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EVEN WHITEHEAD SQUARES ARE NOT PROJECTIVE

R. JAMES MILGRAM AND PETER ZVENGROWSKI

The projectivity of the Whitehead square w, = [1,, 1,] in m2,_1(S") has been
studied by Randall [6] who proved that if w, is projective then n must be a
power of 2 or one less than a power of 2. Here we solve the question in the
even case, proving by means of b, homology:

THEOREM. W, € w4, 17" (S™) if and only if n = 1, 2, 4.

We should also note that all attempts by either author to prove this result
using ordinary K-cohomology theory have failed. Hence, the techniques
developed here may be of independent interest. Since writing this note it has
come to our attention that Randall has also proved the “only if’" part of the
above theorem, by rather different methods [7].

1. Factorization of w,,. For completeness we first give a short proof due
to I. M. James, which simplifies a previous proof of ours, that ws,, w,, and ws
are projective.

1.1 PROPOSITION. ws, € w4 1F7N(S™) if n = 1, 2, 4.

Proof. Let &, &4, &5 be the respective Hopf maps, and let 75, generate g, (S*").
Since &, is projective, so is (21s,) 0 £, by naturality. From the left distributive
law (cf. [2, p. 93])

(21%) O &9y = &op + &2 + H(E?n) CWay = 282, + W,

Hence, by [4, Lemma 1.1], w,, is projective.
From now on we suppose that

Wa, 1 Sl — S2n

is projective, which gives a factorization

Waoy

S

A 4

S4n—1

an—1
P?rlm
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where P, "' = RP"1/RP*1 and v is the composition of the collapsing
map with the standard double covering.

We now sharpen this somewhat by proving:

1.2 ProPOSITION. For some odd number t there is « factorization

W, L

Sin—1 > S

ifn #1,24.
Proof. We need two lemmas.

1.3 LEMMA. T'here exists a map & : P9, 1 — Py, =1 \/ S such that
(@) 6x(e2,) = €9, + 262, 10 Hop( ; Z), and
(b) 7] = (7], 0, slia', 12n]) € Tana (Pt V S™) for some integer s.

Here es,, €2, are the respective homology generators of Hz, (P2, '), H,(S*),
and 1., generates mq, (P2, t) = Z.

Proof. Let p : Py,*"~1 — 5% be defined by the cofibration sequence:

S‘Zﬂ—]( j 3 P2nA147l~1 —) 1)2"471—1 p

’ 52”
S

an—1

The diagram also shows that pvy is null homotopic, and one readily finds that

px(es,) = 2€2,. We now define § by means of the following diagram and
cellular approximation:

Pymtetmn Pyt \/ S = Pyt X S™) ey

| 19—

Poytn=t i Pyt LX D p 15 o
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Property (a) is immediate, and

isy] = [(1 X plAy] = (Iv], [p7]) = ((v), 0)

SO
[67] = ([7]) 0, N [7;/1 /L])
as desired.
1.4 LEMMA., fx : Hpp (P2, 1) — H,,(S?) has even degree provided n # 1, 2, 4.
Proof. If deg f+ = 2k + 1 is odd, then the composition

8 fV (—k)

Pyl —————— P, dn—1\ S — 5 Sy S

—_— S2n
has degree 1 in Hs,( ; Z), contradicting [1, Theorem 1.2] unless n = 1, 2, 4.

Now we can complete the proof of 1.2. By 1.4, deg f+ = 2k in H,, for some k.
The composition Fo (f V (—k)) o6 then has degree 0 in Hs,, hence factors
through P, 1*""1. Furthermore, by 1.3(b)

(Fo(fV (=k)odov] = F«(fV (—k))+([~], 0, s[¢, 1])
Fx(wa, 0, s[2ki, — ki]) = wa,(1 — 2sk?).

Il

Using 1.2 we now produce a further factorization of ws, - f. Consider the
fibration
u i
F— 8" — K(Z,2n).

Since P2,+1*""! is 2n connected, k : Py, 1"~ — S can be factored through F,
giving a commutative diagram

Popy "1 > F
Y h u
Sin-1 wt > S

According to [5, p. 153], the natural map

V:ZF—> K(Z,2n)/S™
induces isomorphisms in homology through dimension 4n. We write
X, € H (P11, Z/2), « € H™(K(Z, 2n); Z/2) for the respective generators,

and set y = ZW*(2) € H"(F; Z/2), where we identify HY(K(Z, 2n)) ~
HYK(Z, 2n)/S*™), ¢ > 2n.
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1.5 LEMMA. g*(y) = x4,_1.

Proof. Clearly, Sq,**(¢) = y with zero indeterminacy. Now consider the
cofibration sequence

J . -
Popii™1 5 S22 € — 2Py, 01,

and let v generate H*(Cy; Z) & Z, &4,—1 generate H" 1(Py, 1" Z2) X Z,
s0 I*(Z&4,-1) generates H* (Cy; Z) & Z. Following the proof of Theorem A
in [6] we obtain

v\Uo = t2l*(29_04n_1).

In Z/2-cohomology this implies Sq,*" (1) = x4,—1 with zero indeterminacy, so
by naturality

Kin1 = Sue™ (1) = £*Sq.* (1) = g*(9).

1.6 CorOLLARY. Writing 1 for the composition

2 ¥y
SPy i1 — SF—— K(Z, 2n) /S™

then () = 2 (x4,_1) in H"(ZPop1"1; Z/2).

2. Application of b,-homology. Now we show that there can be no map
7 satisfying 1.6 (n % 1, 2, 4 as before). If n = 1, 3 (4) then 2 = Sq*(Sq2"2.)
in H* (K /S?) but x,,_; is not in im (Sq?). Similarly, using the relation

Sq¥**h = Sq*(Sa*'Sq’t) + 5q'(Sq*Sq*) + Sq*(Sq*y)

we see that 1.6 is impossible for n = 2(4). In the remainder of this section we
use bo-theory localized at 2 as in [3] (especially § 4) to prove the result for
n=0(4).

Let v2(m) be the greatest power of 2 occurring in m, so »3(8) = 3 etc. Then
we have

2.1 LEMMA. a) bop_ny (P¥~Y) = Z/2"' @ Z(y, generated by a, b respectively,
and for any operation ¢ detecting Sq* (cf. [4]),

e(b) = 2™+, (odd) - a.
b) bocan—1) (Poup1™™Y) = Z/21 @ Z) generated by a, b respectively, and
o(b) = 2:M+2. (odd) - a.

Proof. (a) Apply by, to the cofibration sequence S° — Ma,—, — Z(P¥1)
(see e.g. [4, Lemma 4.1]) which shows by, (2P 1Y) = Z/2"1 @ Z ().

Next, consider the map 7 : P! — P®, From [4; 4.6] b,y (P”) = Z/2"
with generator X\ and it is easily checked that ix(a) = 2\, 7x(b) = \. Now
[4; 4.6] shows o(\) = 272™+2. (odd) - \. On the other hand, if we project
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p o Pl — p—1/pin=2 = G2+l then ps(a) = 0 and px«(b) is the generator
0 in bo(en—1) (S 1) = Z(oy. But ¢(0) = 0, hence ¢(b) = w-a and (a) follows.
The proof of (b) is similar.

2.2 PrROPOSITION. There is a map
K TPy 5 K(Z, 2n) /S

nducing ks : Dogan (¥ PP1) — by (K (Z, 2n)/S™) and k+ is injective onto
a direct summand with complementary summand a direct sum of Z/2's.

Proof. Consider the diagram

So > ﬂ[gnAl » F1pn—i
= Uzn—l Kop—1
S° S°K(Z, 2n) (K (Z, 2n)/S™)
S° K(Z,0) K(Z,0)/S° ——X = K(Z,0)/2°K(Z, 2n)
A A A
= U, Koo
S° — I —> SIP® 3 31(P*/ P2

©

where Us,—1, U, represent the respective fundamental cohomology classes and
Ken—1, ke are induced by the respective cofibration sequences. The result is
verified for k., using the change of rings isomorphism Ext e (H*(X) ®
L (2)/A (2).A 1, Z/2) = Exty, (H*(X), Z/2) and direct calculation to show
Ker (k.*) is a free sum of copies of .9/, and then applying the Adams spectral
sequence. Next, we consider the cofibration in the diagram

2°K(Z,2n) - K(Z,0) > X = K(Z,0)/Z°K(Z, 2n).

We claim

bO(i) (X) = {Z(z)

To see this, note that the Z/2 cohomology of X through 2n + 3 is

Sq27l+3L

on41 ont2
...,0,0,Sq 4, Sq L,{qubut

From this me,01(X A bo) = Hop1 (X A by) = Z(z and the claim follows.
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Now the proof of 2.2 is easily completed when we check against our diagram
and see that by, 21 (P*/ P 1) = Z also and maps isomorphically to the
Z 2 in boey (X), after we have checked Z/2 generators.

We now have our main result.

2.3 THEOREM. For n = 4m, m > 1, there cannot exist @ map v : Py "1 —
K(Z, 2n)/S%™ such that 7* (%) = Zxy_y in H¥(EPsp ™1 Z/2).

Proof. Assuming 7 exists, application of bguy, gives
1'*(21_7) = 7’(K*((L)) + S(K#(Z))) + A

where X is of order 2. The hypothesis on 7*(i?) guarantees that s is odd. Apply-
ing ¢ and using naturality gives

2722, (2@) = r 27224 (a) + 5 22 (a) + 2" %k (a)
= 2n™MF1. (odd) - ke (a).

But 2.1 and 2.2 show k«(a) generates a direct summand in byu, (K(Z, 2n)/S?™)
of order 2!, and the above equation has no solution for m > 1.
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