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ON fi4-SEQUENCES 

BY 

JOHN C. M. NASH 

ABSTRACT. In [2], Erdos showed that the counting function A(n) 
of a #2-sequence satisfies hmA(N)\og{'2 /n1'2 < oo. Here it is shown 
that A(n) satisfies an analogous relationship for ^-sequences! 
\jmA(n) log1 /4n/n1/4 < oo. 

Notation and terminology. A denotes a set of positive integers. nA — {a\ +a2 + 
• • • + an\di E A}. A(n) = \A H {1 ,2 , , . . . , n}\. A is a #4-sequence if the equation 

(1) n = a\ + <22 + • • • + tf£, a\ ^ <22 ^ • • • = a/ci at G A, 

has at most one solution for all n. 

Introduction. In [2], Erdos showed that 

(2) limA(n) log1/2 n/nl/2 < oo 

for all #2-sequences. I will show that the analogous relationship 

(3) limA(rt) log1/4 n/nl/4 < oo 

for all B\-sequences. 
Let A be a #4-sequence, so that A(N) <$C TV1/4. Then A is also a #2-sequence (as 

well as a #3-sequence) and therefore, if n is large enough, 

<**,,* (* f ) *.([!])'. 
Thus (3) would follow at once from 

(4) lim(2A)(n) log1/2 jn^1 < 00; 

and (4) would be true if 2A were a #2-sequence. While this is not the case -(a + c) + 
(b + d) = (a + b) + (c + d) — (a + d) + (b + c) - we shall see that 2A is close enough in 
structure to a #2-sequence for Erdos' proof of (2) to apply. 
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Lemma 1 below contains the essence of Erdos' argument. 

LEMMA 1. Let C be any sequence of positive integers and let Di denote the number 
of elements of C in the interval (I - l)N < c ^ IN, (/ = 1,2,..., N). If 

N 

(5) ^ D z
2 « i V , 

then 

(6) UmC(n) log1/2 n/n{/2 < oo. 

PROOF. (See [1], pp. 89-90.) 

Let rA(N) = Jn^N A(n)(\ogn/n)1/2. We shall show that TA(N) « : 1, where the 
implied constant is absolute. By Cauchy's inequality, 

(sm*m* x 
N D, A, . . , . . . .,., , 1 

2\ 

72 

Furthermore, 

> sr( lN \1/2(-L__L_\ 
= TA{N)^\\OglNj V/'/2 (/+1)>/2J 

Substituting in (A), we obtain 

N 

i=\ 

and (4) now yields the required inequality TA(N) <K \. • 

Thus if (5) is true when C — 2A, (4) holds and (3) follows. Accordingly, we study 
the strictly positive differences of elements from 2A in blocks of length N, [(/— 1), IN], 
1 ^ / ^ N9 just as Erdos did when proving (5) for /^-sequences. Since 

?H 
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except when D/ = 1, we have 

Z°i**Z 2') + E ' " E 2')•». 
D/=l 

and (5) will follow from 

Observe that there are precisely 

(?) 
positive differences that can be formed from elements of 2A in the /-th block, and 

that the difference lies in (0 ,N]. Thus, if 

S = l (ai,02>03,04) : 0/ £ ^ , Û / = A^2,1 = d\ + 02 — 03 — #4 = N >, 

then 

£(?)s*i, 
/=1 v y 

so that to prove (7) it suffices to show that 

(8) | S | « t f . 

We divide the 4-tuples in S into two classes: the first class to consist of those 4-tuples 

that satisfy, in addition to the conditions implicit in the definition of S, 

(9) ax ^ a3, ax ^ a4ja2^a3,a2^ 04, 

and the second class to contain the remaining 4-tuples. 

Consider the 4-tuples from the first class. If (a\,..., a\) and (a\,..., a\) belong to 

the first class and are such that 

01 + a2 — 03 — 04 = d\ + d2 — d3 — d4j 

then a\ + a2 + a'3 + a\ = ^ + <22 + 03+ 04; by the #4-property of A it follows that the 

numbers a\, tf2? 03? 04 form a permutation of the numbers a\1a21a
/
3Ja

,
4. In view of (9), 

this can only hold in the four cases (a\,a2,a'3,a4) = {ai^a^a^^a^), {a2^a\1a3^a4), 

(ai,tf2704,03) or (^2?01,04703). Thus, for each /?, 1 ^ n ^ N , there are at most 4-

tuples (^ i , . . . , #4 ) in 5 of the first class with a\ + a2 — 03 — 04 = ft. The contribution 

to 151 from the first class is therefore at most AN. 
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We now turn to the 4-tuples in S of the second class, i.e., those 4-tuples (01, . . . , 04) 
for which one of the conditions in (9) is violated. Assume, for example, that the first 
condition fails, so that a\ = 03 and 

CL\ + <22 — d?> — 04 = 02 — #4-

The contribution of such 4-tuples to \S\ is equal to A(N2) - the number of choices of 
a\ - times the cardinality \T\ of the set 

T = {(02,04) :at £A,at ^ N2 ,1 ^ a2 - a4 ^N\. 

The same bound applies in the case of any one of the remaining three conditions in (9) 
being violated, so that altogether there are at most 4A(N2)\T\ 4-tuples in the second 
class. Thus 

(10) |5| ^ 4N + 4A(N2)\T\; 

since 

(11) A(N2)<^NXI2, 

the desired bound (8) follows from 

(12) \T\<KNXI2. 

It remains to prove (12). Observe that 

(13) ( ' J ^#{(01,02,03,04) : a/ eA,a( ^ N2,1 ^ a4 - a2 < ax - a3 ^ Nj 

^ #|((2i,02,03, a4) : at eA,at ^ N2 ,1 ^ (ax - a3) - (a4 - a2) ^N\ 

= \S\. 

For \T\ ^ 2 we have 
f\T\ 

and we obtain, substituting (11) and (13) into (10), 

\T\2 <£N +Nll2\T\. 

This implies (12), and the proof of (8) - and therefore also of (3) - is now complete. 
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