs a flash for injection
mixtures to determine the surface density prior to simulation start. By default,
MRST uses a simple rule for produced liquids: The surface density specified in the
fluid object – for example, fluid.rhoGS for the default vapor phase – is used to
set liquid and vapor rates. Components are separated into liquid and vapor streams
according to their phase fractions at the standard conditions specified by the facility
model.4 The default behavior makes it easy to control mass rates and does not
require a runtime flash at surface conditions, and it is similar to the black-oil model
for which the gas and oil components by definition are found exclusively in the
vapor and liquid, respectively, at the standard conditions.

For some scenarios, it is more natural to work with complex mixtures at surface
conditions. Light and intermediate components can be present in the liquid phase
at these conditions, provided that there is a sufficient amount of heavy components
to form a stable liquid phase to dissolve into. The configuration options for sep-
arators are demonstrated in the compositionalSeparatorExample script. The
reservoir is described on a uniform Cartesian grid with 11 × 11 × 10 cells and
homogeneous petrophysical properties. The hydrocarbon fluid system is modeled
using six components (C1, C3, C6, C10, C15, and C20) and described by the fluid
model from the Fifth SPE Comparative Solution Project [18], which you may
recall we used as our second example when discussing the standalone flash in
Subsection 8.3.2. The other fluid properties are extracted from a standard black-oil
oil–gas model with quadratic Corey relative permeabilities and a surface density
ratio of 100:1 between the liquid and vapor phases. A single injector is placed in
the middle of the domain, operating at a fixed rate that extracts a significant volume
so that a vapor phase eventually is formed as the pressure drops, reminiscent of the
closed boundary version of the black-oil case discussed in subsection 12.4.1 of the
MRST textbook [21].

Once we have set up the base case with standard code, omitted here for brevity,
we can define a model with a single separator by copying model to model_sep

and modifying the associated facility model:

s = EOSSeparator('pressure', 1*atm, 'T', 300); % Set conditions for surface
sg = SeparatorGroup(s); % Group = single separator
sg.mode = 'moles'; % Use mole mode
model_sep.FacilityModel.SeparatorGroup = sg; % Connect to reservoir model

The separator will flash the surface streams at the surface conditions of 300 K and
1 atm pressure and use the result to determine the appropriate volume to extract at
reservoir conditions to meet the target depletion rate.

4 The default values are the metric standard conditions for gas of 273.15 K and 101.325 kPa.
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We can also go one step further and construct an alternative simulation model
model_msep in which we replace the single separator by a tree structure of sepa-
rators that each operates at different conditions:

p = [200, 175, 50, 10]*barsa; % p for each separator
T = [423, 400, 350, 300]; % T for each separator
dest = [2, 3; ... % Send liquid to 2, vapor to 3

0, 4; ... % Send liquid to tank, vapor to 4
4, 0; ... % Send liquid to 4, vapor to tank
0, 0]; % Send both liquid and vapor to tank

sg = SeparatorGroup(s, p, T, dest); % Construct separator group
model_msep.FacilityModel.SeparatorGroup = sg; % Connect to reservoir model

By default, the group object automatically copies s for each stage and sets the
conditions. The dest variable is of special importance because it encodes the flow
between each stage. It is essentially a directed graph, in which the first column
contains the liquid targets and the second column contains the vapor targets. The
produced mixture will first be passed to the separator operating at 200 bar pressure,
which will pass the liquid stream on to separator 2 and vapor on to separator 3.
These pass their vapor and liquid streams, respectively, on to the fourth separator
while sending the other phase to the surface tanks (denoted by a zero value). The
fourth separator mixes the incoming streams, flashes again at surface conditions,
and passes any liquid and vapor to the respective surface tanks. The overall flow
rates into these tanks are used to determine the volume we need to extract at
reservoir conditions to meet targeted depletion rates.

In Figure 8.14, we see that the use of even just a single separator significantly
changes the depletion rate, as evidenced by the different pressure drop and forma-
tion of gas in the well cell. Setting up additional separators changes the behavior
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Figure 8.14 The separator test. Pressure and gas saturation in the well cell as a
function of time shown on the left and right axes, respectively.
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to a lesser extent. This case illustrates that (i) it is possible to perform complex
phase separation during simulation and (ii) the definitions of surface gas and oil
production are both not straightforward and very important when working with
rate-type controls for compositional models.

Using a tree of separators, one can separate out light and heavy components
by exploiting the changes in mixture composition at different conditions. When a
separator is set up as a tree, cyclical connections are disallowed from the destination
matrix. Note that the separators use the EoS in the EOSModel field. The default
value of empty means that the separator will obtain the necessary EoS from the
reservoir model, using the same flash for both reservoir and separator stages. It
is possible to have different EoS instances for each of the stages if desired; for
example, if different settings are required at changing pressure and temperature
conditions on the path up to the surface.

8.5.4 Miscibility

Simulation of miscible processes is a classical application for compositional sim-
ulators. The displacement efficiency of gas injection depends highly on the in
situ reservoir pressure and temperature conditions. If the displacement front is
kept at miscible conditions above the minimum miscibility pressure, the displace-
ment is piston-like because there is no surface tension between the residual oil
and the injected gas. If conditions away from the injection site fall below the
minimum miscibility pressure, the immiscible behavior leads to reduced sweep
efficiency, because the unfavorable viscosity ratio between the vapor phase formed
by injection gas and the reservoir oil leads to the formation of viscous fingers and
lowered recovery.

In compositionalMiscibilityExample, we inject a fixed mass of CO2 at
the left-hand boundary into a model that initially contains CO2, C1, C5, and C12 in
a pure liquid phase found at 150 bar pressure. The setup is based on tests reported
by Alzayer et al. [2]. A producer operates at fixed bottom-hole pressure at the
rightmost end of the domain. We perform seven simulations in which the pressure
at the producer is varied from 70 to 150 bar. The resulting vapor saturation profile
is reported at the same timestep for all scenarios in Figure 8.15. This 1D example
can be thought to model a slim-tube setup, where miscibility conditions can be
determined experimentally. Although the initial and injected masses are identical
in all cases, we see that the displacement processes change significantly depending
on the producer pressure. At the lowest pressure, the immiscible displacement
front propagates quickly through the reservoir and is near breakthrough at the plot-
ting step, whereas for the fully miscible displacement at the highest pressure, the
piston-like front has barely covered one-fifth of the domain. It is also possible to
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Figure 8.15 Demonstration of miscibility as a function of pressure. The vapor
saturation is plotted after the same amount of CO2 has been injected for seven
different producer pressures, ranging from immiscible to fully miscible.

use the solvent module in MRST to simulate some miscibility scenarios with a
more lightweight, tabulated model that extends the standard black-oil model.

8.5.5 Performance of Compositional Solvers

In compositionalPerformanceExample, we perform a simple test of the
solver speed for a compositional model. The model is, by default, defined for a
50 × 50 × 50 Cartesian grid with a single producer–injector pair with the six-
component SPE 5 fluid model [18] for a total of 750 000 reservoir degrees of
freedom. You can easily modify the script switch to use another fluid mixture or
change the grid and then perform the test on your own computer.

The compositional equations contain a large number of element-wise sums of
products for each component (see, e.g., (8.18) and (8.19)) that are fairly expensive
for AD, because many intermediate objects are created and stored. These types
of operations led to the creation of the diagonal backends described in Chapter 6.
In the test reported herein, we compute a small timestep with four different AD
backends. The first two backends are implemented purely in MATLAB and consist
of the default sparse and the diagonal backends, whereas the last two are different
variants of MEX-accelerated diagonal backends.

The results in Figure 8.16 demonstrate that the time per assembly drops from
almost 9 seconds to just under 1.5 seconds (i.e., is reduced by a factor of 6) by
switching to the best choice for this model. In addition, the linear solver time
is significantly reduced by the same switch, because the matrix storage is better
for the row-major, MEX-accelerated, diagonal AD backend. More so than for any
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Figure 8.16 Runtime for assembly and linear solve on a 50 × 50 × 50 grid with
the SPE 5 fluid model with different AD backends discussed in Chapter 6.

other models in MRST, compositional simulation quickly becomes infeasible with
the standard sparse backend and MATLAB’s direct solvers, because the number
of degrees of freedom equals the number of cells multiplied by the number of
components for the most compact formulation.

For further details on the benchmarking methodology, how different backends
can improve execution time, possible caveats, and the hardware used for the test,
please see Chapter 6.

8.6 Concluding Remarks

In this chapter, we have introduced you to the physical principles, equations, and
numerical solution strategies underlying the compositional module in MRST. As
explained earlier in the chapter, the compositional module offers two different types
of implementations of the overall component and natural variable formulations.
Whereas the monolithic approach is likely to stay with MRST for several years, we
have herein chosen to only focus on the generic model classes. These have not only
been used to implement improved spatial and temporal discretizations, as seen in
Chapter 5, but all new developments of accelerated computing, improved support
for wells and facility modeling, and so on are geared toward the generic approach.
We therefore strongly recommend that you use the corresponding simulator classes
to conduct simulations or as a basis for your own development on top existing
functionality.

To illustrate typical behavior of compositional systems and teach you the
basics of setting up and running simulations using the compositional module,
we presented a set of relatively simple simulation cases that favor clarity in
description over complexity of results. We emphasize that these examples by
no means illustrate the general capabilities of the module when it comes to
grid types, well configurations, simulation schedules, etc. To get a better idea
of the type of multidimensional and challenging simulations you can run with
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the module, we suggest that you consult the multiscale-compositional example in
Subsection 4.3.9, the shale examples in Chapter 10, or some of the papers that have
used the compositional module as a research tool to investigate multiscale methods
[31], new sequentially fully implicit methods [30], hybrid 3D/vertical-equilibrium
simulation [29], and adaptive coarsening methods [19].
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