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Abstract
In the past decade, researchers have been increasingly interested in understanding the
process of language learning, in addition to the effect of instructional interventions on L2
performance gains (i.e., learning products). One goal of such investigations is to reveal the
interplay between learning conditions, processes, and outcomes where, for example, certain
conditions can promote attention to the learning targets, which in turn facilitates learning.
However, the statistical modeling approach taken often does not align with the conceptu-
alization of the complex relationships between these variables. Thus, in this paper, we
introduce mediation analysis to SLA research. We offer a step-by-step, contextualized
tutorial on the practical application of mediation analysis in three different research
scenarios, each addressing a different research design using either simulated or open-
source datasets. Our overall goal is to promote the use of statistical techniques that are
consistent with the theorization of language learning processes as mediators.

Keywords: Mediation analysis; Direct effects; Indirect effects; Total effects; Learning conditions, processes,
and outcomes

Introduction
In second language acquisition (SLA) research, instructed SLA in particular,
researchers are often concerned about the effect of different instructional interventions
on second language (L2) performance. These investigations encompass numerous
topics and subareas within SLA, ranging from the impact of reading-while-listening
on reading comprehension (e.g., Pellicer-Sánchez et al., 2020), to the effect of spacing
on L2 collocation acquisition (e.g., Yamagata et al., 2022), and to the effect of different
types of corrective feedback on L2 speech perception (e.g., Lee & Lyster, 2016), to name
a few. However, many early instructional studies focused exclusively on L2 learning
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outcomes (e.g., Leow, 2015; Godfroid, 2019). Exploring only the products but not the
processes of learning could thus veil important questions in understanding L2 acqui-
sition, such as what cognitive processes are involved in and conducive to L2 learning
and how teachers and curriculum designers can promote these processes to better
facilitate acquisition (Leow, 2015). Given that learning processes and products are
indispensable to each other, investigating both can reveal the complex cognitive
mechanisms underlying language development and offer more nuanced insights into
language learning. Thus, bridging the connection between learning conditions, pro-
cesses, and outcomes through understanding the causal relationships between these
variables becomes essential in the study of language learning. It is in this context that we
introduce mediation analysis to the field. This statistical method allows researchers to
align their data modeling approach with the conceptualization of the relationships
between learning conditions, processes, and outcomes, extending and refining the
current practice of data analysis in SLA.

Measuring and linking learning processes and outcomes
In the past decade, studies that tap into both cognitive processes and language learning
outcomes have been burgeoning, giving rise to what is called online methods. These
methods range from online verbal reports in the form of, for example, think-aloud and
stimulated recall (e.g., Leow, 2015), to the use of eye tracking (e.g., Godfroid, 2019), and
the scrutiny of logs in computer-assisted language learning systems (e.g., Hui et al.,
2023). In one of the early studies using verbal reports to capture L2 learners’ noticing of
the linguistic constructs in the input, Leow (1997) employed think-aloud protocols to
elicit L2 Spanish learners’ thought processes during a problem-solving task. Interested
in the relationship between L2 learners’ awareness on the target irregular morpholog-
ical forms and the knowledge they further processed and eventually acquired, the
researcher reported that learners who demonstrated a higher level of awareness on the
target forms performed better on a subsequent recognition task, unveiling the impor-
tant role of awareness in promoting L2 learning. As an important method to under-
stand learning processes, stimulated recall and think-aloud have been widely used to
tap into learners’ noticing (e.g., Zalbidea, 2021), awareness (e.g., Woll, 2018), learning
strategies (e.g., Gokturk &Chukharev-Hudilainen, 2023), and depth of processing (e.g.,
Leow et al., 2022), unpacking the link between learners’ performance and what they
received and processed during learning (Leow, 2015).

Another prominent method to capture learning processes is the use of eye tracking
to reveal learners’ attention and processing through gaze patterns (e.g., Conklin et al.,
2018; Godfroid, 2020). Drawing on the eye-mind link (Rayner et al., 2012), researchers
can analyze eye-tracking data gathered fromdifferent experimental conditions to reveal
the relationship between learning conditions and the underlying cognitive processes.
For example, Puimège et al. (2023) found that textual enhancement (i.e., underlining
multiword units) could induce more visual attention to the target items. With longer
reading time and less word skipping on the enhanced multiword units, learners were
more likely to recall the word forms in the immediate posttest. Similarly, in Kang et al.
(2022), participants were found to demonstrate different reading behavior when
provided with different types of glosses (i.e., L1 and L2 glosses), with much longer
time spent on L2 glosses than on L1 glosses. The relationship between lexical uptake
and the time spent on processing the target words was also found to be different as a
function of gloss types. Learners in the L2 gloss and no-gloss conditions demonstrated a
significant, positive relationship, whereas learners in the L1 gloss condition did not. The
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positive relationship suggests that learners who spent more time inferring the meaning
from the context benefited more than those who spent less time on it, highlighting the
important role of attention in L2 learning (Kang et al., 2022). As we can see, with eye-
tracking measures, researchers can understand how learners direct their attention to
different instructional manipulations and how such attention might or might not
facilitate the encoding and retrieval of linguistic items.

Learning processes are by no means limited to cognitive processes. In computer-
assisted language learning (CALL) research, system logs can also reveal how L2 learners
engaged in learning under different treatment conditions delivered through digital
platforms (i.e., the learning process) and its relationship to language learning outcomes
(e.g., Hui et al., 2023; He& Loewen, 2022; Hwang et al., 2024; Révész et al., 2017). Using
an interactive digital platform engineered to provide both general and specific correc-
tive feedback on grammar exercises, Hui et al. (2023) extracted 19 learning process
variables from the system logs (e.g., total time on task, task fields attempted, correct
attempt, first correct) and reported that learning gains were significantly predicted by
accuracy-focus (e.g., correctness in exercises) and finish time. Moreover, based on
learners’ learning process patterns, the researchers also revealed that the specific
corrective feedback was beneficial only for people who demonstrated specific process
patterns, namely those who submitted their work late. By illustrating the potential of
these interaction logs, the authors encouraged researchers to unveil the black box of
learning processes to understand how learning unfolds in the context of CALL.

In addition to cognitive processes and behavior, learning processes also include
conative (e.g., motivation) and affective (e.g., enjoyment, boredom) variables.
Advances in individual differences (ID) research in SLA have motivated researchers
to develop and validate scales to index learner-internal factors (e.g., L2 grit: Teimouri
et al., 2022; foreign language classroom anxiety: Botes et al., 2022). For example, in Li
and Lu (2024), the researchers investigated not only the effect of task complexity on
learners’ L2 writing performance but also how task complexity influenced learners’
cognitive–affective ID variables (i.e., working memory, trait enjoyment, task enjoy-
ment, and task motivation) and the effect of these ID factors on their writing perfor-
mance.With cognitive, motivational, and emotional ID variables functioning as part of
the learning processes, the study highlighted the important role of task motivation in
influencing the relationship between task complexity and L2 writing performance,
finding that task complexity significantly enhanced task motivation and enjoyment
with task motivation significantly predicting L2 writing performance consistently in
both versions of the task. With ID measures, researchers are able to investigate how L2
learners, for example, enjoy instructionmore or less as a function of cognitive demands
in a speaking task (e.g., Chen, 2023) and unveil the relationships between learner
emotion (anxiety, boredom, and enjoyment), engagement, and proficiency (e.g., Tsang
& Dewaele, 2023). This is certainly a promising avenue to investigate how certain task
features can promote favorable learning processes experienced by learners, leading to
better acquisition outcomes.

With various methodological tools, such as eye tracking and validated scales,
researchers are in a much better position to bridge the connection between learning
conditions, processes, and outcomes. At the same time, researchers have often missed
the opportunity to gain comprehensive insights into these relationships because many
studies outline separate research questions to shed light on various parts of the bigger
picture. Although it is not clear the extent to which the formulation of research
questions has been influenced by modeling options accessible to the researchers, it is
rather common in our field to separately address the independent associations between

Modeling relationships between learning conditions, processes, and outcomes 3

https://doi.org/10.1017/S0272263125100867 Published online by Cambridge University Press

https://doi.org/10.1017/S0272263125100867


(a) learning conditions and processes (e.g., condition predicting eye gaze, as an index of
attention and processing), (b) learning processes and learning outcomes (e.g., eye gaze
predicting offline measures of learning), and (c) learning conditions and outcomes.
While these insights are very informative, researchers seldom focus on a system of
relationships as a whole. In other words, current modeling practices often fail to take a
holistic approach to capture the nuanced and comprehensive relationship between
treatment, processes, and outcomes. Therefore, the analysis performed does not always
align well with the theoretical conceptualization of these relationships. For instance,
onemight conceptualize that certain experimental conditions can promote attention to
the target items, which in turn enhances learning. In this light, learning conditions can
have not only a direct impact on learning but also an indirect influence on learning
through promoting attention (see more discussion below). When research questions
focus on isolated relationships, the broader learningmechanisms remain unclear. Thus,
to capture learning conditions, processes, and outcomes as a whole, researchers need to
take a holistic approach to identify the specific pathways through which interventions
facilitate or hinder learning. Thus, conducting mediation analysis is important to
capture this broader perspective. To lay the foundation for demonstrating the appli-
cation of mediation analysis to the condition-process-outcome relationships, we first
provide a brief introduction to mediation in the following section.

Mediation (which is not moderation)
Put simply, mediation involves a predictor impacting an outcome through a mediator.
It is seldom covered by mainstream statistical textbooks in our field (e.g., Garcia, 2021;
Larson-Hall, 2016; Loertes et al., 2020). Theremight also be confusion around this kind
of relationshipwithwhat is known asmoderation (or interaction) effects. Amoderation
analysis addresses, for example, how a treatment effect is moderated by a moderator
(e.g., L1 background). It means that the treatment effect, namely its magnitude (or size)
and/or direction (positive or negative), depends on or is based on, for example, the
learner’s native language. A significant interaction term, which mathematically is the
product of the predictor and themoderator, often represents statistical evidence of such
differential effects (Field, 2018). Depending on the nature of the interaction, researchers
might find, for example, that treatment is generally helpful, but especially so for L1
Chinese learners, compared with Spanish learners (differs inmagnitude, see Figure 1a).
Another scenario could be that treatment is only helpful for some, but detrimental to
others (differs in direction, see Figure 1b). All that is to say: a moderator variable
changes (i.e., moderates) the relationship between a predictor and an outcome variable.
In Figure 1c, we present how moderation is often visualized graphically in statistical
texts.

Unlike moderators serving only on the predictor side (see Figure 1c above), a
mediator is part of a causal sequence between the two variables, functioning as both
a predictor and an outcome in themodel (Baron &Kenny, 1986). Mediation represents
the intermediary process where the effect of a predictor on the outcome variable is
mediated by an intervening variable, known as themediator (Field, 2018). Affecting the
relationship between the independent and dependent variable, a mediator becomes
part of the mechanism governing the causal relations (Field, 2018).

For better illustration, one can visualize the mediation relationships in a path
diagram (see Figure 2; cf. Figure 1c for a moderation effect). In this diagram, X refers
to the predictor variable (e.g., a learning condition variable), Y represents the outcome
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variable (e.g., a learning outcome variable), and M stands for the mediator (e.g., a
learning process variable, as indexed, for example, by eye tracking). As can be seen, the
path diagram is constituted by three causal relationships annotated as paths a, b, and c’,
representing the causal relationship from X to M, from M to Y, and from X to Y,
respectively. In this light, researchers can observe not only the individual effects
indexed by the a, b, and c’ paths, such as the effect of reading conditions on attention
(the a path), the effect of attention on reading comprehension (the b path), and the

Figure 1a. Moderation example 1.

Figure 1b. Moderation example 2.
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effect of reading conditions on reading comprehension while accounting for attention
(the c’ path), but also some broader relationships: first, the indirect effect of X on Y via
M (e.g., the effect of reading conditions on reading comprehension via attention to
pictures), calculated as the product of a and b paths: a * b, and second, the total effects of
X on Y (e.g., the total effect of reading conditions on reading comprehension),
determined by summing the indirect and direct effects: a * b + c’. For indirect effects
(i.e., the effect of X on Y is mediated by M), two scenarios are possible: when the c’ path
is zero, there is complete mediation, meaning that the effect of X on Y is entirely
mediated by the mediator M (Vuorre & Bolger, 2018). Conversely, if the c’ path is not
zero, the model indicates partial mediation where the effect of X on Y is influenced not
only by the direct and indirect effects but also by other variables not considered in the
model (Vuorre & Bolger, 2018). In this light, researchers are often interested in the extent
of mediation (Shrout & Bolger, 2002). This magnitude helps enhance our understanding
of how important themediator is in the causal pathway from the predictor to the outcome
variable. Using the eye-tracking example from above, the exact role of attention in this
mediation relationship often reveals important information regarding the relationship
between learning conditions and reading comprehension.

Mediation in SLA research
In SLA, mediation analysis is not yet very common, but not unprecedented, except in
areas that call for the use of scales (e.g., measuring taskmotivation and enjoyment) with
structural equationmodeling (SEM). Technically, mediation analysis can be considered

Figure 1c. Moderation diagrams (Field, 2018).

Figure 2. The mediation model (Field, 2018).
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a case of path analysis within the SEM framework. For example, exploring the
mediation effect of individual variables, Sparks and Alamer (2022) have found that
L2 aptitude and L2 achievement are significant mediators influencing the effect of L1
achievement on L2 anxiety. Moreover, motivation was found to not only influence L2
proficiency directly but also indirectly through self-confidence (Alrabai, 2022). As with
many other studies (e.g., Li et al., 2022; Öztürk, 2023), these findings highlight the
application of mediation analysis in uncovering complex relationships in individual
differences research.

However, mediation analysis has seldom been seen in other SLA studies that have a
cognitive focus. One exception is a study by Koval (2019) who was interested in the
effect of spacing on attentional processing (i.e., the a path) and intentional vocabulary
learning (i.e., the c’ path) as well as how learners’ attention mediates the spacing effect
(i.e., a * b). Using the eye-tracking technique, the study revealed that learners’ attention,
captured by learners’ total reading times, was a significant mediator of the spacing
effect. Also, in another study, Hui and Godfroid (2021) explored how processing speed
and automaticity affected L2 listening comprehension. Propositional comprehension
was found to be a significant mediator in accounting for the effect of lexical processing
on listening comprehension (i.e., a * b), which highlights the crucial role of lexical
processing in facilitating L2 listening comprehension via comprehending propositional
meaning.

So far, we have seen some examples of mediation in the literature that involve either
an observational (e.g., Hui & Godfroid, 2021) or a between-participant experimental
design (e.g., Koval, 2019). This is partly because these designs are common in SLA and
social sciences in general. At the same time, a large portion of the literature has a within-
participant design, especially in experimental contexts. This is because, oftentimes,
researchers use within-participant designs to minimize confounding due to their
inability to randomize participants. Such a design involves the same participant
experiencing different learning or experimental conditions manipulated by the
researchers, often in a counterbalanced manner. In that sense, learners are compared
against themselves in the baseline condition, allowing the researchers to reduce any
systematic bias introduced by the nonrandom assignment of conditions (Cook &
Campbell, 1979). In addition, researchers have also been focusing on more fine-
grained, item- or trial-level data. For example, looks at interest areas in eye tracking
are oftenmeasured across different target items in different trials and often on different
screens. In other words, each participant has multiple observations in the same
experiment that are dependent on each other (because they are elicited from the same
person).When analyzing such data, researchers typically adoptmixed-effectsmodels to
account for the nested data structure resulting from repeated measures (e.g., Linck &
Cunnings, 2015). For example, in the study conducted by Tytko et al. (2024), the
researchers investigated the impact of multimodal input on L2 reading comprehension
using a within-participant design. This approach allowed every participant to experi-
ence all the reading conditions during the experiment, which included reading-only
(RO), reading with image (RI), and reading with image and audio (RIA), presented in a
counterbalanced order (see Figure 3 for the experiment flow chart). This means that six
different lists were created, with participants assigned to different lists that specified the
sequence of the three treatment conditions. Within each condition, each participant
also encountered multiple areas of interest, and each area of interest was also read by
multiple participants. Thus, buildingmixed-effects models with crossed random effects
(i.e., by-participant and by-item random intercepts and slopes) is necessary to simul-
taneously account for the variability associated with both participants and items.

Modeling relationships between learning conditions, processes, and outcomes 7
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Traditionally, mediation analysis has been discussed and applied less in studies with
a within-participant design. This is because the more commonly employed mediation
analysis, like ordinary regression analysis, has an assumption of independence, mean-
ing that each observation should be independent of each other. Adding another layer of
complexity in exploring mediation relationships is the need to account for the depen-
dency in the trial-level data, which is typically achieved through incorporating both
by-participant and by-item random effects. However, recent advances in quantitative
methods have lifted the barriers for SLA researchers to model mediation with both
between- and within-participant designs and with trial-level data. This would allow us
to move beyond exploring the surface-level relationships to identifying the processes
through which learning conditions influence learning outcomes. It is within this
context that we offer a contextualized tutorial on mediation analysis in various types
of research designs commonly seen in SLA research.

The tutorial
To demonstrate the application of mediation analysis in SLA, we present three working
examples, each addressing a different study design: a between-participant design, a
within-participant design, and a within-participant design with trial-level data. These
examples highlight the need to adopt tailored statistical approaches to account for
different data structures derived from these designs. For each example, we created
either a hypothetical research scenario inspired by previous studies or adopted existing
research to contextualize the analyses with either simulated data or open datasets

Figure 3. The experiment flow chart of Tytko et al. (2024).
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shared by the researchers. We acknowledge that longitudinal and mixed designs are
also common in the field, especially in quasi-experimental ISLA research. However, the
analysis can become very complex when mediation is involved, and dealing with this
complexity falls beyond the introductory scope of the present tutorial.

Example 1: Mediation in between-participant designs
First, we introduce mediation in the context of a between-participant design. We based
our research context on Rosa and Leow (2004), who explored how different feedback
conditions influenced L2 learners’ awareness levels and how learners’ level of awareness
affected their ability to generalize the target grammatical structure, Spanish contrary-
to-fact conditional, to new exemplars. In Rosa and Leow (2004), participants were
randomly assigned to one of the five learning conditions: explicit pretask + explicit
feedback (EPEFE), explicit pretask + implicit feedback (EPIFE), explicit feedback
(EFE), explicit pretask (EP), implicit feedback (IFE), or a control condition. Awareness
was assessed using a think-aloud protocol during the treatment and a written ques-
tionnaire after the treatment. Based on their responses, participants were categorized
into three awareness levels: No Report (NR), Noticing (N), and Understanding (U).
Although the researchers collapsed the three levels into two for data analysis: Report
(R) and No Report (NR), we kept the three levels in the original theorization in the
present tutorial, making awareness an ordinal variable. Learning outcomes were
measured through a multiple-choice recognition test and a controlled production test.
For both tests, participants received 1 point for each correct selection/use of the target
grammatical structure, with a maximum score of 10 points for both the old items and
new exemplars. For demonstration purposes, we limited the assessment measure to the
controlled production test of new items and focused only on three instructional
conditions: explicit feedback (EFE), implicit feedback (IFE), and a control condition.
Thus, a research question that can be addressed is “To what extent does L2 learners’
awareness mediate the effect of different feedback types on L2 grammar acquisition?”
Figure 4 visualizes the mediation model of this research scenario.

The simulated dataset
In this example, we used simulated data for demonstration purposes. Sixty participants
were simulated for each instructional condition. Each participant, having been exposed

Figure 4. Visualization of the mediation model of Example 1.
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to only one instructional condition, is represented by a single row in the dataset, which
records their assigned feedback condition (1 = Control, 2 = Implicit feedback, and 3 =
Explicit feedback), awareness level (1 = NR, 2 = N, and 3 = U), and production test score.
Table 1 presents the first several rows of the data in a long format. We have shared the R
code for all the simulations and analyses conducted in this manuscript on the Open
Science Framework (OSF) (https://osf.io/fzps6).

Mediation analysis and results
Firstly, we presented the descriptive statistics of the test scores and awareness by
feedback types in Table 2 and visualized them in Figure 5. To conduct the between-
groupmediation analysis, we began by specifying separate models for themediator and
the outcome. In the outcomemodel, we applied a linear regressionmodel using the lm()
function, for which the dependent variable was “test_score” with “feedback_type” and
“awareness” as categorical predictors (the b and c’ paths in Figure 4). For the mediator
model, “awareness” is treated as the ordinal outcome variable with “feedback_type”
being the predictor. Because “awareness” is an ordered variable with three levels, we
adopted the polr() function from theMASS package (Venables & Ripley, 2002) to build
an ordinal regression model. The syntax of the polr() function is similar to that of the
lm() function, with the addition to specify “Hess = TRUE” to estimate standard errors
that are necessary to output inferential statistics in this function.

To conduct mediation analysis, we combined the two regression models specified
above using the mediate() function from the mediation package (Tingley et al., 2014).
This function outputs a very simple and straightforward summary regarding the
indirect effect (ACME), direct effect (ADE), total effect, and the proportion mediated.

Table 1. Sample dataset for Example 1

participant_id feedback_type awareness test_score

1 3 3 10
2 3 2 10
3 3 3 10
… … … …
61 2 3 10
62 2 2 9
63 2 2 8
… … … …
121 1 3 7
122 1 2 6
123 1 2 8

Note: For feedback types, the control condition was coded as 1, implicit feedback as 2, and explicit feedback as 3; For
awareness level, NR was coded as 1, N as 2, and U as 3.
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To build the model in the mediate() function, we first input the previously specified
mediator and outcome models and then defined the predictor and the mediator after
the arguments “treat” and “mediator,” respectively.

Figure 5a. Visualization of test scores by feedback types.

Table 2b. Descriptive statistics of awareness by feedback types

Feedback_Type Awareness Count

Control NR 13
Control N 31
Control U 16
Implicit NR 9
Implicit N 26
Implicit U 25
Explicit NR 4
Explicit N 13
Explicit U 43

Note: NR: No Report; N: Noticing; U: Understanding

Table 2a. Descriptive statistics of test scores by feedback types

Feedback_Type M (SD) [95% CI]

Explicit 8.80 (1.29) [8.46, 9.13]
Implicit 7.30 (1.71) [6.86, 7.74]
Control 5.97 (1.90) [5.48, 6.46]

Modeling relationships between learning conditions, processes, and outcomes 11
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Using the “control.value” and “treat.value” arguments, we further identified the two
instructional conditions to contrast. Note that the mediate() function can only handle
two treatment conditions at a time (Tingley et al., 2014). Thus, when there are more
than two conditions, as in the present case, these parameters allow for a flexible

Figure 5b. Visualization of awareness by feedback types.
Note: NR: No Report; N: Noticing; U: Understanding
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specification by selecting any two conditions for comparison (Tingley et al., 2014).
Here, we indicated “2” and “3” to represent the implicit and explicit feedback conditions,
respectively. Researchers can choose the input values to make their hypothesized
comparisons. Also, we need to set “boot = TRUE” to enable bootstrapping to calculate
confidence intervals. Here, we used the default argument “sims = 1000” to indicate 1,000
resampling for bootstrapping (Tingley et al., 2014).

To output the mediation results, we used the summary() function. Table 3 displays
the summary of the mediation model. The analysis revealed a significant indirect effect
of feedback types on test scores via awareness (ACME: average causal mediation effect),
b= .222, 95%CI [.048, .490], p = .006. This suggests that awareness played an important
role in mediating the effect of feedback type on L2 grammar learning. In addition, with
an estimate of 1.260 (95% CI [.740, 1.830], p < .001), the direct effect (ADE: average
direct effect) of feedback types on test scores was also found significant. This indicates
that explicit feedback led to greater learning gains than implicit feedback, independent
of awareness. The total effect of feedback types on test scores (b = 1.482, 95% CI [.975,
2.060], p < .001) further emphasizes the importance of feedback types and awareness as
two significant predictors of L2 grammar learning. Lastly, the proportion of the total
effect mediated by awareness was .150 (95% CI [.033, .330], p = .006), meaning that
approximately 15.0% of the total effect of feedback types on L2 grammar learning was
mediated by awareness. The result highlights the role of awareness in promoting L2
grammar learning. At the same time, this role was not as critical as one might think
because the proportionmediated was a relatively small number, which suggests that the
current understanding of why and how feedback conditions have an effect on learning
is far from a complete picture. At this point, we must remind readers that these results
were based on our simulation for methodological demonstration purposes and remain
silent on the substantive literature.

To summarize, when conductingmediation analysis in between-participant designs,
we first specified the mediator and the outcome models separately, before testing the
mediation effects using the mediate() function. The mediate() function can accommo-
date not only the ordinal data as in the present example, but also many other types,
including continuous, binary, and quantile outcomes (Tingley et al., 2014). Researchers
can apply different mediator and outcome models (e.g., lm(), glm(), polr()) depending
on the data type they are working with (Tingley et al., 2014). Moreover, as noted earlier,
the mediate() function can only handle two treatment conditions at a time, so
researchers need to manually specify which two conditions they are interested in
comparing (Tingley et al., 2014). As a technical note, it is important to convert different
level names into numbers for the mediate() function to run properly. Lastly, although
the mediate() function works perfectly for regression models of various kinds, it
becomes limited when applied to mixed-effects models. Specifically, it cannot accom-
modate some well-established and widely used mixed-effects modeling packages such

Table 3. Summary of the mediation model (Example 1)

Estimate 2.5% CI 97.5% CI p-value

ACME (a * b) .222 .048 .490 .006 **
ADE (c’) 1.260 .740 1.830 < .001 ***
Total Effect (a * b + c’) 1.482 .975 2.060 < .001 ***
Prop. Mediated .150 .033 .330 .006 **

Note: ACME refers to the indirect effect, and ADE refers to the direct effect. The parentheses were added for better
interpretation. They are not part of the output.
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as nlme (Pinheiro & Bates, 2024) and glmmTMB (Brooks et al., 2017).Moreover, it falls
short when complex data structures are involved, such as residual correlation and
cross-random structures. Thus, in the following sections, we demonstrate how medi-
ation analysis can be applied to more complex data structures.

Example 2: Mediation in within-participant designs
In this example, we demonstrated mediation analysis for a hypothetical study with a
within-participant design (i.e., each participant experienced all treatment conditions in
a counterbalanced fashion). This hypothetical study was conceptualized within the
task-based language teaching (TBLT) literature. More specifically, we showcased the
modeling of the relationships between task complexity, cognitive load, and linguistic
complexity. The mediation relationships were visualized in Figure 6.

The conceptualization of this mediation model was supported by empirical and/or
theoretical evidence. The a path, namely the effect of task complexity on cognitive load,
has been investigated by studies such as Xu et al. (2022), Lee (2019), and Révész et al.
(2016). The c’ path, which deals with the direct effect of task complexity on linguistic
diversity, has been explored by studies such as Lee (2019), Révész et al. (2017), and
Vasylets et al. (2017). Although the b path, concerning the effect of cognitive load on
linguistic complexity, has seldom been formally investigated in the context of TBLT,
studies such as Christodoilides (2016) and Lively et al. (1993) have reported the effect of
cognitive load on speech production, and Li et al. (2024) has studied the influence of
working memory on L2 writing production. The logic of these investigations can be
somewhat applied to the b path. Moreover, theories such as Skehan’s (2014) Limited
Attentional Capacity (LAC) model also support the investigation of the b path. The
LACmodel proposes that people have limited attentional capacity, and task complexity
can impose challenges to learners’ limited cognitive resources, resulting in a tradeoff
among complexity, accuracy, and fluency in learners’ production. Given that the LAC
model implies a causal relationship between cognitive load and linguistic complexity in
production, the investigation of the b path is also theoretically valid and informative.
Taken together, the three paths constituting the hypothetical model are either empir-
ically or theoretically supported for investigation.

On the one hand, most of these effects (i.e., particularly paths a and c), in isolation,
are rather well investigated. On the other hand, the whole mechanism governing these
causal relationships has received less, if any, attention. For example, what is the indirect

Figure 6. Visualization of the mediation model of Example 2.

14 Ruirui Jia and Bronson Hui

https://doi.org/10.1017/S0272263125100867 Published online by Cambridge University Press

https://doi.org/10.1017/S0272263125100867


effect of task complexity on linguistic complexity, via cognitive load? What is the total
effect, including both direct and indirect effects? What exactly is the role of cognitive
load in this system (i.e., the mediation effects)? Might other factors play a role in
understanding linguistic complexity? The answer to these questions can further our
nuanced understanding of the implications of manipulating task complexity and the
exact role of cognitive load.

Thus, for the purpose of demonstration, we conceptualized a within-participant
study. The research question that could be addressed is “To what extent is the effect of
task complexity on the linguistic complexity of L2 speaking mediated by learners’
cognitive load?” Data from 60 participants were simulated for both the simple and
complex versions of a speaking task. The tasks were administered at two time points,
spaced one week apart (see Figure 7 for the procedure). We operationalized cognitive
load as learners’ perceived difficulty of the tasks (e.g., Lee, 2019; Révész et al., 2016;
Révész et al., 2017; Vasylets et al., 2017), using a nine-point Likert scale. The linguistic
complexity of learners’ oral production was operationalized as lexical diversity indexed
by VOCD or the D measure (e.g., Lee, 2019; Révész et al., 2017), drawn from their
recorded speaking performance. Thus, in this design, each participant provided two
difficulty ratings (one after each complexity level) and had two VOCDmeasure scores
(again, one for each complexity level).

The simulated dataset
A dataset was simulated to represent this hypothetical research scenario. Given the
within-participant design, we accounted for the correlation between cognitive load
ratings andVOCD scores across the two complexity levels of the spoken task. Thanks to
a reviewer’s feedback, we also incorporated residual heterogeneity to reflect realistic
differences in variance between different task conditions, as variability at each com-
plexity level is unlikely to be identical. We assume that a simple task might yield a
smaller variance because participants tend to produce similar responses, whereas a

Figure 7. Procedure of the hypothetical experiment in example 2.
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complex task may result in a larger variance due to unexpected difficulties. In sum, the
simulation accommodated both data dependency and variance differences across tasks
within the multilevel modeling framework. In the final dataset, again, each participant
has two values for cognitive load rating: one for the simple version and one for the
complex version. The same is true for the outcome variable, VOCD. Below, we present
and visualize the descriptive statistics in Table 4 and Figure 8. In addition, we include
the scatterplot to illustrate the relationship between cognitive load and VOCD by task
complexity in Figure 9.

Mediation analysis and results
Given the design, two modeling approaches can be considered: First, one can adopt
(Bayesian) multilevel modeling (MLM), which accounts for data dependency and
residual heterogeneity; second, one can also engage mediation analysis within a path-
analytic framework (e.g., Montoya & Hayes, 2017). Since the third example (see more
below) will employ the first modeling approach to handle trial-level data, we focus on
the path-analytic framework to approach this dataset. Specifically, we used the MEM-
ORE (Mediation and Moderation for Repeated Measures) macro (Montoya & Hayes,
2017) as an alternative to the multilevel modeling approach for the present research
scenario.

The MEMORE macro, developed specifically for two-condition within-participant
designs, operates within a path-analytic framework using ordinary least squares (OLS)
regression (Montoya & Hayes, 2017). It models mediation (and moderation) relation-
ships by focusing on the differences between two conditions for each participant.
Rather than treating the mediator as a single variable, MEMORE calculates the
difference in the mediator across the two conditions as the mediator itself and the
difference in the outcome across the two conditions as the outcome itself (Montoya &
Hayes, 2017). By subtracting the mediator and the outcome across the two conditions
within each participant, the difference scores allow us to not only cancel out individual
differences but also isolate the effect of the predictor. Again, in this research example,
the same participant rated their cognitive load for both the simple and complex versions
of the task. Their ratings may depend on each person’s individual characteristics, such
as their cognitive capacity. These individual characteristics can create correlations
between the two treatment conditions, making it difficult to isolate the specific effect
of task complexity on cognitive load rating and lexical diversity. However, when
calculating difference scores, we remove these individual characteristics from each
condition by focusing only on the changes in cognitive load rating and lexical diversity
as a function of task complexity, teasing out any individual-related influence from the
model. This also means that we no longer need to account for data dependency by
specifying correlations in the model. It simplifies model specifications and makes it

Table 4. Descriptive statistics of cognitive load rating and VOCD by task complexity

M (SD) [95% CI]

Simple Complex

Cognitive load rating 4.55 (1.43) 6.68 (1.44)
[4.18, 4.92] [6.31, 7.06]

VOCD 68.84 (9.85) 77.37 (1.17)
[66.30, 71.38] [74.74, 80.00]
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Figure 8. Visualizing the descriptive statistics of cognitive load rating and VOCD.
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easier to interpret the effect of the treatment. Additionally, we also included themean of
the mediator (i.e., the average of the two cognitive ratings by the same person between
the conditions) in the model to control for the baseline differences across participants.
In this way, we separate the participant-specific effect from the task-specific effect
without the interference of the baseline-level variability among participants. Figure 10
illustrates the statistical diagram of this approach.

Currently, the MEMORE macro is only available for SPSS and SAS. However, for
researchers who prefer a point-and-click interface over extensive code-writing, MEMORE
offers a highly user-friendly solution. Here, we provide a step-by-step, contextualized
tutorial on how to use the MEMORE macro in SPSS to conduct a two-condition
within-participant mediation analysis with the hypothetical research scenario described
above.

To get started, we need to download MEMORE from the following website: https://
www.akmontoya.com/spss-and-sas-macros. The macro named “memore_V2.1.spd”
was made publicly available and free to download by Amanda Montoya, who also
provided detailed instructions for its use. After downloading, the macro needs to be
installed in SPSS. Under the “Extensions” menu, we need to select “Install custom
dialog” from the dropdownmenu of “Utilities.”When prompted, we need to locate the
downloaded file “memore_V2.1.spd” in our saved directory and complete the instal-
lation. Once the macro is successfully installed, it can be accessed under the
“Regression” category within the “Analyze” menu.

To ensure the data format is compatible with MEMORE, the first step is to convert
the dataset from a long format to a wide format before opening it in SPSS. This step is
necessary because MEMORE automatically calculates the difference scores between
conditions for both the mediator and the outcome. Therefore, we must specify the

Figure 9. Visualizing the relationship between cognitive load and VOCD by task complexity.
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mediator and the outcome for each condition so that MEMORE can correctly identify
and process these columns. Table 5 presents a sample of the dataset that was uploaded
for analysis.

To start the analysis, we need to first ensure that the mediator and the outcome
variables are properly set as “scales” in the “Variable View” interface. Then, we can click
on the “Analysis” menu and select “Regression,” where we can find the MEMORE
function just installed. In theMEMOREwindow, it is important to classify themediator
variables (i.e., m1 andm2) into the “Mvariables” box and the outcome variables (i.e., y1
and y2) into the “Y variables” box. Additionally, the variables from each condition
should be entered in the correct order, as MEMORE will perform subtraction based on
this sequence. Thus, in our case, we first selected “y2” and then “y1” to the “Y variables”
box and “m2” and “m1” in sequence to the “M variables” box. This setup tells
MEMORE to subtract “y1” from “y2” for the outcome and “m1” from “m2” for the

Figure 10. The statistical diagram of the mediation model (Montoya & Hayes, 2017).
Note: In this model, the predictor X, which refers to task complexity (simple vs. complex), is modeled as a fixed
variable. This is because in a within-subject design, participants experience both treatment conditions,
meaning that it does not vary across participants. “mdiff” represents the differences in cognitive load rating
between the simple and complex tasks, indicating how cognitive load rating changes due to task complexity.
“ydiff” refers to the differences in lexical diversity scores indexed by VOCD, representing how lexical diversity
scores change due to the changes in cognitive load rating and task complexity. The inclusion of the grand-
mean centered covariate is to account for the absolute level of cognitive load rating. In other words, it controls
for individual differences in cognitive load rating, as participants with higher levels of cognitive load rating
might exhibit different levels of lexical diversity compared to those with lower levels of cognitive load rating.
Difference scores, which reflect only within-participant differences, cannot capture between-participant
variations. Thus, to account for individual differences, absolute values must be controlled for.

Table 5. Sample dataset for Example 2

sub_id m1 m2 y1 y2

1 4 5 72.02 76.42
2 4 7 61.99 72.95
3 7 9 74.35 77.86
4 4 7 58.30 68.47
5 4 7 55.37 67.63

Note:m1 refers to the cognitive load ratings for the simple task; m2 represents the cognitive load ratings for the complex
task; y1 refers to the VOCD scores for the simple task, and y2 represents the VOCD scores for the complex task.
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mediator to obtain the difference scores. Moving forward, we set the model as Model 1,
which specifies a within-participant repeated measures design. Additionally, we

selected the Monte Carlo option to estimate confidence intervals and set the number
of resampling iterations to 10,000. Researchers can adjust the value for their needs.
Moreover, it is also essential to check the option to save sample estimates and specify
the confidence interval as 95% to ensure accurate interval estimates for the analysis.
Once all parameters are specified and the analysis is conducted, the results (see Figure
11) are presented as follows:
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The first section of the output indicates the model type executed, the variables
included in the dataset, and all the variable manipulation behind the screen. MEMORE
automatically calculated the difference in themediator (Mdiff) and the outcome (Ydiff)
across task conditions, as well as the mean of the mediator (Mavg). This step allows the
software to prepare the dataset for subsequent analyses.

Starting from the second section, the output reports the estimates of the total effect
of task complexity on the changes in lexical diversity indexed by the VOCD scores. This
is followed by the third section, which presents the effect of task complexity on the
changes in learners’ cognitive load captured by their perceived difficulty of the tasks

Figure 11. The MEMORE output for Example 2.
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(referred to as the a path). In the fourth section, three relationships are provided: (a) the
direct effect of task complexity on the changes in lexical diversity (the c’ path), (b) the
effect of the changes in cognitive load rating on the changes in lexical diversity (the b
path), and (c) the effect of the average cognitive load rating on the changes in lexical
diversity. These sections together provide a detailed breakdown of the relationships
between task complexity, cognitive load, and lexical diversity.

Although the first part of the output provides all the necessary information for
interpretation, a concise summary of the estimates for the total, direct, and indirect
effects can be found in the second part of the output. It can be seen that the total effect of
task complexity on the changes in VOCD was significant, b = 8.525, SE = .471, 95% CI
[7.582, 9.468], p < .001. This indicates that engaging in the more complex task resulted
in an average increase of 8.525 units in VOCD compared to the simpler task, suggesting
that higher task complexity was associated with greater lexical diversity in their oral
performance. Moreover, the direct effect of task complexity on the changes in lexical
diversity remained significant after controlling for the changes in cognitive load rating,
b = 5.325, SE = 1.370, 95% CI [2.583, 8.068], p < .001. This finding demonstrates that
task complexity continued to predict lexical diversity even after accounting for learners’
perceived difficulty of the tasks, highlighting its independent contribution to the
changes in lexical diversity. Furthermore, the indirect effect of task complexity on
the changes in lexical diversity, via the changes in cognitive load rating, was also
significant, b = 3.199, SE = 1.300, Monte Carlo 95% CI of [.654, 5.705]. This indicates
that learners’ cognitive load, as indexed by their perceived difficulty of the tasks, served
as a meaningful mediator, influencing the effect of task complexity on lexical diversity.
Specifically, approximately 37.52%of the total effect (3.199/8.525) was accounted for by
learners’ perceived difficulty of the tasks, underscoring the role of cognitive perception

Figure 11. Continued.
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in bridging task complexity and lexical diversity. Again, we remind readers that these
results and interpretations are based on our simulated dataset for the present demon-
stration.

As demonstrated, MEMORE provides a straightforward output that clearly outlines
the estimates for each path, as well as the indirect and total effects of interest.
Additionally, MEMORE offers the flexibility to model multiple mediators (see Mon-
toya & Hayes, 2017 for more details), which enhances researchers’ ability to explore
more complex relationships between learning conditions, processes, and outcomes.
While there is no direct equivalent of MEMORE in R, the point-and-click interface in
SPSS largely reduces the need for extensive coding, making it a powerful tool for
conducting mediation analysis with repeated measures.

For researchers who are familiar with Mplus, Montoya and Hayes (2017) also
provide the Mplus code for carrying out within-participant mediation analysis. How-
ever, we acknowledge that SPSS, SAS, and Mplus are behind paywalls. Thus, we
translated the Mplus code provided by Montoya and Hayes (2017) into R using the
lavaan package (Rosseel, 2012) to enable researchers to conduct this type of analysis
with open-source statistical tools. Both the R and Mplus codes can be found in our
shared OSF link.

Example 3: Mediation in within-participant designs with cross-random
structures
Unlike Example 2, where each participant only has one score for each condition,
researchers often analyze trial-level data where one participant has multiple values
(i.e., multiple rows in the dataset) for each condition. Adding to the picture is the fact
that each item elicits data from multiple participants. Given this cross-nested data
structure, which is common in, for example, eye-tracking research (e.g., Godfroid &
Hui, 2025), the two statistical methods introduced above fall short in accounting for
such complexity. Thus, in this example, we introduce another statistical method to
accommodate mediation with cross-random data structures in within-participant
designs.

To do this, we engaged in mixed-effects modeling within the Bayesian framework
using the brms package (Bürkner, 2017) in R. The primary reason to introduce the
Bayesian (as opposed to frequentist) approach is that there are currently readily
available functions and packages in R that can accommodate mediation with model
objects commonly used to analyze such datawithoutmanual calculations of the indirect
and total effects with bootstrapping. In addition to practicality, the Bayesian approach
is powerful in its ability to offermore accurate estimates based on posterior distribution,
more straightforward output, much simpler code for implementation, and greater
flexibility to accommodate complex data structures when mediation is involved (Bür-
kner, 2017; Vuorre & Bolger, 2018). We acknowledge that the Bayesian approach can
seem intimidating to many applied researchers who might not have much relevant
training, and indeed, it can take a lot of computational resources. But we wanted to
stress that many will be able to draw on their knowledge in constructing mixed-effects
models, using, for example, the lme4 package (Bates et al., 2015).

We adopted the dataset shared by Tytko et al. (2024), available on Open Science
Framework (https://osf.io/hq57n/?view_only=ed878de940e44cadade885f21efeea45).
It was obtained for an eye-tracking study that investigated the effectiveness of various
types of multimodal input in scaffolding reading comprehension. Sixty-six adult L2
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learners were exposed to different parts of a text under three experimental conditions:
(a) reading-only (RO), (b) reading with an image (RI), and (c) reading with both an
image and audio (RIA). During exposure, participants read or read and listened to the
text materials on 21 screens for each condition, with their eye movements being
captured. Several eye-tracking indices were used to index their eyemovement behavior,
including the percentage of their dwell times on images. Moreover, comprehension
questions were administered to measure the participants’ understanding of the text.
Some screens have only one comprehension question associated with them, while some
have more. The researchers examined not only the effect of different input conditions
on reading comprehension (i.e., the c’ path) but also the relationship between image
processing and comprehension (i.e., the b path). In this context, a pertinent mediation
question that can be addressed through multilevel mediation is: “What is the role of L2
learners’ attention to images in influencing the effect of different multimodal inputs on
reading comprehension?” Figure 12 demonstrates the visualization of this mediation
model.

For demonstration purposes, we only included two conditions: RI and RIA. Partic-
ipants’ attention to images was quantified as the percentage of their dwell times on
images relative to their total dwell times on both images and text. Participants’
responses to comprehension questions were scored as 0 or 1, with 0 being incorrect
and 1 being correct. Thus, the accuracy data were binary.

It is important to emphasize again that, unlike the former example where responses
vary only at the participant level, the current dataset is cross-classified. This means that
the participants’ responses or behaviors vary not only at the participant level but also at
the item level. As reflected in this study, each participant had 21 proportion values (one
for each screen) for each of the two conditions, resulting in a total of 42 eye-tracking
data points per participant. Additionally, each screen elicited eye-movement data from
participants going through the two conditions and each comprehension question was
also answered by participants experiencing both conditions. This cross-classified data
structure requires statistical models to account for both the by-participant and by-item
variability. Table 6 presents the data format of this study. Applied psycholinguistics,
including eye-tracking researchers, should be fairly familiar with the structure of this
kind of trial-level data.

Figure 12. Path diagram of the eye-tracking mediation model (binary outcome).
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We first present the descriptive statistics of learners’ dwell time percentage on
images by different reading conditions and the proportion of accurate comprehension
responses by conditions in Table 7 with visualization in Figures 13 and 14, respectively.
To conduct mediation analysis, we need to first install and load the brms package
(Bürkner, 2017) and build our Bayesian models. We need to first specify two mixed-
effects models, one for the mediator (i.e., the a path) and the other for the outcome
(i.e., the b and c’ paths). The syntax of themixed-effects models mirrors that of the lmer
() function in the lme4 package (Bates et al., 2015), with the key difference being the
replacement of “lmer” with “bf” to accommodate the Bayesian framework.

We first specified the full mixed-effects models (e.g., Barr et al., 2013). In the
mediator model (i.e., the a path), participants’ percentage of dwell time on images
(“pic_percent”) was treated as the outcome variable, with “condition” dummy coded
(RI: 0; RIA: 1) as the predictor (or the fixed effect). Both by-item (i.e., TRIAL_INDEX)
and by-participant (i.e., ID) random intercepts are specified, along with condition
(i.e., con) as the random slopes. Given that the percentage of dwell time on images
(i.e., “pic_percent”) is proportional, the data was beta transformed to better handle the
limited range. Also, we identified eight cases of zero for “pic_percent” in our dataset, so

Table 7. Descriptive statistics of dwell time percentage on images and comprehension accuracy by
reading conditions

RI RIA

M (SD)
[95% CI]

pic_percent .160 (.095)
[.155, .164]

.191 (.115)
[.186, .196]

M (SD)
[95% CI]

Comprehension accuracy .666 (.472)
[.645, .687]

.662 (.473)
[.641, .683]

Note: RI = Reading + Image; RIA = Reading + Image + Audio

Table 6. Sample eye-tracking dataset

ID TRIAL_INDEX con pic_percent Q acc List

P101 22 0 .156 Q32 1 List1
P101 22 0 .156 Q31 1 List1
P101 23 0 .120 Q33 1 List1
P101 23 0 .120 Q34 1 List1
P101 24 0 .068 Q35 1 List1
P101 25 0 .109 Q36 1 List1
…
P101 43 1 .045 Q61 1 List1
P101 44 1 .038 Q62 1 List1
…
P102 1 0 .137 Q1 0 List2
P102 1 0 .137 Q2 0 List2
…
P102 22 1 .082 Q31 1 List2
P102 22 1 .082 Q32 1 List2

Note: “TRIAL_INDEX” refers to the screen participants read texts on. “con” refers to the two reading conditions: The reading
+ image condition was coded as 0, and the reading + image + audio condition was coded as 1. “pic_percent” stands for the
percentage of participants’ dwell times on images. “Q” refers to the comprehension questions. “acc” refers to the
participants’ accuracy of the comprehension questions, and “List” stands for the experimental list that each participant
was assigned to.
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Figure 13. Visualization of raw and mean dwell time percentage to images by reading conditions.
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we chose the zero-inflated beta model to account for those exact zeros. As part of the
zero-inflated beta model, we specified zi = ~1 to indicate that the probability of the
occurrence of zeros does not relate to any predictors in the model, meaning that the
occurrence of zeros may be due to some unknown processes unrelated to the reading
conditions such as participants not paying attention to the images1.

Figure 14. Visualization of the proportion of accuracy by reading conditions.

1We thank an anonymous reviewer who provided very useful feedback on our modeling.
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For the outcomemodel (i.e., the b and c’ paths), comprehension accuracy at the item
level (i.e., acc: 0 or 1) served as the outcome variable, with both condition and dwell time
as predictors. Given that both questions and participants exhibit variability based on
reading conditions and dwell time, “con” and “pic_percent” were treated as random
slopes. Similar to the generalized linear mixed-effects models, identifying the distribu-
tion of the outcome variable is crucial. In this case, we specify family = bernoulli() to
indicate the binary outcome. The bernoulli distribution models the probability of a
binary event where a single trial has only two possible outcomes (Gelman et al., 2013),
which aligns with the characteristics of the outcome variable (i.e., comprehension
accuracy) in the present example. It is a special case of the binomial distribution often
specified in generalized linear mixed-effects models using glmer().

Once the mixed-effects models are defined, we can proceed to fit them within the
Bayesianmediation framework using the brm() function. The first argument in the brm
() function contains the defined mixed-effects models connected by the “+” sign. The
second parameter requires the identification of the long-format dataset. After that, we
need to specify the number of chains and iterations for model execution (Bürkner,
2017). Optionally, a starting point can be set using the “seed” parameter for reproduc-
ibility. This model requires more computational demands and thus takes longer to run,
and the running time is contingent upon model complexity, number of observations,
number of iterations, etc. After successfully sampling from the posterior distribution of
model parameters, we can use the summary() function to produce a summary of the
result, where information such as random effects, fixed effects, and model convergence
details is listed.

After the full model is built, the next step is to identify the best-fitting model by
engaging in model comparison. This process is similar to how researchers usually do
model comparison in mixed-effects models. Recommended by Barr et al. (2013), we
initially adopted the maximal random effects structures by including all random
components in the model. Then, we took a backward model selection approach to
evaluate the random effects (Matuschek et al., 2017). This process involves sequentially
removing one random component (starting from random slopes and then random
intercepts) at a time to test whether deleting one random component with the smallest
standard deviation would significantly decrease the model fit. However, for model
comparison, instead of relying on traditional criteria such as Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), or chi-square statistics as is
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typically done in mixed-effects modeling, here, we need to perform Leave-One-Out
Cross-Validation (LOO-CV) for both models and then compare their respective
expected log predictive density (ELPD) value to make informed decisions (see details
below). We prefer the use of LOO-CV over other methods, such as Widely Applicable
Information Criterion (WAIC) for model comparison because LOO-CV offers less
biased estimates of out-of-sample predictive performance (i.e., how well the model
could generalize the pattern/relationship to new data) and it ismore reliable for datasets
with small sample sizes (Vehtari et al., 2017), as is the case in the present study.

Table 8 presents the random effects of model 1. As can be seen, the by-trial random
slope of “con” (i.e., condition) demonstrates the smallest standard deviation among all
the random slopes (Estimate = .16). Therefore, we eliminated this component by fitting
a reduced model, referred to as model 2. Then, we conducted a LOO-CV test (Bürkner,
2017) on both models using the loo() function from the loo package (Vehtari et al.,
2024). LOO-CV estimates themodel’s predictive accuracy by systematically leaving out

Table 8. Random effects of model 1

Estimate
Est.
error 2.5% 97.5% Rhat Bulk_ESS Tail_ESS

~ID
sd(picpercent_Intercept) .37 .04 .31 .45 1.00 4227 9275
sd(picpercent_con1) .37 .04 .30 .45 1.00 3565 8107
sd(acc_Intercept) .81 .14 .55 1.09 1.00 10300 14718
sd(acc_con1) .17 .12 .01 .44 1.00 4440 9428
sd(acc_picpercent) 2.00 .84 .37 3.67 1.00 2271 5139
~TRIAL_INDEX
sd(picpercent_Intercept) .29 .03 .24 .35 1.00 6421 11211
sd(picpercent_con1) .16 .03 .11 .22 1.00 8298 12612
~Q
sd(acc_Intercept) 1.30 .18 .98 1.67 1.00 7526 12488
sd(acc_con1) .19 .14 .01 .50 1.00 4036 9007
sd(acc_picpercent) 3.25 .95 1.51 5.28 1.00 886 376

Note: The correlation between each random effect is omitted in the table.
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one observation at a time from the dataset, fitting the model to the remaining data, and
then predicting the left-out observation (Vehtari et al., 2017). Next, the predictive
accuracy of the two models is compared using the loo_compare() function. This
function calculates the difference in expected log predictive density (ELPD) between
themodels, along with its standard error (Vehtari et al., 2017). A higher ELPD indicates
a superior predictive accuracy.

The comparison table (see Table 9) demonstrates that both the ELPD difference and
its standard error for model 1 are zero. This indicates that model 1 serves as the
reference model for assessing the predictive accuracy of the reduced model. Notably,
the ELPD difference for model 2 is -23.5, which is smaller than zero, indicating that
model 2 exhibits much lower predictive accuracy compared to model 1. Moreover,
given that the absolute value of elpd_diff for model 2 (23.5) is larger than the se_diff value
multiplied by 1.96 (i.e., se_diff * 1.96), which is 15.876 (1.96 corresponding to p < .05),
the two models differ significantly from each other in terms of predictive accuracy.
Because model 1 is more complex and demonstrates significantly better predictive
accuracy, it is considered our best-fitting model.

Table 10a presents themodel summary of the effects of paths a, b, and c’ for our best-
fitting model. For each parameter, the output table presents the estimate (i.e., the
posterior mean of the parameter being estimated), standard error (SE), 95% credible
interval at the lower and upper bounds, the potential scale reduction factor (Rhat)
calculated based on the posterior distribution, bulk effective sample size (Bulk_ESS),
and tail effective sample size (Tail_ESS). Note that Rhat, which is a convergence
diagnostic index, is recommended to be 1 or at least very close to 1 to indicate good

Table 10a. Mediation model summary output from the brm() function

Estimate SE 2.5% 97.5% Rhat Bulk_ESS Tail_ESS

picpercent_Intercept –1.71 .06 –1.83 –1.59 1.00 3889 6179
zi_picpercent_Intercept –6.11 .34 –6.83 –5.51 1.00 16249 10851
acc_Intercept .84 .21 .43 1.25 1.00 6905 12753
picpercent_con1 (a) .20 .05 .10 .30 1.00 5996 9439
acc_con1 (c’) –.06 .10 –.26 .13 1.00 20917 14819
acc_pic_percent (b) 1.66 .83 .10 3.38 1.00 11530 13003
phi_picpercent 26.03 .62 24.82 27.26 1.00 26097 13390

Note: (a), (c’), and (b) are not in the output. The denotation is added here for better understanding and illustration. The
table only includes fixed effects. The whole output also includes by-item, by-participant, and by-question random effects
(see Table 7).

Table 9. Model comparison results

models elpd_diff se_diff

model1 .0 .0
model2 –23.5 8.1
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model convergence (Bürkner, 2017). If the Rhat value exceeded 1.1, increasing the
number of iterations would help resolve the convergence issue (Bürkner, 2017).
Additionally, serving as diagnostics for sampling efficiency in the bulk and tail of the
posterior distribution, respectively, Bulk_ESS and Tail_ESS are expected to be at least
100 perMarkov Chain to indicate reliable sampling (Vehtari et al., 2021). To output the
indirect and total effect, we adopted the mediation() function from the bayestestR
package (Makowski et al., 2019) with the Bayesian model just fitted. This function
facilitates the estimation of the indirect and total effects, returning a summary table easy
and straightforward for interpretation (see Table 10b).

As we can see from Table 10a, the model demonstrates a good convergence as all the
Rhat values are 1.00. The first and third parameters, “picpercent_Intercept” and
“acc_Intercept,” refer to the intercept of dwell time percentage on pictures and
accuracy, respectively. The second parameter “zi_picpercent_Intercept” represents
the intercept of the zero-inflated part of the mediator model, which models the
probability of the dwell time percentage (“pic_percent”) being zero regardless of the
reading conditions. As can be seen, the estimate of the intercept of the zero-inflated
model is negative, b = -6.11, SE = .34, 95% Credible Interval [-6.83, -5.51], suggesting
that the log-odds of themediator being zerowas extremely low. Starting from the fourth
parameter, variables are connected with the underscore symbol (i.e., _). This could be
seen as equivalent to the “~” in the regressionmodel. Thus, “picpercent_con1” refers to
the regression coefficient of the predictor “con” (i.e., condition) on the outcome
variable (i.e., dwell time percentage on images), namely the a path in the mediation
model. The result indicates a positive effect of reading conditions on learners’ attention
to images, b= .20, SE= .05, 95%Credible Interval [.10, .30], suggesting that learnerswere
more likely to paymore attention to images in the RIA condition than in the RI condition.
The relatively narrow credible interval indicates a highdegree of certainty in this estimate.
Regarding the b path (i.e., “acc_pic_percent”), the result also reveals a positive effect of
attention to images on reading comprehension, with an estimated effect of b = 1.66, SE =
.83, 95% Credible Interval [.10, 3.38] on the log-odds scale. Although the relatively wide
credible interval suggests some uncertainty in the precision of this estimate, the fact that it
does not include zero indicates a high probability that there was an effect. In addition,
“acc_con1,” which refers to the c’ path, failed to demonstrate a credible effect of reading
conditions on reading comprehension, while accounting for dwell time percentage on
images, b = -.06, SE = .10, 95% Credible Interval [-.26, .13]. This result indicates that
learners tended to perform similarly across the RI and RIA conditions when controlling
for their time spent on images.

Table 10b. Mediation model summary output from the mediation() function

Effect Estimate 95% ETI

Direct effect (ADE) -.063 [-.261, .131]
Indirect effect (ACME) .306 [.017, .762]
Mediator effect 1.631 [.096, 3.376]
Total effect .249 [-.098, .717]

Note: Proportion mediated: 123.25% [-350.25%, 596.74%]. Direct and indirect effects have opposite directions. The
proportion mediated is not meaningful.
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Supplementing the results from the brm() function, Table 10b, derived from the
mediation() function, directly showcased the relations that would otherwise be man-
ually calculated: the indirect effect, the total effect, and the proportion of the effect
mediated, each with 95% credible interval. As can be seen, learners’ attention to images
was not only a credible predictor of reading comprehension, b = 1.63, 95% Credible
Interval [.10, 3.38] but also a credible mediator influencing the effect of reading
conditions on reading comprehension, b = .31, 95% Credible Interval [.02, .76].
However, the relatively wide credible interval of the b path suggests a relatively high
level of uncertainty regarding the role of attention to images in predicting reading
comprehension. In contrast, the relatively narrower credible interval of the indirect
effect suggests a greater degree of certainty in the role of attention to images as a
mediator between reading conditions and reading comprehension. In addition, the
total effect of reading conditions on reading comprehension was found to be uncertain,
b = .25, 95% Credible Interval [-.10, .72]. This implies that the indirect effect might be
balanced out by the noncredible direct effect, b = -.06, SE = .10, 95% Credible Interval
[-.26, .13]. By outputting the effect of each pathway as well as the indirect and total
effects, the results reveal the important role of attention in not only predicting reading
comprehension but also mediating the relationship between reading conditions and
comprehension. Without such information, we would miss out on the important
pathways through which reading conditions could make a difference in reading
comprehension. Lastly, when the direct and indirect effects have opposite signs, the
proportion mediated becomes difficult to interpret (Vuorre & Bolger, 2018). Here, the
presence of a positive, credible indirect effect, along with a noncredible direct effect,
indicates that compared to the RI condition, the addition of audio in the RIA condition
enhanced learners’ attention to images. This increased attention, in turn, positively
influenced reading comprehension. Importantly, these results suggest that the value of
audio emerged only when it drew learners’ attention to the visual information (i.e., the
images). Without the boosted attention, the RIA condition provided almost no added
value, compared to the RI condition. This interpretation would have been masked if
researchers were to carry out separate analyses with the data.

In sum, the brm() function offers a flexible and advanced tool to manage complex
data structures commonly encountered in eye-tracking and psycholinguistic research.
Its capability expands the range of research where researchers can apply the Bayesian
approach to address multilevel mediation questions. As a result, L2 researchers can
manipulate this sophisticated modeling technique to uncover new insights into the
complexities of second language learning. However, for practical consideration, it
should be noted that compared to the frequentist approach, the Bayesian approach
typically requires more time for models to run due to its sampling procedures, and the
time needed is contingent upon sample size, model complexity, and the number of
iterations executed. Moreover, when the brm() function is used, it will take even longer
if multiple models have to run sequentially to identify the best-fitting model. However,
despite these challenges, the strengths of the Bayesian approachmake it a powerful tool
for SLA researchers to handle complex data structures and go for more nuanced
research questions with within-participant designs, which could facilitate our under-
standing of more complex processes underlying L2 learning and development.

Strengths, considerations, and limitations
To sum up, this tutorial demonstrates howmediation analysis can be applied to various
research designs in SLA research to bridge the connection between learning conditions,
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processes, and outcomes. It offers a comprehensive understanding of how specific
learning conditions influence learning outcomes through intermediary learning pro-
cesses. This nuanced analysis can uncover the pathways through which instructional
interventions exert their effects, offering deeper insights into the mechanisms of L2
learning and informing more effective pedagogical methods.

Nevertheless, it is important to address some considerations when conducting medi-
ation analysis. Since themediator functions as both a predictor and outcomevariable, two
issues need to be considered: Firstly, it is important to ensure that the b path (i.e.,M!Y)
reflects a causal relationship. That is to say, for themediationmodel to function properly,
the mediator M must exert a causal influence on the outcome variable Y (Vuorre &
Bolger, 2018) and themodel assumes that the directionof the causality flows fromMtoY,
and it does not support the reverse causality from Y to M or merely a correlational
relationship between M and Y (Vuorre & Bolger, 2018). Contextually speaking, for
example, in a hypothetical study that examined the effect of task complexity on syntactic
complexity in L2 writing, time on task is often used to capture learners’ engagement.
Although the more complex task would likely result in learners spending more time on
the task than the simpler one (i.e., the a path), it would be inappropriate to assume a
causal relationship between time on task and syntactic complexity (i.e., the bpath). This is
because time on task does not necessarily predict syntactic complexity in L2 writing.
Simply spendingmore time on a task does not guarantee the production ofmore complex
grammatical structures. Thus, treating time on task as a mediator in this context would
violate the causality assumption.

Secondly, as a predictor of the b path, the mediator being measured is assumed to be
free frommeasurement errors (Vuorre & Bolger, 2018). If a mediator contained a lot of
measurement errors or, technically speaking, is not reliable in terms of measures, the
prediction of the outcome variable would be less precise and could potentially mask the
causal relations that should have existed. Thus, when researchers try to capture a
construct of interest, it is essential to ensure that the measures adopted are reliable
enough to comply with this “free frommeasurement errors” assumption. One example
of introducing noise to a mediator would be the use of reaction time differences
measures to index cognitive individual differences (Tan & Yan, 2016).

Conclusion
To conclude, the tutorial paper demonstrated the process of conducting mediation
analysis within the context of SLA research. Three working examples were presented,
each corresponding to a different type of research design and data structure commonly
encountered in SLA research. By providing detailed, step-by-step guidance on data
preparation, statistics selection, codewriting, and result interpretation, we hope that the
current tutorial on mediation analysis could help equip SLA researchers with the tools
to uncover complex causal relationships in second language learning, explore more
complex hypotheses with regard to learning conditions, learning processes, and learn-
ing outcomes, and promote the development of more comprehensive and robust
theoretical frameworks in the field.
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