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ABSTRACT. The average three-dimensional coordination 
number, 113 , is an important measure of firn structure. The 
value of 113 can be estimated from n2, the average measured 
two-dimensional coordination number, and from a function, 
r, that depends only on the ratio of average bond radius to 
grain radius in the sample . This method is easy to apply 
and does not require the use of unknown shape factors or 
tunable parameters. 

RESUME. Nombre coordonmi il trois dimensions iI partir 
de mesures bi-dimentiollllelles une lIouvelle m ethode. La 
moyenne des coordonnees a trois dimensions, ns' est une 
mesure importante de la structure du neve. La valeur de 113 

peut etre estimee a partir de n2, nombre moyen des mesures 
it deux dimensions et a partir d'une fonction r, qui depend 

INTRODUCTION 

Some physical properties of any granular material 
depend on the average coordination number of grains in the 
material (Gubler, 1978) but coordination number has proven 
a difficult quantity to measure. (Here, coordination number 
is defined as the number of grains in direct contact with a 
given grain; the surface of contact between grains is a grain 
bond.) The most accurate way to measure coordination 
number is by careful examination of closely spaced serial 
sections of a material. This method is so time-consuming, 
however, that it is generally impractical. It is faster but less 
accurate to estimate coordination numbers from 
measurements taken on a single section plane. Several 
methods have been proposed for doing this but all suffer 
f rom serious flaws. Here, we briefly review these previously 
published methods and then present a new method for 
estimating three-dimensional coordination number from 
measurements on a single plane of section. 

SYMBOLS USED 

a 

A 

c· 

E 

F 

A verage bond area 

A verage cross-sectional area of grains 

A verage cross-sectional area of grains on plane 
of section 

Shape factor 

Harmonic mean of bond lengths on plane of 
section 

Fraction of bonds intersected by a random cut 
of a grain 

Value of F for cut near center of grain 

Value of F for cut near edge of grain 

Tunable parameter in model of Gubler (1978) 

uniquement du rapport entre le rayon moyen de voisinage 
et de celui du grain de I'echantillon. Cette methode est d'un 
emploi facile et ne necessite pas I'utilisation de facteurs de 
forme inconnus ni de para metres ajustables. 

ZUSAMMENFASSUNG. Drcidimensionale Zuordnungszahl 
aus zweidimensiollalen MessUlrgen: Ein neues Verfahren. Die 
mittlere dreidimensionale Zuordnungszahl ns ist ein 
wichtiges Mass fur die Firnstruktur. Der Wett von 11 kann 
aus 112, der mittleren gemessenen .zweidimensfonalen 
Zuordnungszahl, und aus einer Funktion r., die 'Our 'VOlll 

Verhaltnis des mittleren Bindungsradius zum Kornradius 
abhangt, abgeschiitzt werden. Dieses Verfahren ist leicht 
anzuwenden und erfordert keine Kenntnis von Formfaktoren 
oder Abstimmungsparametern. 

Average coordination number on plane of 
section 

Distribution of coordination numbers on plane of 
section 

A verage three-dimensional coordination number 

Distribution of three-dimensional coordination 
numbers 

Value of "s calculated following Alley and 
others (1982) 

Value of "3 calculated following Kry (\.975) 

Number of grains per unit area on plane of 
section 

Number of bonds per unit area on plane of 
section 

Number of bonds per unit length of test line on 
plane of section 

Number of free surfaces (ice-air contacts) per 
unit length of test line on plane of sectioR 

Nv Number of grains per unit volume 

p 

r 

R 

Number of bonds per unit volume 

Probability of a cut intersecting a bond in 
model of Gubler (1978) 

A verage radius of grain bORds 
section 

A verage radius of grains 

A verage of radii of grains seen on a plane of 
section 
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" 

R' 

z 

z' 

z· 

a 

a' 

13 

r 

Average radius of grain bonds calculated from 
average bond area 

Average radius of grains calculated from average 
grain area 

Position of section cut on a grain 

Lower limit of bond-center positions inter
sected by a cut at z 

Upper limit of bond-center positions inter
sected by a cut at z 

Ratio of bond radius to grain radius, - 'j R 

Relative bond size for tangential bonds 

Fraction of grain surface occupied by bonds, 

2Nr.b 

Best estimate of average fraction of bonds on a 
grain intersected by plane of section 

Average fraction of inscribed bonds on a 
spherical grain intersected by plane of section 

A verage fraction of tangential bonds on a 
spherical grain intersected by plane of section 

Angle defined in Figure 2 

Angle defined in Figure 2 

PREVIOUS METHODS 

All of the methods for estimating three-dimensional 
coordination number, /l3' from measurements on a planar 
cross-section involve the use of certain simple counting 
measurements and certain assumptions regarding the size, 
derived quantities used in such methods are given above. 
The counting measurements and simple derived quantities 
above (Am' 13, E, " 2, [2(11 2), N A' NAb' NLb, NLf) require 
only that analysis be conducted on a random plane in an 
isotropic material or that averages be computed over all 
directions in an anisotropic material. All other quantities 
given above depend on assumptions regarding geometry in 
the material, and these assumptions generally cannot be 
tested rigorously. It is thus important that the method 
selected for calculating liS be insensitive to deviations from 
assumed geometry. Further discussion of both basic 
measurements and derived quantities can be found in a 
number of sources, including Underwood (1970), Kry 
(1975), and Alley and others (1982). The measurement of 
112 and its use as a qualitative indicator of firn densification 
has been discussed by Fuchs (1959) and Ebinuma and 
Maeno (1985). We will present only a sketchy development 
of this material here. 

Calculation of liS for planar, circular grain bonds of 
uniform size between mono-sized spheres was considered by 
Underwood (1970, p. 102). He showed that 

2( N Ab)2 

Nvb = nN 
Lb 

(I) 

where NLb is the number of intersections per unit length 
between randomly oriented test lines and grain bonds on the 
plane of section, NAb is the number of grain bonds per 
unit area intersected by the plane of section, N vb is the 
number of grain bonds per unit volume, and Nv is the 
number of grains per unit volume. The quantity Nv is 
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strongly dependent on the grain shape. For spherical grains, 
Underwood (1970, p. 96) showed that 

(2) 

where N A is the number of grains per unit area intersected 
by the plane of section and R IS the average grain radius. 
The variation of Nv with grain shape has been discussed by 
DeHoff and Rhines (1961), who showed that relatively small 
shape variations from sphericity can lead to errors in N v in 
excess of 100% if Equation (2) is used. Although DeHoff 
and Rhines (1961) derived equations equivalent to Equation 
(2) for a variety of shapes including prolate and oblate 
spheroids of arbitrar¥ axial ratio, they assumed that all 
grains in a material have the same shape. This requirement 
of shape constancy is not met in many real materials, so 
that estimates qf N v should \le considered inaccurate. We 
thus follow Kty (1975) in considering that any estimate of 
liS based OIl Ny should not be used to draw quantitative 
conclusions. 

The assumption of uniform bond size used in Equation 
(I) was relaxed by Fullman (1953) and Kry (1975), who 
showed that 

(3) 

where E is the harmonic mean of the lengths of inter
sections of bonds with the plane of section. Again, this 
method yields excellent results if and only if Nv can be 
evaluated accurately. Considering the uncertainty in Nv' Kry 
(1975) went so far as to suggest that this method may yield 
little better than order-of -magnitude estimates of liS' Natural 
variation of liS is little more than an order of magnitude, 
so this is not too useful. 

A slightly different approach was adopted by Alley and 
others (1982), who estimated that 

(4) 

where C' is a shape factor (discussed below), Am is the 
average area of grains observed on a plane of section, 13 is 
the fraction of grain surface occupied by bonds, NLf and 
NLb are respectively the number of intersections per unit 
length of randomly oriented test lines with ice-air surfaces 
and with grain bonds, a is the average area of bonds, and 
Nvb is given in Equation (3). (Note that the equation for 13 
in Alley and others (1982, p. 9) is in error; the correct 
expression is given above.) The estimate of a is from 
Fullman (1953) and assumes circular, planar bonds; this 
assumption of bond shape was tested by Kry (1975) and 
Alley (paper in preparation), and seems to be an accurate 
approximation. The factor (6C' Am) in Equations (4) is the 
average surface area per grain, and the shape factor C' 
corrects for deviations of grains from spherical form and 
for grain-size distributions. The shape factor was taken to 
be identicalIy I by Alley and others (1982) but it can vary 
significantly with grain shape (Underwood, 1970, p. 90-93; 
Table I). The shape factor is not known a priori for any 
real material and is thus the major source of error in this 
method. This method may be more accurate than those 
relying on Nv but less accurate than we would like. 
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TABLE I. VALUES OF SHAPE FACTOR C' IN 
EQUATION (4), FROM UNDERWOOD (1970, p. 90-93) 

Figure C' 

Oblate spheroid, axial ratio - 0.5 0.888 

Sphere 1.000 

Pentagonal dodecahedron 1.159 

Truncated octahedron (tetrakaidecahedron) 1.184 

Prolate spheroid, axial ratio ~ 0.5 1.269 

Hemisphere 1.339 

Rhombic dodecahedron 1.414 

Cube 1.500 

An interesting approach developed by Gubler (1978) 
for study of seasonal snow leads to an estimate of the dis
tribution of coordination numbers fs(nsj)' It was shown by 
Gubler (1978) that any assumed distribution fs(nsj) can be 
used to predict a distribution function of coordination 
numbers in a plane of section, f 2(n2j' p, i), that depends 
on a tunable parameter, i, and on the probability, p, that a 
random cut through a single grain with one bond will 
intersect that bond. The probability, p, depends on average 
grain radius, R, average bond radius, r, the number of 
grains per unit volume, Nv' an empirically evaluated 
constant, and a shape factor that must be estimated. To 
calculate three- dimensional coordination, p is calculated, trial 
values of f3(n~} and i are selected, and the 
two-dimensional distribution function f 2(n 2j' p, i) consistent 
with the trial values is calculated. Then 13(n3) and i are 
adjusted until the predicted f 2(n2j' p, i) matches the 
observed two-dimensional distribution f 2(n2j) as closely as 
possible. The trial distribution fs(ns} that produces the 
closest match is then the best estimate of the actual three
dimensional distribution of coordination numbers. This 
method requires that (r / R) « I, which is realized in the 
snow studied by Gubler (1978) but not in most firn (Alley 
and others, 1982; paper in preparation by R.B. Alley). 
Although this method may prove valuable in the study of 
seasonal snow, the use of a tunable parameter, a shape 
factor, an empirical constant, and the uncertain quantity N v' 
and the requirement of small bonds, render it suspect for 
application in firn. The use of observed two-dimensional 
coordination numbers to estimate three-dimensional coordin
ation is an excellent idea, however, and we adopt it in 
developing our new model. 

MODEL 

Stated briefly, we have developed a transfer function 
from the average two-dimensional coordination number on a 
plane of section, n2 , to the average three-dimensional 
coordination number in the material, ns ' based on the 
average probability that a plane of section will intersect a 
circular, planar bond on the surface of a spherical grain. 
No solution is available for the exact geometry of bonds on 
grains, so we construct limiting cases and choose their 
average value for our transfer function . The transfer 
function is 

a= 

~ 
r(a) 

R 

(5) 

where r, the average fraction of bonds intersected by a 
plane of section through a sphere, depends only on a, the 
ratio of average bond radius, r, to average grain radius, R. 

Consider a spherical grain of radius R with a planar, 
circular grain bond of radius r . Clearly, for r > 0 the grain 

: 

a) 

: 

b) 

.. . ' 
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Fig. 1. Limiting geometries for grain bonds. (a) Inscribed 
bonds. (b) Tangential bonds. 

Fig. 2. Geometry for inscribed grain bonds. with plane of 
section lIear cellter of grain. 

cannot be a true sphere. The actual geometry is limited by 
the cases of inscribed bonds (Fig. I a) and tangential bonds 
(Fig. 1 b). We model each case by calculating r i.,. for 
inscribed bonds and r tan for tangential bonds, and then take 
r to be the average of the two. 

We begin with the inscribed case, which is shown in 
detail in Figure 2. Bonds are assumed to be circles of 
radius r distributed randomly over the grain. A section cut 
at position z will intersect all bonds with centers falling 
between z· and z· (see Fig. 2). The region between z· and 
z contains surface area of the sphere 2nR(z' - z·) out of 
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total surface area 4nR2; thus, the cut at z intersects fraction 
F 1 of the total bonds on the grain, where 

2nR(z' - z') 
Fl 3 4nR' (6) 

(The spatial distribution on a grain of bonds of non-zero 
size cannot be truly random; however, we require only that, 
on average, fraction F 1 of the surface area of a grain con
tains fraction F 1 of the bond centers on that grain, which 
is realized if bonds lack a preferred orientation.) 

From the geometry of Figure 2 

z' .. Rcos (1/1- ~), 

(7) 

z' = Rcos (I/I+~). 

Equations (7) can be re-written in terms of sines and 
cosines of 1/1 and ~ using standard trigonometric identities, 
which can then be re-written in terms of R, a, and z. This 
leads to 

z' z~ + aiR' z2, 

z· z~-ah2 z2 , (8) 

z' - z' _ 2a1R' - z2. 

We have ignored one complication thus far, however. 
When 1/1 < ~, a cut at z will not intersect the grain at all 
if there is a grain bond centered between (1/1 - ~) and (~ -
1/1), as shown in Figure 3. This region has area 2nR(R -
z' ). If a cut with 1/1 < ~ intersects the grain, then there 

Fig. 3. Geometry for inscribed grain bonds. with plane of 
section near edge of grain. Shaded region lies between 
(~-I/I) and (I/I-~). 

are no bonds centered in this region. In this case, the total 
area sampled by the cut is still given by 2nR(z' - z '), but 
the total area over which bonds can occur is 4nR2 - 2nR(R 
- z'). Thus, for 1/1 < ~, a cut at z samples F 2 of the total 
bonds, where 

2nR(z' - z") 
F, = 2 

4nR - 2nR(R - z' ) 
(9) 

By direct geometry, we can show that when ~ = 1/1, z = 

R~. This allows us to write the fraction of bonds, F, 
intersected by a cut at z, as 

F F1' -R ~ < z 'R~, (10) 
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Because of the spherical symmetry of the problem, the 
average fraction of bonds sampled by a cut through a 
grain, r in., is simply the average of F over all z along any 
diameter of the spherical grain. Thus 

2R 

I JR 
rin. = 2R Fdz, 

-R 

{r~ -R~ 
a~dz+ 
R 

2a1R' -zl 1 ---=-----ctdz . 
R + z/l - a2 + aiR' - z' 

(11) 

(12) 

The first integral in Equation (12) can be evaluated 
directly, and Equation (12) becomes 

r. = a./t-a2+sin-VI-a2+ m. 

(13) 

+ ~ JR 2a~ 
R RN R+ z/t-a2 + a~ 

dz. 

The remaining integral can be evaluated numerically without 
great difficulty and is a function of a only. 

We should note here that the second integral in 
Equation (12) is a small correction term except at large a. 
Had we ignored this term and evaluated the first integral 
from -R to R, the result would have been 

(14) 

Equations (13) and (14) differ by only 8% for a = 1.0, by 
only 0.2% for a = 0.7, and are identical to four significant 
figures for a. < 0.5; thus, Equation (14) could be used in 
place of Equation (13) in most cases. 

Next, consider the tangential case shown in Figure 4. 
The tangential bond to a sphere of radius R )i eg~valent 
to an inscribed bond in a sphere of radius R + . The 
tangential case with relative bond size a thus behaves like 
the inscribed case with bond size a ' , where 

a' (\5) 

Fig. 4. Geometry for tangential grain bonds. 
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and 

r tan(a) = rin.(a' ). (16) 

The true r for a given grain lies between r. m. and 
r tan' so we choose as the best estimate 

[in.(a) + rtan(a) 
r(a) = 

2 
(17) 

Values of [(a) are listed in Table 11, together with the 
relative difference between [ and rin. or r tan. Based on ex
perience, we do not expect natural values of a to exceed 
0.7 commonly, so Table II shows that the maximum uncer
tainty introduced by choosing r rather than [in. or r tan is 
less than 10%. In most cases, the error introduced by using 
r should be very small. 

Equation (17) and Table II represent our best estimate 

TABLE 11. [ VERSUS a FROM EQUA nON (17), AND 
MAXIMUM RELATIVE ERROR IN r FROM ASSUMED 
SHAPE 

a [ Maximum error 
%* 

0.00 0.000 0.0 
0.05 0.039 0.1 
0.10 0.078 0.3 
0.15 0.117 0.6 
0.20 0.156 1.0 
0.25 0.194 1.5 

0.30 0.231 2.2 
0.35 0.267 2.9 
0.40 0.303 3.7 
0.45 0.338 4.6 
0.50 0.372 5.6 

0.55 0.405 6.6 
0.60 0.438 7.7 
0.65 0.470 8.8 
0.70 0.501 10.0 
0.75 0.531 11.2 

0.80 0.561 12.5 
0.85 0.591 13.9 
0.90 0.622 15.4 
0.95 0.654 17.1 
1.00 0.704 20.9 

·error [r~rtaD] x 100% riD. ; r] x 100%. 

of r. If we use the approximation in Equation (14) , then 
we can estimate r as 

(18) 

This is an excellent approximation of Equation (17) except 
at large a. 

CALCULA TIONS 

This method requires that rand R, the average radii 
of bonds and grains, be known so that a can be calculated. 
For circular bonds that may exhibit a bond-size distribution, 
Fullman (1953) showed that 

, - n 
4E 

(19) 

where E is the harmonic mean of the lengths of inter-

Alley: Coordination number 

sections of bonds with the plane of section. For mono-sized 
spherical grains, it is not difficult to show that 

R - (20) 

where Rm is the average of individual radii of grains seen 
on the plane of section. This may be a good estimate for 
non-spherical grains of different sizes (Mendelson, 1969), 
although this is difficult to demonstrate rigorously. Methods 
for determining R from measured intercep't lengths were 
also discussed by Mendelson (1969). (We recognize the im
precision introduced by not treating explicitly the effect on 
R and a of a distribution of grain shapes and sizes, but 
grain-size itself is not a well-defined quantity unless all 
grains have a specified shape (Underwood, 1970); we are 
continuing to investigate this problem.) Once , and Rare 
known, then a is calculated from 

, 
ex - - • 

R 
(21) 

In many cases, it is easier to calculate a from " and 
R', which are calculated from average areas. For circular 
bonds of different sizes, Fullman (1953) showed that the 
average bond area, a, is given by 

a s (22) 

The true average cross-sectional area of grains, A, is related 
in some fashion to the measured cross-sectional area on the 
plane of section, Am' For mono-sized spherical grains, A is 
given exactly by 

A -

3 

2 
(23) 

This is a slight overestimate of A for a sample consisting of 
spherical grains of different sizes and a slight underestimate 
of A for mono-sized, non-spherical grains, and so should be 
a good estimate for non-spherical grains of different sizes 
(paper in preparation by R.B. Alley). Then 

(24) 

Empirically, we find that Equations (24) and (21) differ by 
less than 5% in most cases, so the investigator should 
choose the more convenient. 

DISCUSSION 

Because of the near-impossibility of learning n,l exactly 
in a real sintered material, we cannot provide a rigorous 
test of our new method for calculating n3• As discussed 
below, however, several factors recommend our method, 
including its insensitivity to deviations from assumptions, its 
independence from shape factors or tunable parameters, its 
accuracy, and its ease of computation. 

No real system will match exactly the geometry 
assumed in our derivation. A grain can deviate from a 
spherical form toward some other convex form or toward a 
non-convex form. In either case, however, the deviation will 
affect in a similar manner both the total surface area of 
the grain and the average surface sampled by a plane of 
section; thus, [ will vary more slowly than any single 
measure of grain shape. As an extreme example, the value 
of r for a thin disc of radius R is only about (4/n) 
times r for a sphere of radius R, if , is held fixed. 

As we discussed above, some other published methods 
of calculating n,l rely on shape factors or tunable parameters 
that cannot be estimated well. Our new model does not re
quire any of these and so is preferable. (Deviations from 
sphericity could be corrected by a shape factor but the slow 
variation of [ with grain shape allows us to set this shape 
factor to I.) 

A major objection to other methods of calculating n3 is 
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their reliance on quantities, particularly Nv' that cannot be 
determined accurately. Our method depends on n2 and on ex; 
the latter does depend on a number of measured and cal
culated quantities. However, both experience and theory 
(Alley and others, 1982; paper in preparation by R.B. Alley) 
indicate that a (and thus r) varies by a factor of 2 or less 
after a bonded structure is developed. Most variations in ns 
thus result from variations in n2• The value of n2 can be 
determined with considerable accuracy. In typical fim of 
density 0.55 Mg m-s from "Upstream B" on the Siple Coast 
of West Antarctica, a t-test on a count of lOO grains 
typically yields n2 - 2.5 t 0.17 with 90% confidence. 
Counting more grains would narrow the confidence interval 
further. We believe that the total accuracy of our method is 
better than 20%, although we cannot demonstrate this 
rigorously. (For values of a less than 0.1, difficulty in 
recognizing a contact and a large standard deviation on n2 
will decrease the accuracy.) 

Finally, our new method allows easy computation. 
Although rand R can be determined only after substantial 
effort, they are frequently of interest in their own right. 
Once rand R (or r' and R') are known, our model 
requires only that n l be measured and r determined from 
Table 11 or Equation (18), and these substituted into 
Equation (5). The total time required for measurement and 
computation after rand R are known is typically 10-15 
min. 

As an exercise, we compared ns calculated using our 
new method with ns' calculated after Alley and others (1982) 
for 20 samples from "Upstream B" on the Sip le Coast of 
West Antarctica. Values of ns are plotted in Figure 5. If we 

7.-----.------.-----,,-----, 

• 
• • • 

• 
• 

• 
• • 

• 3 L-__ .~ __ L_ ____ ~ ______ ~ ______ _J 

300 500 

Density (kg m-3 ) 

700 

Fig. 5. Values 0/ ns versus density for ·Upstream Bn on the 
Siple Coast of West Antarctica. Values of ns for 
anisotropic firn were obtained by averaging values for 
horizontal and vertical sections from the same sample. 

take C' E I following Alley and others (1982), then ns' < 
ns in every case considered. If we assume that ns from our 
new method is exact and calculate C' for the samples, we 
obtain a mean value of C' = 1.29 with a standard deviation 
of 0.15. Actual grains in shallow fim probably range from 
spheres to prolate spheroids and become more like truncated 
octahedra (tetrakaidecahedra) or dodecahedra with increasing 
depth; also, actual grains probably have some surface 
irregularities which would tend to increase C' . In the light 
of these considerations, Table I shows that C' = 1.3 is a 
reasonable value, which tends to lend credence to our 
model. We emphasize, however, that C' need not be the 
same in different samples and cannot be known a priori. 

We also tested our new model against ns' from 
FUllman (1953) and Kry (1975), assuming spherical grains. 
Results show some variability but in general ns' is 10-20% 
less than "s' Grains are not spherical in real firn but 
resemble prolate ellipsoids. Agreement between n3 ' and ns 
would be improved significantly if we assumed the grains 
to be prolate ellipsoids of axial ratio 0.9 (DeHoff and 
Rhines, 1961). This is a reasonable value based on observa
tion but cannot be derived readily from measurements. 

CONCLUSIONS 

We have presented a new method for calculating ns' 
the average three-dimensional coordination number in a 
granular material, from stereological measurements on a 
section plane. The model is computationally simple, accurate, 
insensitive to deviations from assumptions used in its deriv
ation, and requires no shape factors or tunable parameters. 
Differences between results from our new model and 
previous models are explicable based on known weaknesses 
in the previous models. Thus, we believe that our model 
provides a useful way to estimate "s' We now are using 
data on n3 to study densification processes in firn (Alley 
and Bentley, in press). 
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