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EVEN WHITEHEAD SQUARES ARE NOT PROJECTIVE 

R. JAMES MILGRAM AND P E T E R ZVENGROWSKI 

The projectivity of the Whitehead square wn = [in, in] in 7r2n-i(5ri) has been 
studied by Randall [6] who proved tha t if wn is projective then n must be a 
power of 2 or one less than a power of 2. Here we solve the question in the 
even case, proving by means of bo homology: 

T H E O R E M . w2n <E 7r4„-iProJ(S2w) if and only if n = 1, 2, 4. 

We should also note tha t all a t t empts by either author to prove this result 
using ordinary i^-cohomology theory have failed. Hence, the techniques 
developed here may be of independent interest. Since writing this note it has 
come to our at tent ion tha t Randall has also proved the "only if" par t of the 
above theorem, by rather different methods [7]. 

1. Fac tor i za t ion of w2n. For completeness we first give a short proof due 
to I. M. James, which simplifies a previous proof of ours, t ha t w2, wA, and w8 

are projective. 

1.1 PROPOSITION. w2n G 7r4„_iPro3(S2w) ifn = l, 2, 4. 

Proof. Let £2, £4, £s be the respective Hopf maps, and let i2n generate ir2n(S
2n). 

Since £2w is projective, so is (2i2n) o £2w by natural i ty . From the left distributive 
law (cf. [2, p . 93]) 

(2i2n) o %2n = £2w + &n + H(£2n) • w2n = 2£2w + w2n. 

Hence, by [4, Lemma 1.1], w2n is projective. 
From now on we suppose tha t 

w2n : SAn~l - > S2n 

is projective, which gives a factorization 

54»-l ^ • S2U 

\ p 4n—1 
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where P2n
An~l = P P 4 W _ 1 / P P 2 W - 1 , and y is the composition of the collapsing 

map with the s tandard double covering. 

We now sharpen this somewhat by proving: 

1.2 PROPOSITION. For some odd number t there is a factorization 

w2n • t 

2rc+l 

ifn 5* 1 ,2 ,4 . 

Proof. We need two lemmas. 

1.3 LEMMA. There exists a map Ô : P2n
m~x —> i V " 1 V S2n such that 

(a) ô*(e2n) = e2n + 2e2n in H2n{ ; Z ) , and 

(b) [fry] = ( M , 0, s[i2»', i 2 J ) G 7r4 ,-i(P2n4n-1 V S2") for some integer s. 

Here e2n, e2n are the respective homology generators of H2n(P2n
An~l)> H2n(S

2n), 
and i2n

r generates Tr2n{P2n
An~l) = Z. 

Proof. Let p : P« 4n~1 

5 2 n - l C 

2n"*" A —» 52?z be defined by the cofibration sequence: 

J 
* P 2 n - l 

4n— 1. 
- • P2nAK- - > 5 2 w 

The diagram also shows tha t £>Y is null homotopic, and one readily finds t ha t 
P*(e2n) — 2e2n. We now define 5 by means of the following diagram and 
cellular approximation: 

pn An—1_ 
•Lin P,nin~X V 52K = ( P 2 B

4 B - 1 X 52")(4„-l) 

Pîn*" -1 X P*»4"-1 2 X ^> P2™4"-1 X S 2 " 
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Property (a) is immediate, and 

i*[h] = [(1 X p]Ay] = ([y],[py]) = (M.O) 
so 

[57] = (M.o.s-[*',*]) 

as desired. 

1.4 LEMMA./* : H2n(P2n
m~1) —* H2n(S

2n) has even degree provided n ^ 1, 2, 4. 

Proof. If deg/* = 2& + 1 is odd, then the composition 

In 

/ V (-É) 
-> i V w - 1 V S27? > S2n V S 2 W • -+S2 

has degree 1 in H2n{ ; Z), contradicting [1, Theorem 1.2] unless n = 1, 2, 4. 

Now we can complete the proof of 1.2. By 1.4, degf* = 2& in H2n for some &. 
The composition F o {} V ( —fe)) o ô then has degree 0 in H2m hence factors 
through P2n+i4n~\ Furthermore, by 1.3(b) 

[Fo(fV H ) ) o « o 7 ] = M / V (-*))*([7],0,5[i',i]) 
= F*(w2n, 0, s[2&i, — ki\) = w2n(l — 2sk2). 

Using 1.2 we now produce a further factorization of w2n • t. Consider the 
fibration 

F^>S2n^K{Z,2n). 

Since P2n+i4w_1 is 2w connected, h : P2n+i*n~l —> S2n can be factored through F} 

giving a commutative diagram 

g 
2 » + l - • F 

S* 

According to [5, p. 153], the natural map 

f: 2F->K(Z,2n)/S2n 

induces isomorphisms in homology through dimension in. We write 
Xi 6 Hi(P2n+i4n'~1; Z/2), 1 £ H2n(K(Z, 2n);Z/2) for the respective generators, 
and set y = S"V*(t2) G Hm~l(F; Z/2), where we identify H*(K(Z, 2n)) œ 
H<(K(Z, 2n)/S2n), q > 2n. 
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1.5 LEMMA. g*(y) = x4w.-i. 

Proof. Clearly, Sqw
2w(i) = y with zero indeterminacy. Now consider the 

cofibration sequence 

h j I 

and let */ generate #2W(C^; Z) œ Z, S4n-i generate HAn~l {P 2n+l
m~l ] Z) œ Z, 

so /*(Sx4n-i) generates i74n (CA; Z) œ Z. Following the proof of Theorem A 
in [6] we obtain 

v\Jv = /2/*(Sx4n_i). 

In Z/2-cohomology this implies Sq^2n(i) = x4n_i with zero indeterminacy, so 
by naturality 

*4»-i = Sq t t,*(i) = g*Sq^(0 = g*(y). 

1.6 COROLLARY. Writing T for the composition 

2P2n+iAn-1 —^> 2F^->K(Z, 2n)/S2n 

then r*(t2) = 2(*4n_i) in H'n(XP2n+1
4n-1 ; Z/2) . 

2. Application of ô0-homology. Now we show that there can be no map 
r satisfying 1.6 (n ^ 1, 2, 4 as before). If n = 1, 3 (4) then i2 = Sq2(Sq2w~20 
in H*(K/S2n) but x4w_i is not in im (Sq2). Similarly, using the relation 

Sq8s+46 = Sq2(Sq8sSq2t) + Sq^Sq^Sq3*) + Sq4(Sq850 

we see that 1.6 is impossible for n = 2(4). In the remainder of this section we 
use fro-theory localized at 2 as in [3] (especially § 4) to prove the result for 
n = 0(4). 

Let vi(m) be the greatest power of 2 occurring in m, so ^2(8) = 3 etc. Then 
we have 

2.1 LEMMA, a) b0(2n-i)(P
2n~1) = Z/2n~1 © Z(2), generated by a, b respectively, 

and for any operation <p detecting Sq4 (cf. [4]), 

<p(b) = 2"<n>+1- (odd) -a. 

b) bQ(An-1)(P2n+i4n~1) = Z/2n~1 © Z(2) generated by â, b respectively, and 

p(5) = 2^w+2. (odd) -a. 

Proof, (a) Apply 6o(2W> to the cofibration sequence S° —> Min-\ —> S(P2n_1) 
(see e.g. [4, Lemma 4.1]) which shows èo^S-P 2 * - 1 ) = Z/2n~l © Z(2). 

Next, consider the map i : p ^ - i _> p - From [4; 4.6] 60(2»-D (Pœ) = Z/2n 

with generator X and it is easily checked that i*(a) = 2X, i*(&) = X. Now 
[4; 4.6] shows <p(\) = 2"2(n)+2 • (odd) • X. On the other hand, if we project 
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P : p2n-l_>p2n-l/p2n-2 = £2»+! t h e n p ^ = Q a n ( J ^ ) j s ^ g e n e r a t o r 

0 in &0(2n-i)('S2n"1) = Z(2>. But <p(0) = 0, hence <p(b) = w - a and (a) follows. 
The proof of (b) is similar. 

2.2 PROPOSITION. 77zere is a map 

K : 22»+i(p2»-i) ->K(Z, 2n)/S2n 

inducing K* : fro(4n)(22w+1 P2*-1) —> b^n){K{Z, 2n)/S2n) and K* is injective onto 
a direct summand with complementary summand a direct sum of Z /2 ' s . 

Proof. Consider the diagram 

5° • M2n-i - • ^ P 2 " " 1 

*2°(K(Z, 2n)/S2n) 

*K(Z,0)/S°- •+X = K(Z,0)/i:oK(ZJ2n) 

+ 2 ip« -• ^(Pœ/P2n-1) 

where U2n-ij Uœ represent the respective fundamental cohomology classes and 
K2n_i, Kœ are induced by the respective cofibration sequences. The result is 
verified for K^ using the change of rings isomorphism Ext^(2) (H*(X) ® 
s/(2)/s/(2)S&u Z / 2 ) = Ext^ilFtX), Z/2) and direct calculation to show 
Ker(Kœ*) is a free sum of copies oîs/u and then applying the Adams spectral 
sequence. Next, we consider the cofibration in the diagram 

2 ° £ ( Z , 2n) 

W e claim 

K(Z, 0) -> X = K(Z, Q)/2°K(Z, 2n). 

[0 i ^ 2n 
[Z(2) i = 2n + 1. 

T o see this, note t ha t the Z / 2 cohomology of X through 2n + 3 is 

fQ n 2«+3, 
0 0 S n 2 ^ 1 / Sn2w+2# < M 

. . . , U, U, S q t, S q i , | S q 2 f t u ^ • 

From this 7T2n+i(X A 6o) = i?2n+iCX" A 6o) = Z(2> and the claim follows. 
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Now the proof of 2.2 is easily completed when we check against our diagram 
and see that fr0(2,?+i)21(Poo/P2n-1) = Z(2) also and maps isomorphically to the 
Z(2) in bo(2n)(X), after we have checked Z/2 generators. 

We now have our main result. 

2.3 THEOREM. For n = 4m, m > 1, there cannot exist a map r : 2P2n+iAn~l —> 
K(Z} 2n)/S2n such that r*(t2) = 2x4n_i in HAn(2PVi4*-1; Z/2) . 

Proof. Assuming r exists, application of &o(4n) gives 

r*(25) = r(**(a)) + s(K*(b)) + A 

where X is of order 2. The hypothesis on r*(t2) guarantees that s is odd. Apply­
ing ç and using naturality gives 

2"2W+2r*(2â) = r 2"<n>+2K*(a) + 5 2'*<n)+1K*(a) + e2n-2**(a) 

= 2"<w>+1- (odd) .* . (a ) . 

But 2.1 and 2.2 show K*(O) generates a direct summand in &o(4W) (K(Z, 2n)/S2n) 
of order 2n_1, and the above equation has no solution for m > 1. 
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