
Journal of Functional Programming 1 (1): 61-72, January 1992 61

A study of sparse matrix representations for
solving linear systems in a functional language

ROGER L. WAINWRIGHT
Department of Mathematical and Computer Sciences, The University of Tulsa,

600 South College Avenue. Tulsa, OK 74104-3189, USA

MARIAN E. SEXTON
Amoco Production Company, Research Center, P.O. Box 3385, Tulsa, OK 741Q2, USA

Abstract

This paper compares three different sparse matrix representations in Miranda for solving linear
systems of equations: quadtrees, binary trees and run-length encoding. It compares the three
data structures in each of two common linear system solvers, Conjugate Gradient and SOR.
The test problems used in the paper arise from a simple reservoir model.

Capsule review

Scientific computing is one of the most important applications of computer technology in
which both performance and correctness are of paramount concern. Functional languages are
well-suited to writing provably correct scientific code, since their 'mathematical flavour'
permits elegant derivations of programs from the mathematical specifications commonly found
in the scientific computing literature. One of the most important design parameters in such
derivations is the representation of the ubiquitous array. The choice of array representation can
have a significant impact on the performance of the end product.

This short paper explores the effectiveness of several representations of sparse matrices in a
non-strict functional language, in the context of solving linear systems of equations using two
common algorithms from the scientific computing literature. The methods used are relatively
straightforward, but the clear presentation and thorough analysis provides valuable insight
into the solution of an important class of problems considered notoriously difficult for
languages without efficient array operations. The paper should be useful to anyone interested
in solving scientific computing problems in a purely functional language.

1 Introduction

Functional programming languages have many advantages. These languages
emphasize describing the results of a computation and focus less on how to perform
the computation. Consequently, functional programs tend to be easier to read, write,
verify and modify than procedural programs. In a so-called declarative language, the

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

62 Roger L. Wainwright and Marian E. Sexton

programmer approaches the task at a high level of abstraction. Modern functional
languages support pattern matching, user-defined data types, polymorphic types,
functions and other features.

This study used Mirandaf, a modern functional language system developed by
Turner (1985, 1986). Miranda is a non-strict language in that a computation can have
a well-defined outcome even when it contains some undefined component
computations. The language allows this so long as the outcome does not rely on the
resolution of these undefined components. Miranda employs lazy evaluation, that is,
the evaluation of functions and arguments takes place only when some portion of the
computation requires its results. Miranda allows infinite data structures, higher-order
functions and polymorphism for flexibility in its typing restrictions (for details see
Fleck, 1990). This particular application did not make use of Miranda's non-strict
semantics or higher-order functions. However, Miranda's algebraic types were found
to be quite helpful and were used extensively.

In functional languages, lists and trees are the natural data structures to use.
However, many applications require different data structures, such as arrays. In a
functional setting, arrays may be harder to implement efficiently. Until recently, it has
been common practice not to consider a functional language for such applications,
even if the use of arrays constitutes only a small portion of the total computation.
Usually, a functional language is not considered for scientific computations, especially
large applications, because of performance issues. Some recent projects have dispelled
this notion. Sisal is general-purpose applicative language. Feo et al. (1990) discuss
Sisal's performance as comparable to that of FORTRAN for scientific applications.
Arvind et al. (1988) and Ekanadham et al. (1987) demonstrate the success of
functional programming for scientific computation using parallel hardware. Our
intent in this paper is to provide greater insight into the abstract data type, array, and
into various implementations for arrays, in Miranda, for an industrial scientific
application.

2 The Problem

Many scientific problems require the solution of linear systems of equations where the
coefficient matrix is large, sparse and banded. Implementation of sparse banded
matrices in a non-functional language is typically accomplished by storing each band
as a one-dimensional array (vector). Isolating rows of a matrix, one at a time, is an
essential operation for applications using matrices. Therefore, vectors are 'offset'
such that the /th element in each vector corresponds to the rth row in the sparse
matrix. Storing bands of a matrix as vectors is extremely efficient in both time and
space in a non-functional language. This representation, however, is very inefficient
for expressing a banded sparse matrix in a functional language. Representing each
band as a list of numbers makes it difficult to extract and perform row operations
efficiently.

This paper compares three different sparse matrix representations in Miranda for
solving linear systems of equations: quadtrees, binary trees and run-length encoding.

t Miranda is a trademark of Research Software Ltd.

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

Sparse matrix representations 63

> conj-grad::matrix-*-iter solution-*-
> itersolution

> conj_grad a (hersol x r p cnt)
> = until converge
> nextiter (hersol x r p cnt)
> where
> converge (hersol x r p cnt)
> = rr < eps
> where
> rr = vvdot r r
> eps = 000001
> nextiter (hersol x r p cnt)
> = (Itersol x' -' p' cnt')
> where
> cnt' = cnt + 1
> rr = vvdot r r
> x' = vvadd x (svmult alpha p)
> r' = vvsub r (svmult alpha q)
> p' = vvadd r' (svmult beta p)
> alpha = rr / pq
> beta = ((alpha * qq) / pq) — 1
> pq = vvdot p q
> qq = vvdot q q
> q = mvmult a p

Fig. 1 a. Conjugate Gradient method in Miranda.

Step 0. Initially choose x0 and let r0 = p0 = b — Ax. Then compute </"„, ro>. Then,
For k = 0,1,2,.. .
1. form qk = Apk

2. form <jpk, qky and (qk, qk}
3. (a) OLk = (rk,rky/<j>k,qk}

(b) Vk = (cck<qk,qk>/<pk,qk»-\
(c) <rk+1,rk+l} = Vk<rk,rky

0>)Ci=*.-
(C) />*+! = '•*+! + P t P *

Fig. 1 b. Mathematical specification for the Conjugate Gradient method.

It compares the three data structures in each of two common linear system solvers:
Conjugate Gradient and SOR. The test problems used in this paper arise from a
parabolic partial differential equation which is the two dimensional, single phase
diffusion equation from petroleum reservoir simulation. The partial differential
equation is approximated in space using an irregular block centred grid. This
approximation leads to a five point difference equation using central differences to
approximate the space derivatives and a backward difference to approximate the time
derivative. A similar approximation leads to a nine point discretization. The vast
majority of reservoir simulations are two-phase, non-linear, non-symmetric models.
This paper considers the more basic single phase, linear problem.

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

64 Roger L. Wainwright and Marian E. Sexton

The study investigated square reservoirs of size R = 2K, which yielded, in each case,
a five-banded, sparse, symmetric, positive definite linear system of size N = R2to solve
for K— 1,2,.... The particular reservoir model used in this paper involves 38 time
steps. Thus, for this reservoir simulation it was necessary to solve 38 different linear
systems using either the SOR or the Conjugate Gradient method to determine the
solution. The functional specification of this problem indicates its potential for
parallel processing according to Page et al. (1990).

3 Conjugate Gradient and SOR in Miranda

Throughout this paper, the authors will use the notation of the Miranda functional
language. The meaning of Miranda, for the most part, should be fairly clear to the
reader even with no prior knowledge of Miranda. For example, consider the Miranda
function, conj-grad in Fig. 1 a. The function conj_grad solves the linear system Ax =
b using the Conjugate Gradient method. Notice how the Miranda implementation of
the Conjugate Gradient Method shown in Fig. 1 a closely resembles the traditional
mathematical specification found in Fig. 1 b. In Fig. 1 b, rk is the residual vector
associated with the approximate solution vector xk at each iteration. The definition
of r is b — Axk and it must be null when xk is the exact solution. pk represents the
direction vector of the gradient at the A:th iteration, and < > denotes the inner
product of two vectors. This demonstrates one of the primary advantages of
specifying a problem in functional form, that of its simplicity. Note further that the
function conj_grad in Fig. 1 a is written abstractly, and that it is independent of the
actual implementation of matrices and vectors. Figure 2 illustrates the SOR method
in Miranda for solving the same linear system Ax = b. The sor function, like the
conj_grad function, is easy to read because it directly corresponds to the mathematical
specification found in textbooks. Again, this function specifies what is to be done
independent of the implementation of vectors and matrices. The abstract data types
for vectors and matrices, which could be used in a non-functional language as well,
are shown below along with a list of associated operations.

Abstract Type Signatures

> abstype vector, matrix

> with

> apply

> breakvect

> lower-band

> makevect

> mmadd

> mvmult

> subscript

: (num -9

: vector -

:num->

• num) -»• vector -9- n«w -»• vector

->• [WH/M]

[nuffl] -* matrix

: [num] -9- vector

: matrix -> matrix -> matrix

: matrix

: vector -

-*• vector -9- vector

->• MMW - > « M W

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

Sparse matrix representations 65

svmult

update

upper_band

vfoldl

vmap

vmap2

vneg

vvadd

vvdot

vvmult

vvsub

: num -*• vector -*• vector

: vector -*• num -> num -> vector

: num -»• [num] -*• matrix

: (* -»• MMW ->•*)-»•*-»• vector -> *

: (««m -> AIMW) -»• (vector -> vector)

:(num-+num-+num)^>-(vector ̂ -vector ^-vector)

: rector -»• vector

: vector -»• vector ->• rector

: rector ->• vector -> num

: rec/or ->• vector -> vector

: vector ->• rector -> vector

4 Array representations

</./ Quadtree representation

The quad data structure shown below (in Miranda) emits an economical
representation for matrices. Burton and Kollias (1989), Wise (1986) and Wise and
Franco (1987) elaborate on the quad data structure for sparse matrices. The vector
abstract data type shown below (in Miranda) is a tuple where the first value indicates
the vector length, and the second represents an implementation of a vector as a list
of numbers. The abstract data type for a matrix is also a tuple where the first value
is the number of rows in the matrix, and the second represents the matrix as a quad

vector = = (num, [num])

matrix = = (num, quad)

quad :: = Quad quad quad quad quad | Diag num

In this study, the size of the matrix, represented in quad form, must be 2" by 2d for
d = 0,1,2.. . (it is relatively easy, with some additional work, to represent matrices in
the quad form that are not a power of two). If a matrix has a constant value along
the main diagonal, such as three, and all off-diagonal values equal to zero, then a
single value, Diag 3, represents the contents of the matrix. Note that Diag 3 can
represent a quad tree of any allowed size. A value of Diag 0, in this case, represents
a zero matrix. If the matrix is not of this form, then the data structure divides the
matrix into four subtrees of equal size, 2"*"1' by 2<d~l). The order of the quadrants was
arbitrarily set from left to right as northwest, northeast, southwest and southeast. In
this way, each matrix has a unique representation. The quad representation exhibits
a saving in memory, since the zero values can be compressed into Diag num's.
Furthermore, it represents a saving in time, because operations which use Diag num
are extremely efficient. The size of the matrix that Diag num represents depends on
the context in which it appears. An example quad expansion is given below. Figure 3

FPR2

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

66 Roger L. Wainwright and Marian E. Sexton

>sor
> :: matrix-+iter_solution->-iter_solution
> stepsor
> :: matrix^- \num\->iter solutions
> itersolution
>
> sor a (Itersol x r b main_diag cnt)
> = until converge
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

nextiter
(Itersol x r b main_diag cnt)

where
converge

(itersol x r b main_diag cnt)
= (rr < eps)

where
rr = vvdot r r
eps = 000001

nextiter
(Itersol x r b main_diag cnt)
= incr-cnt a

(stepsor
a [1 . . lin_sys-size]
(hersol x r b

main_diag cnt))

> incr_cnt a {Itersol x r b main_diag cnt)
> = (Iter^sol x r' b main_diag (cnt+ 1))
> where
> r' — vvsub b {mvmult a x)
>
> stepsor a []
> (Iter^sol x r b main_diag cnt)
> = (Itersol x r b main_diag cnt)
>
> step_sor a (i: is)
> (Iter_sol x r b main_diag cnt)
> = stepsor
> a is
> (Iter_sol x' r b main_diag cnt)
> where
> xi_new = xi_old + w/aii * ri
> ri = bi — (vvdot' x ai)
> ai = subscript-mat a i
> bi = subscript b i
> aii = subscript main_diag i
> w = 1-66
> xi-.old = subscript x i
> x' = update x i xLnew

Fig. 2. SOR method in Miranda.

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

Sparse matrix representations 67

2 3 0 0 0 0 0 0

12 3 0 0 0 0 0

0 12 3 0 0 0 0

0 0 12 3 0 0 0

0 0 0 12 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 2

2

1

0

0

3

2

1

0

0

0

0

3

2

1

0

0

0

0

3

2

1

0

0

0

0

3

0

0

0

0

>

Fig. 3. (a) Sparse matrix; (b) Quad representation for Fig. 3a.

depicts an 8 x 8 banded matrix along with the corresponding unique quad
representation

Examples:

(4, Diag 3) represents 3 0 0 0 and

0 3 0 0

0 0 3 0

0 0 0 3

(4, Quad {Diag 3) represents 3 0 0 1

{Quad {Diag 0) {Diag 1) {Diag 0) {Diag 0)) 0 3 0 0

{Quad {Diag 0) {Diag 0) {Diag 2) {Diag 0)) 0 0 3 0

{Diag 3)) 2 0 0 3

4.2 Binary tree representation

The study considered a binary tree structure for representing rows of a matrix. A
matrix, then, is a list of binary trees. The bin-tree structure, in the following Miranda
definition, represents a matrix row by a binary tree in which all of the valid numerical
data are in the leaves of the tree

vector = = {num, [num])

matrix = = {num, [bin_tree])

bin-tree :: = Bin_tree bin_tree bin-tree \ Scalar num

A Scalar num represents a single number or any group of numbers that are all the
same. The compression of a group of like numbers into one Scalar num constitutes
a saving in memory over, for example, a representation that has only one value in

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

68 Roger L. Wainwright and Marian E. Sexton

Table 1. Test results for various size reservoir models using Conjugate Gradient with
different array representations.

RxR

size

2
4
8

16
32
64

NxN
Matrix

size

4
16
64

256
1024
4096

Quad

3-32
26-78

185-55
1,146-93
6,389-28

32,28618

CPU time (s)

Binary tree

3-68
37-53

332-58
2,760-45

26,442-67
*

Run-length

3-67
31-72

20508
1,259-38
8,514-57

74,941-83

* Did not finish after 200,000 seconds.

each leaf or node. This representation is conducive to sparse matrices. The definition
for vectors, however, which are dense in this problem, remains lists of numbers

Examples:

(4, [(Bin-tree (Bin-tree (Scalar 3) (Scalar 0)) represents 3 0 0 0

(Scalar 0)),

(Bin-tree (Bin_tree (Scalar 0) (Scalar 3))

(Scalar 0)),

(Bin_tree (Scalar 0)

(Bin_tree (Scalar 3) (Scalar 0))),

(Bin_tree (Scalar 0)

(Bin^tree (Scalar 0) (Scalar 3)))])

0 3 0 0

0 0 3 0

0 0 0 3

(4, [(Bin-tree (Bin-tree (Scalar 3) (Scalar 0)) represents 3 0 0 1

(Bin-tree (Scalar 0) (Scalar 1))), 0 3 0 0

(Bin-tree (Bin-tree (Scalar 0) (Scalar 3)) 0 0 3 0

(Scalar 0)), 2 0 0 3

(Bin-tree (Scalar 0)

(Bin-tree (Scalar 3) (Scalar 0))),

(Bin-tree (Bin-tree (Scalar 2) (Scalar 0))

(Bin-tree (Scalar 0) (Scalar 3)))])

4.3 Run-length encoding representation

The third data structure the study considered represents a sparse matrix using a run-
length encoding scheme. A Run-pair, shown in the definition below, consists of the
repetition factor followed by the numerical value. Thus, runJen is either a Run-pair

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

Sparse matrix representations 69

Table 2. Test results for various size reservoir models using SOR with different
array representations.

RxR NxN CPU time (s)
Matrix

size size Quad Binary tree Run-length

2 4 34-40 53-32 53-78
4 16 265-42 44802 385-73
8 64 2,255-72 3,09702 2,081-47
16 256 26,379-45 22,822-42 13,595-83

or a list of nums. In this way, a list of nums depicts a dense vector, which is more
efficient, and a run-length scheme depicts a sparse vector. A matrix is a collection of
vectors made up of Run^pairs

vector = = (num., [run_len])

matrix = = (num, [[run Jen]])

run-len :: = Run^pair num num \ List [num]

Examples:

(4, [[Run-pair 1 3, Run_pair 3 0] represents 3 0 0 0

[Run_pair 1 0, Run^pair 1 3, Run^pair 2 0] 0 3 0 0

[Run-pair 2 0, Run_pair 1 3, Run_pair 10] 0 0 3 0

[Run-pair 3 0, Run^pair 1 3]]) 0 0 0 3

(4, [[Run-pair 1 3, Run^pair 2 0, Run_pair 1 1] represents 3 0 0 1

[Run-pair 1 0, Run_pair 1 3, Run_pair 2 0] 0 3 0 0

[Run-pair 2 0, Run_pair 1 3, Run^pair 10] 0 0 3 0

[Run-pair 1 2, Run_pair 2 0, Run_pair 1 3]]) 2 0 0 3

In summary, representing sparse banded matrices as quads or binary trees is possible
in a non-functional language. However, these representations are more costly in time
and space compared with representing each band as a vector. Run-length encoding,
however, is an efficient representation for sparse matrices in non-functional languages.
However, if the sparsity has a regular pattern, like bands, storing the bands as vectors
is the preferred representation.

5 Vector representations

This investigation considered several different data structures for vectors other than
lists of numbers. Wise (1986) and Wise and Franco (1987) suggest the use of a sparse
matrix to represent a vector. This sparse matrix contains all zero values on the off
diagonals with the values of the vector itself placed on the main diagonal. Wise's
method then converts the matrix representation of the vector to a quad form. In this

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

70 Roger L. Wainwright and Marian E. Sexton

way, Wise proposes the quadtree as a uniform data structure to represent every
object: scalar, vector and matrix. However, Wise was primarily dealing with
problems which contain matrix-matrix and matrix-vector operations, and for these
operations this data structure works quite well. In the current simulation, which has
virtually all vector-vector and scalar-vector operations, only two matrix-vector
operations and no matrix-matrix operations, Wise's data structure is not practical.
Operations involving two dense vectors executed faster when the vectors were
represented as lists of numbers compared to a quad-like representation.

6 Results

The current research investigated reservoirs of size R = 2K, yielding matrices of size
N= R2, for K= 1..6. The study ran all of the simulations on a Sun4 workstation
using release 2.009 (November 14 1989) of Miranda, and each simulation involved
solving a series of 38 linear systems.

6.1 Conjugate Gradient results

Table 1 shows the results of solving various sized reservoirs using the Conjugate
Gradient method with each array data structure. In each case, the quad representation
for a matrix was clearly the best and the binary tree representation was the worst.

6.2 SOR results

Table 2 shows the results of solving various sized reservoirs using the SOR method
with each array data structure. The nature of SOR, independent of the implemented
data structure, is such that it requires more memory than the Conjugate Gradient
method (problems larger than 256 x 256 ran out of memory). In the case of SOR, the
best matrix representation was run-length encoding. The larger the model, the better
the run-length data structure performed. The quad representation worked best for
small models; however, these are of little interest. The quad representation actually
performed worse as the matrix size increased. This suggests that when using SOR and
dense matrices, the quad representation for matrices should be avoided. Recall that
the SOR method, at each iterative step, involves the rth row of the matrix. Hence, it
is necessary to isolate each row of the matrix, one at a time. This is very easy for
matrices constructed as a list of binary trees or as a list of Run_pairs, since the *th item
in the list can be located very easily. In the quad representation of a matrix, however,
isolating a row of a matrix is not natural and requires a tremendous effort. The poor
performance of the quad representation, when using SOR, reflects the problem of row
isolation. The Conjugate Gradient method, however, does not require isolating any
row of the matrix, thus the quad representation exhibited superior performance.

6.3 Cost analysis

If the number of non-zero elements in a vector of size n is 0(w), then the memory cost
of representing the vector using quads, run-length encoding, binary trees, or lists of
numbers is 0(«) in each case. Furthermore, the cost of representing a dense matrix of

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

Sparse matrix representations 71

Table 3. Analysis of mvmult using Conjugate Gradient with different array
representations.

Timing analysis

CPU time for one mvmult normalized
for Quadtree

CPU time for the reservoir model
normalized for Quadtree

% CPU time for the reservoir model
attributed to mvmult

Array
representation

Quadtree
Run-length
Binary tree
Quadtree
Run-length
Binary tree
Quadtree
Run-length
Binary tree

Nx

256

100
106
2-64
100
110
2-41
88
85
96

TV matrix

1024

100
1-34
3-85
100
1-33
414
93
94
87

size

4096

100
2-21
9-38
100
2-32

> 10*
95
91

>90*

* Estimated.

size n by n is 0(«2) for all three representations. When the number of non-zero
elements in a vector of size n is 0(1), sparse, the memory cost of representing the
vector using quads, run-length encoding, or binary trees is 0(1). Furthermore, the cost
of representing a sparse matrix of size n by n is 0(«) for all three array representations.
The run-length and the binary tree representations are able to reduce memory due to
sparsity only on a row by row basis. The quad tree representation, however, takes
advantage of blocks of zeros across several consecutive rows or columns. This ability
to compress blocks of zeros is the primary reason the quadtree representation is
superior when using the Conjugate Gradient method. Notice in Fig. 1 a that each
Conjugate Gradient iteration uses the matrix a only once, in mvmult (matrix-vector
multiply). The other operations involve vector-vector dot products, scalar-vector
multiplies, and in general, only operations involving vectors. Independent of the
matrix representation, these vectors are dense, and are represented as lists of nums.

6.4 mvmult analysis

The dominant calculation during each iteration is mvmult. The cost of the mvmult
operation is independent of the data values, but dependent on the data structure.
Therefore, the performance of a data structure within mvmult determines its success
in the entire simulation. Since the quadtree representation takes greater advantage of
the sparsity of the matrix, it was clearly superior.

Table 3 shows the time required for a single mvmult, normalized for quadtree, using
all three array representations. In addition, Table 3 gives the total CPU times from
Table 2, also normalized for quadtree, using all three array representations. Finally,
Table 3 shows mvmult's percentage of total CPU time when solving various sized
reservoir models. As expected, the percentage of time spent in mvmult is quite high
and it is independent of array implementation.

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

72 Roger L. Wainwright and Marian E. Sexton

7 Summary, conclusions and further research

The work reported in this paper represents the first part of a two part research project.
The ultimate goal of the overall project is to use a functional language to solve a large
'industrial size' project, i.e. reservoir modelling, in this case. The authors contend
that functional programming has enormous benefits not only in the ease of specifying
a problem, but also in the potential for parallel decomposition of the problem (for
details see Page et al., 1990). This prototype application spent the majority of its
execution time solving sparse linear systems. Further, it implemented and tested three
different array representations, written in Miranda, using two common linear system
solvers, Conjugate Gradient and SOR. The quad representation for sparse matrices
out-performed the other representations when using the Conjugate Gradient method.
However, run-length encoding proved to be the best sparse matrix representation
when using SOR.

Acknowledgements

We would like to thank F. Warren Burton for his thorough reading of the
manuscript, which resulted in numerous improvements and clarifications. We
gratefully acknowledge the excellent suggestions made by the referees.

References

Arvind and Ekanadham, K. 1988. Future scientific programming on parallel machines.
Laboratory for Computer Science, Massachusetts Institute of Technology, CSG-Memo-272.

Burton, F. W. and Kollias, J. G. 1989. Functional programming with quadtrees. IEEE
Software, 90-97 (Jan).

Ekanadham, K. and Arvind. 1987. SIMPLE: Part I -An exercise in future scientific
programming. Laboratory for Computer Science, Massachusetts Institute of Technology,
CSG-Memo-273. (Simultaneously published as Technical Report RC 12686, IBM T. J.
Watson Research Center, Hawthorne, NY.)

Feo, J. T., Cann, D. C. and Oldehoeft, R. R. 1990. A report on the Sisal language project.
J. Parallel and Distributed Computing, 10: 349-366.

Fleck, A. C. 1990. A case study comparison of four declarative programming languages.
Software — Practice and Experience, 20 (1): 49-65 (Jan).

Page, R. L., Sexton, M. E. and Wainwright, R. L. 1990. A functional program describing a
simple reservoir model and its potential for parallel computation. In Proc. ACM/IEEE
Symp. on Applied Computing, pp. 85-91.

Turner, D. 1985. Miranda: a non-strict functional language with polymorphic types. In
Functional Programming Languages and Computer Architectures, Volume 201 of Lecture
Notes in Computer Science, Springer-Verlag.

Turner, D. 1986. An overview of Miranda. SIGPLAN Notices, 158-166 (Dec).
Wise, D. S. 1986. Parallel decomposition of matrix inversion using quadtrees. In Proc. Int.

Conf. on Parallel Processing, pp. 92-99.
Wise, D. S. and Franco, J. 1987. Costs of quadtree representation of non-dense matrices.

Computer Science Department, Indiana University, Bloomington, Indiana, Technical
Report No. 229 (Oct).

https://doi.org/10.1017/S0956796800000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000265

