ON REDUCIBILITY OF TRINOMIALS

by ANDREW BREMNER

(Received 12 November, 1979)
In Schinzel [1] the following interesting question is asked: does there exist an absolute constant K such that every trinomial in $\mathbb{Q}[x]$ has a factor irreducible in $\mathbb{Q}[x]$ which has at most K terms? The only known result appears to be that of Mrs. H. Smyczek, given in the above paper, that if K exists, then $K \geqslant 6$. We here extend this bound to $K \geqslant 8$ by exhibiting a trinomial in $\mathbb{Z}[x]$ which splits into the product of two irreducible factors, each having 8 terms.

We consider for suitable integers a, b, c, d, e, f, g and prime p, the product

$$
\begin{align*}
\left(x^{7}+2 p a x^{6}+2 p b x^{5}+2 p c x^{4}\right. & \left.+2 p d x^{3}+2 p e x^{2}+2 p f x+p g\right) \\
& \times\left(x^{7}-2 p a x^{6}+2 p b x^{5}-2 p c x^{4}+2 p d x^{3}-2 p e x^{2}+2 p f x-p g\right) \tag{1}
\end{align*}
$$

where the two factors are \mathbb{Q}-irreducible by Eisenstein's criterion if $p \nmid \mathrm{~g}$. We automatically have that the coefficients of odd powers of x in the product are zero; and we impose restrictions on a, b, \ldots, g by demanding that the coefficients of $x^{12}, x^{10}, \ldots, x^{4}$ be also zero, so that the product (1) is indeed a trinomial, of the form $x^{14}+A x^{2}+B$. This requires

$$
\begin{aligned}
& b=p a^{2} \\
& d=p a\left(2 c-p^{2} a^{3}\right) \\
& f=p c^{2}+2 p a e-2 p^{3} a^{3}\left(2 c-p^{2} a^{3}\right) \\
& g=6 p^{2} a c^{2}-12 p^{4} a^{4} c+5 p^{6} a^{7}+4 p^{2} a^{2} e-\frac{2 c e}{a}
\end{aligned}
$$

and

$$
e^{2}-e\left(4 p^{2} a^{2} c-4 p^{4} a^{5}+\frac{2 c^{2}}{a}\right)+\left(2 p^{2} a c^{3}+6 p^{4} a^{4} c^{2}-11 p^{6} a^{7} c+4 p^{8} a^{10}\right)=0
$$

The latter equation is just

$$
\begin{equation*}
e=2 p^{2} a^{2} c-2 p^{4} a^{5}+\frac{c^{2}}{a} \pm D \tag{2}
\end{equation*}
$$

where

$$
D^{2}=\frac{1}{a^{2}}\left(c-p^{2} a^{3}\right) c\left(c^{2}+3 p^{2} a^{3} c-3 p^{4} a^{6}\right)
$$

equivalently,

$$
\begin{equation*}
Y^{2}=X(X-1)\left(X^{2}+3 X-3\right) \tag{3}
\end{equation*}
$$

Glasgow Math. J. 22 (1981) 155-156.
with

$$
\begin{equation*}
Y=D / p^{4} a^{5}, \quad X=c / p^{2} a^{3} \tag{4}
\end{equation*}
$$

Now (3) is just the equation of an elliptic curve; if we transform by $s=Y / X^{2}$, and $t=1-(1 / X)$, we obtain the curve

$$
\begin{equation*}
s^{2}=t\left(1+3 t-3 t^{2}\right) \tag{5}
\end{equation*}
$$

and it is straightforward to show by standard methods that the group of rational points on (5) is generated by $(0,0)$ of order 2 and $(1,1)$ of infinite order.

Calculation gives

$$
7(1,1)=\left(\frac{16351^{2}}{28489^{2}}, \ldots\right)
$$

with corresponding value of X equal to

$$
\frac{31^{2} \cdot 919^{2}}{2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2} \cdot 19 \cdot 59}
$$

and we can thus see from (4) how to choose a, c, p-indeed we can take $p=17$, $a=2^{2} \cdot 3 \cdot 5 \cdot 7.19 .59, c=2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19^{2} \cdot 59^{2} \cdot 31^{2} \cdot 919^{2}$. Since $a \mid c$ all the coefficients are integers; and since $17 \nsucc c^{2} / a$ we can ensure, by appropriate choice of sign for D in (2), that $17 \nmid e$, whence $17 \nmid \mathrm{~g}$ as required for applying the Eisenstein criterion. The remaining coefficients can now be calculated explicitly, but are rather large.

REFERENCE

1. A. Schinzel, Some unsolved problems on polynomials, Mat. Biblioteka 25 (1963), 63-70.

Emmanuel College

Cambridge CB2 3AP

