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The Ising model has become a popular psychometric model for analyzing item response data. The
statistical inference of the Ising model is typically carried out via a pseudo-likelihood, as the standard
likelihood approach suffers from a high computational cost when there are many variables (i.e., items).
Unfortunately, the presence of missing values can hinder the use of pseudo-likelihood, and a listwise
deletion approach for missing data treatment may introduce a substantial bias into the estimation and
sometimes yield misleading interpretations. This paper proposes a conditional Bayesian framework for
Ising network analysis with missing data, which integrates a pseudo-likelihood approach with iterative data
imputation. An asymptotic theory is established for the method. Furthermore, a computationally efficient
Pólya–Gamma data augmentation procedure is proposed to streamline the sampling of model parameters.
The method’s performance is shown through simulations and a real-world application to data on major
depressive and generalized anxiety disorders from the National Epidemiological Survey on Alcohol and
Related Conditions (NESARC).

Key words: Ising model, iterative imputation, full conditional specification, network psychometrics, men-
tal health disorders, major depressive disorder, generalized anxiety disorder.

Recent years have witnessed the emergence of network psychometrics (Borsboom, 2008;
Marsman & Rhemtulla, 2022; van der Maas et al., 2006) , a family of statistical graphical models
and related inference procedures, for analyzing and interpreting the dependence structure in
psychometric data. These models embed psychometric items as nodes in an undirected or directed
network (i.e., graph) and visualize their interrelationships through the network edges, which
represent certain probabilistic conditional dependencies. Network psychometric methods concern
the learning of the network structure. They have been developed under various settings, including
undirected graphical models for cross-sectional data (Burger et al., 2022; Epskamp et al., 2018)
, directed networks for longitudinal data (Borsboom et al., 2021; Gile & Handcock, 2017; Ryan
et al., 2022) , and extended networks with latent variables for time series data or panel data
(Epskamp, 2020) . These methods have received wide applications in education (Koponen et
al., 2019; Siew, 2020; Simon de Blas et al., 2021; Sweet et al., 2013; Willcox & Huang, 2017) ,
psychology (Borsboom et al., 2021; Burgess & Hitch, 1999; Epskamp et al., 2018; Fried et al.,
2017; Van Der Maas et al., 2017) , and health sciences (Brunson & Laubenbacher, 2018; Kohler
et al., 2022; Luke & Harris, 2007; Mkhitaryan et al., 2019) .

Analyzing cross-sectional binary item response data with the Ising model (Ising, 1925)
is common in network psychometric analysis. This analysis is typically performed based on a
conditional likelihood (Besag, 1974) because the standard likelihood function is computationally
infeasiblewhen involvingmany variables. In this direction, Bayesian and frequentistmethods have
been developed, where sparsity-inducing priors or penalties are combined with the conditional
likelihood for learning a sparse network structure (Epskamp & Fried, 2018; Li et al., 2019;
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Marsman et al., 2022; Mazumder & Hastie, 2012; Van Borkulo et al., 2014; Yuan & Lin, 2007)
. Besides, the Ising model is shown to be closely related to item response theory (IRT) models
(Anderson &Yu, 2007; Holland, 1990) . The log-multiplicative association models (Anderson &
Yu, 2007) , which are special cases of the Ising model, can be used as item response theory models
and yield very similar results as IRT models. Furthermore, the Ising model and the conditional
likelihood have been used for modeling the local dependence structure in locally dependent IRT
models (Chen et al., 2018; Ip, 2002) .

Due to its construction, the conditional likelihood does not naturally handle data with miss-
ing values, despite the omnipresence of missing data in psychometric data. To deal with missing
values in an Ising network analysis, listwise deletion (Fried et al., 2020; Haslbeck & Fried,
2017) and single imputation (e.g., Huisman, 2009, Armour et al., 2017, Lin et al., 2020) are
typically performed, which arguably may not be the best practice. In particular, it is well known
that listwise deletion is statistically inefficient and requires the missing completely at random
(MCAR) assumption (Little & Rubin, 2019) to ensure consistent estimation. Moreover, a naïve
imputation procedure, such as mode imputation, likely introduces bias into parameter estima-
tion. A sophisticated imputation procedure must be developed to ensure statistical validity and
computational efficiency.

In this note, we propose an iterative procedure for learning an Ising network. The proposed
procedure combines iterative imputation via full conditional specification (FCS; Liu et al., 2014,
van Buuren, 2018), and Bayesian estimation of the Ising network. We show that the FCS leads to
estimation consistency when the conditional models are chosen to take logistic forms. In terms
of computation, we propose a joint Pólya–Gamma augmentation procedure by extending the
Pólya–Gamma augmentation procedure for logistic regression (Polson et al., 2013) . It allows
us to efficiently sample parameters of the Ising model. Simulations are conducted to compare
the proposed procedure with estimations based on the listwise deletion and single imputation.
Finally, the proposed procedure and a complete-case analysis are applied to study the network of
major depressive disorder (MDD) and generalized anxiety disorders (GAD) based on data from
the National Epidemiological Survey on Alcohol and Related Conditions (NESARC; Grant et al.,
2003). In this analysis, data missingness is mainly due to two screening items for GAD. That is,
a respondent’s responses to the rest of the MDD items are missing if they answered “no” to both
screening items. This missing mechanism is Missing at Random (MAR; Little & Rubin, 2019).
The complete-case analysis of missing data caused by screening items is known to be problematic
in the literature of network psychometrics (Borsboom et al., 2017; McBride et al., 2023) . Our
Bayesian estimate of the edge coefficient between the two screening items is negative based on
the complete cases, which can be seen as a result of Berkson’s paradox (De Ron et al., 2021) .
In contrast, the proposed method makes use of all the observed data entries and obtains a positive
estimate of this edge coefficient. An identifiability result about the Ising model under this special
missing data setting in Appendix, the item content, and a simulation study mimicking this setting
suggest that the result given by the proposed method is sensible. A GitHub repository for the
proposed algorithm is available at https://github.com/slzhang-fd/IsingNetMissing-replication.

1. Proposed Method

1.1. Ising Model

Consider a respondent answering J binary items. Let Y = (Y1, . . . ,YJ )
� ∈ {0, 1}J be a

binary random vector representing the respondent’s responses. We say Y follows an Ising model
if its probability mass function satisfies
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where S = (si j )J×J is a J by J symmetric matrix that contains parameters of the Ising model
and

c(S) =
∑

y∈{0,1}J
exp

⎡
⎣ J∑

j=1

s j j y j/2 +
J−1∑
j=1

J∑
k= j+1

s jk y j yk

⎤
⎦

is a normalizing constant. The parameter matrix S encodes a network with the J items being the
nodes. More specifically, an edge is present between nodes i and j if and only if the corresponding
entry si j is nonzero. If an edge exists between nodes i and j , then Yi and Y j are conditionally
dependent given the rest of the variables. Otherwise, the two variables are conditionally indepen-
dent.

In Ising network analysis, the goal is to estimate the parameter matrix S. The standard
likelihood function is computationally intensive when J is large, as it requires computing a
normalizing constant c(S)which involves a summation of all the 2J response patterns. To address
this computational issue, Besag (1975) proposed a conditional likelihood which is obtained by
aggregating the conditional distributions of Y j given Y− j = (Y1, . . . ,Y j−1,Y j+1, . . . ,YJ )

�, for
j = 1, . . . , J , where the conditional distribution of Y j givenY− j takes a logistic regression form.
More precisely, the conditional likelihood with one observation y is defined as

p∗( y | S) =
J∏

j=1

p(y j | y− j ,S) =
J∏

j=1

exp
[
(s j j/2 + ∑

k �= j s jk yk)y j
]

1 + exp
(
s j j/2 + ∑

k �= j s jk yk
) . (2)

A disadvantage of the conditional likelihood is that it requires a fully observed dataset because
missing values cannot be straightforwardlymarginalized out from (2). In what follows, we discuss
how missing data can be treated in the conditional likelihood.

1.2. Proposed Method

Consider a dataset with N observations. Let � j ⊂ {1, . . . , N } be the subset of observations
whose data on item j are missing. For each observation i and item j , yi j denotes the observed
response if i /∈ � j , and otherwise, yi j is missing. Thus, the observed data include � j and yi j , for
i ∈ {1, . . . , N }\� j and j = 1, . . . , J .

The proposed procedure iterates between two steps—(1) imputing the missing values of yi j
for i ∈ � j , j = 1, . . . , J , achieved via a full conditional specification, and (2) sampling the
posterior distribution of S given the most recently imputed data. Let t be the current iteration
number. Further, let y(t−1)

i = (y(t−1)
i1 , . . . , y(t−1)

i J )�, i = 1, . . . , N , be imputed data from the

previous iteration, where y(t−1)
i j = yi j for i /∈ � j and y(t−1)

i j is imputed in the (t − 1)th iteration
for i ∈ � j . For the t th iteration, the imputation and sampling steps are described as follows.

Imputation We initialize the imputation in the t th iteration with the previously imputed data
set (y(t−1)

i1 , . . . , y(t−1)
i J ), i = 1, . . . , N . Then, we run a loop over all the items, j = 1, . . . , J .

In step j of the loop, we impute yi j for all i ∈ � j , given the most recently imputed data
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(y(t)
i1 , . . . , y(t)

i, j−1, y
(t−1)
i j , . . . , y(t−1)

i J ), i = 1, . . . , N . We then obtain an updated data set

(y(t)
i1 , . . . , y(t)

i, j , y
(t−1)
i, j+1, . . . , y

(t−1)
i J ) by incorporating the newly imputed values for yi j .

The imputation of each variable j is based on the conditional distribution of Y j given Y− j .
Under the Ising model, this conditional distribution takes a logistic regression form. For com-
putational reasons to be discussed in the sequel, we introduce an auxiliary parameter vector
β j = (β j1, . . . , β j J )

� as coefficients in the logistic regression, instead of directly using S from
the previous iteration to sample the missing yi j s. Unlike the constraint of si j = s ji in the sym-
metric matrix S, no constraints are imposed on β j , j = 1, . . . , J , which makes the sampling
computationally efficient; see discussions in Sect. 1.4. The imputation of variable j consists of
the following two steps:

1. Sample auxiliary parameter vector β
(t)
j from the posterior distribution

p(t, j)(β j ) ∝ π j (β j )

N∏
i=1

exp
[
(β j j/2 + ∑

k �= j β jk y
(t, j−1)
ik )y(t, j−1)

i j

]

1 + exp(β j j/2 + ∑
k �= j β jk y

(t, j−1)
ik )

, (3)

where π j (β j ) is the prior distribution for the auxiliary parameters β j .

2. Sample y(t)
i j for each i ∈ � j from a Bernoulli distribution with success probability

exp(β(t)
j j /2 + ∑

k �= j β
(t)
jk y

(t, j−1)
ik )

1 + exp(β(t)
j j /2 + ∑

k �= j β
(t)
jk y

(t, j−1)
ik )

. (4)

After these two steps, we obtain (y(t)
i1 , . . . , y(t)

i, j , y
(t−1)
i, j+1, . . . , y

(t−1)
i J ) by incorporating the newly

imputed values for yi j , i ∈ � j . We emphasize that only the missing values are updated. For

i /∈ � j , y
(t)
i j is always the observed value of yi j . After the loop over all the items, we have the

imputed data set (y(t)
i1 , . . . , y(t)

i J ) as the output from this imputation step.

Sampling S Given the most recently imputed data y(t)
i , i = 1, . . . , N , update S(t) by sampling

from the pseudo-posterior distribution

p(S | y(t)
1 , . . . , y(t)

N ) ∝ π(S)

N∏
i=1

p∗( y(t)
i | S), (5)

where π(S) is the prior distribution for the Ising parameter matrix S and recall that
∏N

i=1 p
∗( y(t)

i |
S) is the conditional likelihood.

Figure 1 visualizes the steps performed in the proposed method. Note that it is unnecessary
to sample the parameter matrix S during the burn-in period and in every iteration after the burn-in
period; thus, we employ a thinning step after the burn-in period. This is done to both decrease
computational cost and reduce the auto-correlation in the imputed data. Moreover, we outline the
proposed algorithm in Algorithm 1. The final estimate of S is obtained by averaging all the S(t)

obtained after the burn-in period. The computational details, including the sampling of auxiliary
parameters and Ising parameter matrix and discussions of the computational complexity, are given
in Sect. 1.4.

We remark that our method imputes the missing variables one by one for each observation.
This method is chosen because simultaneously imputing all the missing variables is typically
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Figure 1.
Flowchart of the updating rule for the proposed method.

Algorithm 1: Ising Network Analysis with Iterative Imputation

Data: Given observed data, initial values for the Ising model parameters S(0), randomly

imputed missing data y(0)
1 , . . . , y(0)

N , MCMC length T , burn-in size T0, thinning

steps size t0. Let auxiliary parameters β
(0)
j = s(0)j , j = 1, . . . , J .

for each iteration t = 1 to T do
for each j = 1 to J do

Sample auxiliary parameter vector β
(t)
j from p(t, j)(β j ).

Sample y(t)
i j for each i ∈ � j from the Bernoulli distribution given in (4).

end
if t > T0 and t is a multiple of t0 then

Sample S(t) from p(S | y(t)
1 , . . . , y(t)

N ) given in (5).

end

end
Output: Ŝ = 1

M−M0

∑
t∈{(M0+1)t0,...,Mt0} S

(t), where M = �T/t0	 and M0 = �T0/t0	.

computationally infeasible, especially when some observation units have many missing values.
Simultaneous imputation requires evaluating the joint distribution of the missing variables given
the observed ones, whose computational complexity grows exponentially with the number of
missing values. In contrast, the proposed method is based on unidimensional conditional distribu-
tions, which is computationally more feasible. We also note that the proposed method has several
variants that should also work well. These variants are discussed in Sect. 3.

1.3. Statistical Consistency

As our method is not a standard Bayesian inference procedure, we provide an asymptotic
theory under the frequentist setting to justify its validity. In particular, we show that theS parameter

https://doi.org/10.1007/s11336-024-09985-2 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-024-09985-2


SILIANG ZHANG, YUNXIAO CHAN 1191

sampled from the pseudo-posterior distribution converges to the true parameter S0, under the
assumptions that the Ising model is correctly specified and the data are MAR.

Consider one observation with a complete data vector Y = (Y1, . . . ,YJ )
�. Further, let

Z = (Z1, . . . , Z J )
� be a vector of missing indicators, where Zi j = 1 if Yi j is observed and

Zi j = 0 otherwise. We further let Yobs = {Y j : Z j = 1, j = 1, . . . , J } and Ymis = {Y j :
Z j = 0, j = 1, . . . , J } be the observed and missing entries of Y, respectively. Consider the joint
distribution of observable data (Yobs,Z), taking the form

P(Yobs = yobs,Z = z | S,φ) =
∑

y j :z j=0

(
exp

(
y�S y/2

)
/c(S)

)
q(z | y,φ), (6)

where exp
(
y�S y/2

)
/c(S) is the distribution ofY = y under the Isingmodel, q(z | y,φ) denotes

the conditional probability of Z = z given Y = y, and φ denotes the unknown parameters of this
distribution. The MAR assumption, also known as the ignorable missingness assumption, means
that the conditional distribution q(z | y,φ) depends on y only through the observed entries, i.e.,
q(z | y,φ) = q(z | yobs,φ). In that case, (6) can be factorized as

P(Yobs = yobs,Z = z | S,φ) = q(z | yobs,φ) ×
⎛
⎝ ∑

y j :z j=0

exp
(
y�S y/2

)
/c(S)

⎞
⎠ . (7)

Consequently, the inference of S does not depend on the unknown distribution q(z | y,φ).
As shown in Liu et al. (2014), the MAR assumption, together with additional regularity con-

ditions, ensures that the iterative imputation of the missing responses converges to the imputation
distribution under a standard Bayesian procedure as the number of iterations and the sample size
N go to infinity. A key to this convergence result is the compatibility of the conditional models in
the imputation step—the logistic regression models are compatible with the Ising model as a joint
distribution. The validity of the imputed samples further ensures the consistency of the estimated
Ising parameter matrix. We summarize this result in Theorem 1.

Theorem 1. Assume the following assumptions hold: (1) The Markov chain for missing data,
generated by the iterative imputation algorithm (Algorithm 1), is positive Harris recurrent and
thus admits a unique stationary distribution; (2) the missing data process is ignorable; and (3)
A regularity condition holds for prior distributions of Ising model parameters and auxiliary
parameters, as detailed in the supplementary material. Let π∗

N (S) be the posterior density of S
implied by the stationary distribution of the proposed method. Given the true parameters S0 for
the Ising model and any ε > 0, we have π∗

N (S) concentrates at S0,

∫
Bε(S0)

π∗
N (S)dS → 1, (8)

in probability as N → ∞. Bε(S0) = {S : ‖S − S0‖ < ε} is the open ball of radius ε at S0.

We provide intuitions about this consistency result. Suppose that the data are generated by an
Isingmodel. The iterative imputationmethod ensures that the parameters of the logistic regressions
are close to those implied by the true Ising model, and thus, the conditional distributions we use
to impute the missing values are close to those under the true model. This further guarantees that
the joint distribution of the imputed data given the observed ones is close to that under the true
Ising model, and consequently, the Ising model parameters we learn from the imputed data are
close to those of the true model.
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1.4. Computational Details

In what follows, we discuss the specification of the prior distributions and the sampling of
auxiliary parameters β j and Ising model parameters S.

Sampling β j We set independent mean-zero normal priors for entries of β j . For the intercept
parameter β j j , we use a weakly informative prior by setting the variance to 100. For the slope
parameters β jk , k �= j , we set a more informative prior by setting the variance to be 1, given that
these parameters correspond to the off-diagonal entries of S, which are sparse and typically do
not take extreme values. The sampling of the auxiliary parameters β j , following (3), is essentially
a standard Bayesian logistic regression problem. We achieve it by a Markov chain Monte Carlo
(MCMC) sampler called the Pólya–Gamma sampler (Polson et al., 2013) .

To obtain β
(t)
j , this sampler starts with β

(t−1)
j from the previous step. It constructs an MCMC

transition kernel by a data argumentation trick. More precisely, the following two steps are per-
formed.

1. Given β(t−1), independently sample N augmentation variables, each from a Pólya–
Gamma distribution (Barndorff-Nielsen et al., 1982) .

2. Given the N augmentation variables, sample β(t) from a J -variate normal distribution.

The details of these two steps are given in the supplementary material, including the forms of
the Pólya–Gamma distributions and the mean and covariance matrix of the J -variate normal
distribution. We choose the Pólya–Gamma sampler because it is very easy to construct and com-
putationally efficient. It is much easier to implement than Metropolis–Hastings samplers which
often need tuning to achieve good performance.

We comment on the computational complexity of the sampling of β j . The sampling from
the Pólya–Gamma distribution has a complexity O(N J ), and the sampling from the J -variate
normal distribution has a complexity of O(N J 2)+O(J 3). Consequently, a loop of all the β j , j =
1, . . . , J , has a complexity of O((N + J )J 3).

Sampling S Since S is a symmetric matrix, we reparametrize it by vectorizing its off-diagonal
entries (including the diagonal entries). Specifically, the reparameterization is done by half-
vectorization, denoted by α = vech(S) = (s11, . . . , sJ1, s22, . . . , sJ2, . . . , sJ J )� ∈ R

J (J+1)/2.
It is easy to see that vech(·) is a one-to-one mapping between R

J (J+1)/2 and J × J symmetric
matrices. Therefore, we impose a prior distribution on α and sample α(t) in the t th iteration when
S is sampled. Then we let S(t) = vech−1(α(t)).

Recall that a thinning step is performed, and t0 is the gap between two samples of S. Let t
be a multiple of t0 and α(t−t0) = vech(S(t−t0)) be previous value of α. The sampling of α(t) is
also achieved by a Pólya–Gamma sampler, which involves the following two steps similar to the
sampling of β j .

1. Given α(t−t0), independently sample N J augmentation variables, each from a Pólya–
Gamma distribution.

2. Given the N J augmentation variables, sample α(t) from a J (J + 1)/2-variate normal
distribution.

The details of these two steps are given in the supplementary material. We note that the computa-
tional complexity of sampling the N J augmentation variables is O(N J 2), and that of sampling
α(t) is O(N J 5) + O(J 6), resulting in an overall complexity O((N + J )J 5). Comparing the
complexities of the imputation and sampling S steps, we notice that the latter is computationally
much more intensive. This is the reason why we choose to impute data by introducing auxiliary
parameters β j s rather than using Ising network parameters S so that the iterative imputationmixes
much faster in terms of the computation time. In addition, we only sample S every t0 iterations
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for a reasonably large t0 to avoid a high computational cost and also reduce the auto-correlation
between the imputed data.

We remark that Marsman et al. (2022) considered a similar Ising network analysis problem
based on fully observed data, in which they proposed a Bayesian inference approach based on
a spike-and-slab prior to learning S. Their Bayesian inference is also based on a Pólya–Gamma
sampler. However, they combined Gibbs sampling with a Pólya–Gamma sampler, updating one
parameter in S at a time. This Gibbs scheme often mixes slower than the joint update of S as in the
proposedmethod and, thus, is computationally less efficient. The proposedPólya–Gamma sampler
may be integrated into the framework of Marsman et al. (2022) to improve their computational
efficiency.

2. Numerical Experiments

We illustrate the proposed method and show its power via simulation studies and a real-world
data application. In Sect. 2.1, we conduct two simulation studies, evaluating the proposed method
under two MAR scenarios, one of which involves missingness due to screening items. A further
simulation study is carried out, applying our method to a 15-node Ising model governed by the
MCARmechanism. Detailed exposition of this study can be found in the supplementarymaterials.

2.1. Simulation

Study I We generate data from an Ising model with J = 6 variables. Missing values are generated
under an MAR setting that is not MCAR. The proposed method is then compared with Bayesian
inference based on (1) listwise deletion and (2) a single imputation, where the single imputation
is based on the imputed data from the T th iteration of Algorithm 1, recalling that T0 is the burn-in
size.

We configure the true parameter matrix S0 as follows. Since S0 is a symmetricmatrix, we only
need to specify its upper triangular matrix and then the diagonal entries. For the upper triangular
entries (i.e., s jl , j < l), we randomly assign 50% of them to zero to introduce a moderately
sparse setting. In addition, the nonzero parameters are then generated by sampling from a uniform
distribution over the set [−1,−0.4]∪[0.4, 1]. The intercept parameters s j j , j = 1, . . . , J are set to
zero.The true parameter values are given in the supplementarymaterial.Missingdata are simulated
by masking particular elements under anMARmechanism. In particular, we have zi6 = 1, so that
the sixth variable is always observed. We further allow the missingness probabilities of the first
five variables (i.e., zi j = 0, j = 1, . . . , 5) to depend on the values of yi6. The specific settings
on p(zi j = 0 | yi6), j = 1, . . . , 5 are detailed in the supplementary material. Data are generated
following the aforementioned Ising model and MAR mechanism for four different sample sizes,
N = 1000, 2000, 4000, and 8000, respectively. For each sample size, 50 independent replications
are created.

Three methods are compared—the proposed method, Bayesian inference with a single impu-
tation, and Bayesian inference based on complete cases from listwise deletion. The Bayesian
inference for complete data is performed by sampling parameters from the posterior implied by the
pseudo-likelihood and a normal prior, which is a special case of the proposed method without iter-
ative imputation steps. All these methods shared the same initial values s(0)

jl ∼ U (−0.1, 0.1), 1 ≤
j ≤ l ≤ J . For our proposedmethod,we set the length of theMarkov chainMonteCarlo (MCMC)
iterations to T = 5000 and a burn-in size of T0 = 1000, with a thinning parameter k0 = 10. This
setup leads to an effective total of 400 MCMC samples for the Ising parameter matrix S. Notably,
identical MCMC length and burn-in configuration are applied during parameters inference in the
single imputation and complete-case analyses.
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(a) (b)

Figure 2.
a Boxplots of MSEs for edge parameters s jl . b Boxplots of MSEs for intercept parameters s j j .

Figure 2 gives the plots for the mean squared errors (MSE) of the estimated edge parameters
and intercept parameters under different sample sizes and for different methods. The MSE for
each parameter s jl is defined as

1

50

50∑
k=1

(ŝk, jl − s0, jl)
2. (9)

Here, ŝk, jl denotes the estimated value from the kth replication while s0, jl refers to the true
value. Each box in panel (a) corresponds to the 15 edge parameters, and each box in panel (b)
corresponds to the 6 intercept parameters.We notice that the listwise deletion procedure introduces
biases into the edge and intercept estimation, resulting in the MSEs for certain parameters not
decaying toward zero as the sample size grows. Additionally, both the proposed method and the
single imputation method offer accurate parameter estimation, with MSEs decaying toward zero
as the sample size increases. Notably, the proposed method is substantially more accurate than the
single imputation method, suggesting that aggregating over multiple imputed datasets improves
the estimation accuracy. Furthermore, for smaller sample sizes, the complete-case analysis seems
to yield slightlymore accurate estimates of the edge parameters than the single imputationmethod.
Across four sample sizes, themedian computational times for obtaining the results of the proposed
method were 33, 50, 88, and 185s, respectively.1

Study II: Missing due to screening itemsMissingness due to screening items is commonly encoun-
tered in practice, posing challenges to the network analysis (Borsboom et al., 2017; McBride
et al., 2023) . This occurs, for example, in surveys where initial screening questions determine
respondents’ eligibility or relevance for subsequent questions. Suppose respondents indicate a
lack of relevant experience (i.e., their answers to the screening items are all negative). In that
case, they are not prompted to answer certain follow-up questions, making the missingness of
these responses depend on their answers to the screening questions and, thus, MAR. Our real data
example in Sect. 2.2 involves two screening items, which results in a large proportion of missing
data.

We consider a simulation setting involving two screening items to evaluate the proposed
method’s performance under this setting. Similar to Study I, we consider a setting with six items,

1All simulations were performed on Intel-based systems with the following configuration: Ubuntu 22.04.3 LTS
operating system; Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz; Python version 3.11.2; Numpy version 1.23.5.
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the first two of which are the screening items. The full data are generated under an Ising model,
whose parameters are given in the supplementary material, where the corresponding network has
six positive edges including one between the two screening items. The responses to the screening
items are always set as observed for any observation. When an observation’s responses to the
screening items are both zero, their responses to the rest of the four items are regarded as missing.

We consider a single sample size N = 8000 and generate 50 independent datasets. We apply
the proposed method, the single imputation method, and the complete-case analysis. For each
estimation procedure, we set the MCMC iterations T = 5000, the burn-in size T0 = 1000, and
the thinning parameter k0 = 10. These methods are compared in terms of MSEs and biases for
parameter estimation.

Table 1 presents the result. For all the edge parameters except for s12, the three estimation
methods work well, though the single imputation method is slightly less accurate, as indicated by
its slightly larger MSEs. However, the complete-case estimate is substantially negatively biased
for s12, the edge between two screening items. At the same time, the imputation-basedmethods are
still accurate, with the proposed method having a smaller MSE than that of the single imputation
method. This result confirms that running a complete-case analysis on data involving screening
items is problematic while performing the imputation-based methods, especially the proposed
method, yields valid results.

We provide discussions on this result. The negative bias for s12 in the complete-case analysis
is due to a selection bias, typically referred to as Berkson’s paradox (De Ron et al., 2021) .
The complete-case analysis excludes all the response vectors with negative responses to both
screening items. Consequently, a positive response on one screening item strongly suggests a
negative response on the other, regardless of the responses to the rest of the items. This results
in a falsely negative conditional association between the two screening items. In fact, one can
theoretically show that the frequentist estimate of s12 based on the maximum pseudo-likelihood
is negative infinity. The finite parameter estimate in Table 1 for s12 is due to the shrinkage effect

Table 1.
MSEs and biases for edge parameters.

Edge Proposed Single imputation Complete-case analysis
MSE | Bias MSE | Bias MSE | Bias

s12 0.007 | 0.029 0.007 | 0.032 57.060 | −7.524
s13 0.012 | 0.030 0.019 | 0.020 0.012 | 0.030
s14 0.010 | 0.008 0.011 | −0.002 0.010 | 0.011
s15 0.014 | −0.007 0.020 | −0.002 0.014 | −0.005
s16 0.011 | −0.020 0.017 | −0.027 0.011 | −0.017
s23 0.003 | 0.012 0.004 | 0.009 0.004 | 0.012
s24 0.005 | 0.004 0.005 | 0.001 0.005 | 0.004
s25 0.007 | 0.011 0.009 | 0.013 0.007 | 0.012
s26 0.005 | −0.005 0.006 | −0.008 0.005 | −0.003
s34 0.004 | −0.004 0.004 | −0.003 0.004 | −0.003
s35 0.006 | 0.014 0.007 | 0.017 0.006 | 0.014
s36 0.008 | −0.009 0.007 | −0.017 0.008 | −0.009
s45 0.006 | −0.004 0.006 | −0.003 0.006 | −0.004
s46 0.006 | −0.002 0.006 | −0.003 0.006 | −0.003
s56 0.007 | 0.001 0.008 | −0.002 0.007 | 0.002
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of the prior distribution that we impose. On the other hand, the proposed method makes use of
the observed frequency of the (0, 0) response pattern for the two screening items, in addition to
the frequencies of the fully observed response vectors. As shown by the identifiability result in
Appendix, these frequencies are sufficient for identifying all the parameters of the Ising model.

2.2. A Real Data Application

We analyze the dataset for the 2001–2002 National Epidemiological Survey of Alcohol and
Related Conditions (NESARC), which offers valuable insights into alcohol consumption and
associated issues in the US population (Grant et al., 2003) . The dataset consists of 43,093
civilian non-institutionalized individuals aged 18 and older. In this analysis, we focus on two
specific sections of the survey that concern two highly prevalent mental health disorders—major
depressive disorder (MDD) and generalized anxiety disorder (GAD). Because MDD and GAD
have high symptom overlap (Hettema, 2008) and often co-occur (Hasin et al., 2005) , it is
important to perform a joint analysis of the symptoms of the twomental health disorders and study
their separation. In particular, Blanco et al. (2014) performed factor analysis based on the same
data and found that the two mental health disorders have distinct latent structures. We reanalyze
the data, hoping to gain some insights from the network perspective of the two mental health
disorders.

Following Blanco et al. (2014), we consider data with nine items measuring MDD and six
items measuring GAD. These items are designed according to the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-IV) (American Psychiatric Association,
2000) . These items ask the participants if they have recently experienced certain symptoms; see
Table 2 for their short descriptions. After eliminating samples with entirely absent values across
the 15 items, a total of 42,230 cases remain in the dataset. Note that any “Unknown” responses
in the original data are converted into missing values. The dataset exhibits a significant degree of
missingness, with only 2,412 complete cases for the 15 items, representing approximately 6% of
the total cases. Specifically, the missing rate for each item is given in Table 2. Importantly, items
D1 and D2 function as screening items and, thus, have a very low missing rate. The respondents
did not need to answer items D3–D9 if the responses to D1 and D2 were “No” or “Unknown,”
resulting in high missing rates for these items. This pattern suggests that the missing data in this
study is not MCAR. The GAD items A1–A6 also have a screening item, which results in the high

Table 2.
Descriptions of MDD and GAD items and their missing rates.

MDD item description

D1 (0.1%): Depressed mood D5 (68.5%): Psychomotor agitation/retardation
D2 (0.2%): Diminished interest D6 (68.0%): Fatigue/loss of energy
D3 (68.5%): Weight loss or gain D7 (67.9%): Feelings of guilt
D4 (67.9%): Insomnia or hypersomnia D8 (67.9%): Diminished concentration

D9 (67.7%): Recurrent thoughts of death

GAD Item Description

A1 (91.8%): Restlessness A4 (91.8%): Irritability
A2 (91.9%): Easily fatigued A5 (91.9%): Muscle tension
A3 (91.8%): Difficulty concentrating A6 (91.8%): Sleep disturbance
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missing rates in A1 through A6. Following the treatment in Blanco et al. (2014), these screening
items are not included in the current analysis.

We apply the proposed method and the complete-case analysis to the data. For each method,
10 MCMC chains with random starting values are used, each having 10,000 MCMC iterations
and a burn-in size 5000. The Gelman–Rubin statistics are always below 1.018, confirming the
satisfactory convergence of all 120 parameters for bothmethods. The estimated network structures
for MDD and GAD items are presented in Fig. 3, where an edge is shown between two variables
when the absolute value of the estimated parameter is greater than 0.5. We emphasize that this
threshold is applied only for visualization purposes, rather than for edge selection. Consequently,
the edges in Fig. 3 should only be interpreted as edges with large estimated parameters, rather
than truly nonzero edges. The nine MDD items are shown as blue nodes at the bottom, and the six
GAD items are shown as orange nodes at the top. The edges are colored blue and orange, which
represent positive and negative parameter estimates, respectively. In addition, the line thickness
of the edges indicates their magnitude. A clear difference between the two methods is the edge
between D1 “depressed mood most of the day, nearly every day,” and D2 “markedly diminished
interest or pleasure in all, or almost all, activities most of the day, nearly every day,” which are two
screening questions in the survey that all the participants responded to. The estimated parameter
for this edge has a large absolute value under each of the twomethods, but the estimated parameter
is negative in the complete-case analysis, while it is positive according to the proposedmethod. As
revealed by the result of Study II in Sect. 2.1, the negative edge estimate of the edge between the
screening items given by the complete-case analysis is spurious. Considering the content of these
items, we believe that the estimate from the proposed method is more sensible. Other than this
edge, the remaining structure of the two networks tends to be similar, but with some differences.
In particular, we see that the complete-case analysis yields more edges than the proposed method;
for example, the edges of A4–A5, A1–D5, D1–D6, D1–D7, D1–D8, and D8–D9 appear in the
estimated network from the complete-case analysis but not in that of the proposed method, while
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Figure 3.
Estimated network structure for MDD and GAD. a Complete-case analysis. b Proposed method.
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only two edges, A3–A5 and D3–D4, are present in the network estimated by the proposed method
but absent in the network from the complete-case analysis. We believe this is due to the higher
estimation variance of the complete-case analysis caused by its relatively small sample size.

Finally, our analysis shows that the symptoms of each mental health disorder tend to densely
connect with each other in the Ising network, while the symptoms are only loosely but positively
connected between the two mental health disorders. The edges between the two mental health
disorders identify the overlapping symptoms, including “D4: Insomnia or hypersomnia” and “A6:
Sleep disturbance,” “A2: Easily fatigued” and “D6: Fatigue/loss of energy,” and “A3: Difficulty
concentrating” and “D8: Diminished concentration.” These results suggest that MDD and GAD
are two well-separated mental health disorders, despite their high symptom overlap and frequent
co-occurrence. This result confirms the conclusion of Blanco et al. (2014) that GAD and MDD
are closely related but different nosological entities.

3. Concluding remarks

In this paper, we propose a new method for Ising network analysis in the presence of missing
data. The proposed method integrates iterative imputation into a Bayesian inference procedure
based on conditional likelihood. An asymptotic theory is established that guarantees the consis-
tency of the proposed estimator. Furthermore, a Pólya–Gamma machinery is proposed for the
sampling of Ising model parameters, which yields efficient computation. The power of the pro-
posed method is further shown via simulations and a real data application. An R package has been
developed that will be made publicly available upon the acceptance of the paper.

The current work has several limitations that require future theoretical and methodological
developments. First, this manuscript concentrates on parameter estimation for the Ising model in
the presence ofmissing data. However, the problemof edge selection (Borsboom, 2022;Marsman
et al., 2022; Noghrehchi et al., 2021; Roçkovóa, 2018) requires future investigation. There are
several possible directions. One direction is to view it as a multiple testing problem and develop
procedures that control certain familywise error rates or the false discovery rate for the selection
of edges. To do so, one needs to develop a way to quantify the uncertainty for the proposed
estimator. It is non-trivial, as the proposed method is not a standard Bayesian procedure, and we
still lack a theoretical understanding of the asymptotic distribution of the proposed procedure.
In particular, it is unclear whether the Bernstein–von Mises theorem that connects Bayesian and
frequentist estimation holds under the current setting. Another direction is to view it as a model
selection problem. In this direction, we can use sparsity-inducing priors to better explore the Ising
network structure when it is sparse. We believe that the proposed method, including the iterative
imputation and the Pólya–Gamma machinery, can be adapted when we replace the normal prior
with the spike-and-slab prior considered in Marsman et al. (2022). This adaptation can be done
by adding some Gibbs sampling steps. In addition, it is of interest to develop an information
criterion that is computationally efficient while statistically consistent. This may be achieved by
computing an information criterion, such as the Bayesian information criterion, for each imputed
dataset and then aggregating them across multiple imputations. Finally, the proposed method has
several variants that may be useful for problems of different scales. For problems of a relatively
small scale (i.e., when J is small), we may perform data imputation using the sampled S instead
of using auxiliary parameters β j s. This choice will make the algorithm computationally more
intensive, as the sampling of S has a high computational complexity. On the other hand, it may
make the estimator statistically more efficient as it avoids estimating the auxiliary parameters
β j s, whose dimension is higher than S. For very large-scale problems, one may estimate the Ising
model parameters based only on the auxiliary parameters β j s. For example, we may estimate si j
by averaging the value of (βi j +β j i )/2 over the iterations. This estimator is computationally more
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efficient than the proposed one, as it avoids sampling S given the imputed datasets. This estimator
should still be consistent but may be statistically slightly less efficient than the proposed one.
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Appendix: Identifiability of Ising Model with Two Screening Items

We investigate the identifiability of the Ising model parameters when there are two screening
items.

Proposition 1. Consider an Ising model with J ≥ 3, true parameters S0 = (s0i j )J×J , and the
first two items being the screening items. We define p0(y) := P(Y = y|S0), for any y ∈ A =
{(x1, . . . , xJ )� ∈ {0, 1}J : x1 = 1 or x2 = 1}, and p0(0, 0) := P(Y1 = 0,Y2 = 0|S0)
under the Ising model. Then there does not exist an Ising parameter matrix S �= S0 such that
p0(y) = P(Y = y|S), for any y ∈ A and p0(0, 0) = P(Y1 = 0,Y2 = 0|S) under the Ising
model.

Proof. We first prove the statement for J ≥ 4. Suppose that p0(y) = P(Y = y|S), for any y ∈ A
and p0(0, 0) = P(Y1 = 0,Y2 = 0|S). We will prove that S = S0.
We start by considering items 1, 2, 3, 4. We define the set A3,4 = {(x1, . . . , xJ )� ∈ A : x5 =
... = xJ = 0}. We note that A3,4 has 12 elements. Using yd = (1, 0, 0, 0, 0, . . . , 0)� ∈ A3,4 as
the baseline pattern, for any y ∈ A3,4 such that y �= yd we have

log

[
exp( 12 y

�S y)
c(S)

/
exp( 12 y

�
d S yd)

c(S)

]
= 1

2
y�S y − 1

2
y�
d S yd = 1

2
y�S0 y − 1

2
y�
d S0 yd .

That gives us 11 linear equations for 10 parameters, si j , i, j ≤ 4. By simplifying these equations,
we have (1) two linear equations for (s11, s12, s22)

s11 − s22 = s011 − s022

2s12 + s22 = 2s012 + s022 (10)
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and (2) s1i = s01i , s2i = s02i , si j = s0i j for all i, j = 3, 4.
We repeat the above calculation for any four-item set involving items 1 and 2. By choosing
any item pair i, j > 2, i �= j and repeating the above calculation with patterns in the set
Ai, j = {(x1, . . . , xJ )� ∈ A : xl = 0, l �= 1, 2, i, j}, we have s1i = s01i , s2i = s02i , si j = s0i j for

all i, j > 2, i �= j . With the above argument and (10), we only need to show s11 = s011 to prove
S = S0. To prove s11 = s011, we use p0(0, 0)/p0( yd) = P(Y1 = 0,Y2 = 0|S)/P(Y = yd |S) and
that si j = s0i j for all i, j > 2, i �= j which we have proved. We have

∑
y∈A0

exp

(
−1

2
s011 + 1

2
y�S0 y

)
=

∑
y∈A0

exp

(
−1

2
s11 + 1

2
y�S0 y

)
,

where A0 = {(x1, . . . , xJ )� ∈ {0, 1}J : x1 = x2 = 0}. As the right-hand side of the above
equation is a strictly monotone decreasing function of s11, we know that s11 = s011 is the only
solution to the above equation. This proves the J ≥ 4 case.
We now move on to the case when J = 3. We consider A = {(x1, x2, x3)� ∈ {0, 1}3 : x1 =
1 or x2 = 1} and yd = (1, 0, 0)�. Using yd as the baseline, for any y ∈ A, y �= yd , we construct
five linear equations given by log(p0( y)/p0( yd)) = log(P(Y = y|S)/P(Y = yd |S)). From
these equations, we obtain: (1) two linear equations for (s11, s12, s22)

s11 − s22 = s011 − s022

2s12 + s22 = 2s012 + s022 (11)

and (2) s13 = s013, s23 = s023, s33 = s033. Again, with the above equations, S = S0 if s11 = s011. To
show s11 = s011, we use p0(0, 0)/p0( yd) = P(Y1 = 0,Y2 = 0|S)/P(Y = yd |S) and s33 = s033.
We have

exp

(
−1

2
s011

)
+ exp

(
−1

2
s011 + 1

2
s033

)
= exp

(
−1

2
s11

)
+ exp

(
−1

2
s11 + 1

2
s033

)
.

As the right-hand side is a strictly monotone decreasing function of s11, we know that s11 = s011 is
the only solution to the above equation. This proves the J = 3 case, which completes the proof.

��
Following the same proof strategy as above, it can be further shown that s11, s12, and s22 are not
identified in the complete-case analysis, while the rest of the parameters are. This is consistentwith
the result of Simulation Study II, where the other model parameters can be accurately estimated
while the estimates of s11, s12, and s22 are substantially different from the corresponding true
parameters.
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