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The aim of the paper is to introduce and investigate a dynamical system which consists of a
variational–hemivariational inequality of hyperbolic type combined with a non-linear evolution
equation. Such a dynamical system arises in studies of complicated contact problems in mechan-
ics. Existence, uniqueness and regularity of a global solution to the system are established. The
approach is based on a new semi-discrete approximation with an application of a surjectivity result
for a pseudomonotone perturbation of a maximal monotone operator. A new dynamic viscoelastic
frictional contact model with adhesion is studied as an application, in which the contact boundary
condition is described by a generalised normal damped response condition with unilateral constraint
and a multivalued frictional contact law.
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1 Introduction

In real life, a wide variety of physical phenomena, economic processes and engineering applica-
tions are naturally modelled or formulated as inequality problems which replace more commonly
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studied equations. On the one hand, physical laws and constitutive relations for complicated
applications are often described by inequalities, and on the other hand, investigation of inequal-
ity problems is more difficult than equations. Roughly speaking, inequality problems can be
classified as variational inequalities and hemivariational inequalities. Variational inequalities are
related to convex potentials and their study is traced back to 1933 when Signorini posed a static
linear elastic contact problem, which was subsequently studied by Fichera in 1964 on solution
existence in the space of functions with finite energy by exploiting an optimisation method. Over
half a century, variational inequalities have attracted much attention due to their wide range of
applications in Mechanics, Engineering, Economics, etc., see, for example, [11,12,22,27,28,30,
31, 38]. The theory of hemivariational inequalities is based on the notion of the Clarke’s gen-
eralised subdifferential defined for locally Lipschitz functions, and it was started with works of
Panagiotopoulos in the early 1980s, see [40], who attempted to analyse engineering problems
involving non-smooth, non-monotone and possibly multivalued constitutive/interface laws for
deformable bodies. Since then, there has been much development on the mathematical theory
and applications of hemivariational inequalities, see, for example, [6, 24, 35, 37, 39, 41, 46, 49].

Although the notion of variational–hemivariational inequality is not new, see, for exam-
ple, [42], there is extensive research on variational–hemivariational inequalities in the recent
years to explore complicated systems involving both convex and non-convex energy (or poten-
tial) functions. Among recent results, we mention some representative references: [19] on
existence and uniqueness result for a class of variational–hemivariational inequalities of elliptic
type and optimal-order error estimate for the linear finite element approximations; [4, 5] on the
existence of solution to parabolic variational–hemivariational inequalities; [17] treated an adhe-
sive unilateral contact problem between a viscoelastic body and a deformable foundation which
can be formulated as a dynamical system consisting of a variational–hemivariational inequality
of parabolic type and an ordinary differential equation; [32] built a Landesman–Lazer theory in
the non-smooth framework of variational–hemivariational inequalities of elliptic type; and [23]
on the numerical solution of elliptic variational–hemivariational inequalities.

The aim of this paper is to study a new class of dynamical system consisting of a hyperbolic
variational–hemivariational inequality and a non-linear evolution equation. This system is formu-
lated as follows. Given Banach spaces V , X , Y , operators A : V → V ∗, B : V → V ∗, M : V → X ,
a locally Lipschitz function J : Y × X →R, a function F : (0, T) × X × Y → Y , a proper, convex
and lower semicontinuous function ϕ : V →R :=R∪ {+∞}, f ∈ V∗, u0, v0 ∈ V and β0 ∈ Y , we
are looking for functions u : (0, T) → V , β : (0, T) → Y and ξ : (0, T) → X ∗ such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

〈u′′(t), v − u′(t)〉 + 〈Au′(t) + Bu(t), v − u′(t)〉 + ϕ(v) − ϕ(u′(t))
+ 〈ξ (t), M(v − u′(t))〉X∗×X ≥ 〈 f (t), v − u′(t)〉 for all v ∈ V , a.e. t ∈ (0, T),

ξ (t) ∈ ∂J (β(t), Mu′(t)) for a.e. t ∈ (0, T),

β ′(t) = F(t, Mu(t), β(t)) for a.e. t ∈ (0, T),

u(0) = u0, u′(0) = v0, β(0) = β0.

(1.1)

Such a dynamical system arises in studies of complicated contact problems in mechanics in
which the non-linear evolution equation models the adhesion effect. Existence and uniqueness
of solution will be proved for the system, based on a new semi-discrete approximation of the
system together with the application of a surjectivity result for a pseudomonotone perturbation
of a maximal monotone operator. The system (1.1) has been studied earlier in [36] with ϕ ≡ 0 and
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J depending on u. Since the function ϕ takes infinite values, the results for (1.1) are applicable
to unilateral contact problems. This application was not possible for the problem treated in [36].
Moreover, problem (1.1) was considered in [3] without the non-linear evolution equation and
under more restrictive hypotheses on the data.

The outline of the paper is as follows: basic notation and preliminary materials needed in the
rest of the paper are recalled in Section 2. In Section 3, we provide an existence and unique-
ness analysis of the dynamical system. We apply a new temporally semi-discretisation of mixed
type to approximate the dynamical system. Solution existence of the semi-discrete scheme is
obtained by applying a general surjectivity result for pseudomonotone perturbations of maxi-
mal monotone operators. Then, a priori bounds are established on solutions of the semi-discrete
approximations, and piecewise affine and piecewise constant interpolation functions are con-
structed. Through a limiting procedure, we show that the semi-discrete solutions converge to a
solution of the dynamical system. Solution uniqueness is also examined. In Section 4, a new
dynamic viscoelastic contact model with combined effects of friction and adhesion is studied as
an illustrative application. We provide a weak formulation of the contact problem in the form
of hyperbolic variational–hemivariational inequality coupled with a non-linear evolution equa-
tion and apply the theoretical results from Section 3 to conclude the existence of a unique weak
solution of the contact problem.

2 Notation and preliminaries

In this section, we collect basic notation and some results needed later. For more details, we refer
to [8–10, 48].

Throughout the paper, we denote by 〈·, ·〉Y∗×Y the duality pairing between a Banach space Y
and its dual Y ∗. The norm in a normed space Y is denoted by ‖ · ‖Y . We often drop the subscripts,
if no confusion arises. We denote by L(Y1, Y2) the space of linear and continuous operators from
a normed space Y1 to a normed space Y2 endowed with the operator norm ‖ · ‖L(Y1,Y2). For an
operator A ∈L(Y1, Y2), we denote by A∗ ∈L(Y ∗

2 , Y ∗
1 ) its adjoint.

Given a reflexive Banach space X , and a multivalued operator A : X → 2X∗
, we say that A is

pseudomonotone, if

(i) for each u ∈ X , the set Au is non-empty, bounded, closed and convex in X ∗;
(ii) A is upper semicontinuous from each finite-dimensional subspace of X to X ∗ endowed with

weak∗ topology;
(iii) if {vn} ⊂ X and {v∗

n} ⊂ X ∗ are such that vn → v weakly in X and v∗
n ∈ A(vn) with

lim supn→∞〈v∗
n , vn − v〉 ≤ 0, then for each u ∈ X there exists v∗(u) ∈ A(v) such that

〈v∗(u), v − u〉 ≤ lim inf
n→∞ 〈v∗

n , vn − u〉.

A single-valued mapping A : X → X ∗ is called pseudomonotone, if it is bounded and if for
every sequence {vn} ⊆ X converging weakly to v ∈ X and lim sup〈Avn, vn − v〉 ≤ 0, one has
〈Av, v − u〉 ≤ lim infn→∞〈Avn, vn − u〉 for all u ∈ X . It is known, see [35, Proposition 3.66],
that A is pseudomonotone if and only if the following holds: vn → v weakly in X and
lim sup〈Avn, vn − v〉 ≤ 0 entails limn→∞〈Avn, vn − v〉 = 0 and Avn → Av weakly in X ∗. It is clear
that if A ∈L(X , X ∗) is non-negative, then it is pseudomonotone.
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Let ϕ : X →R :=R∪ {+∞}. We say that ϕ is proper, if its effective domain dom ϕ = {v ∈
X | ϕ(v) < +∞} �= ∅. The function ϕ is (sequentially) lower semicontinuous (l.s.c., for short), if
vn → v in X , as n → +∞ implies ϕ(v) ≤ lim inf ϕ(vn). For a proper, convex and l.s.c. function
ϕ : X →R, its convex subdifferential is a multivalued mapping ∂cϕ : X → 2X∗

defined by

∂cϕ(u) = {
u∗ ∈ X ∗ | 〈u∗, v − u〉 ≤ ϕ(v) − ϕ(u) for all v ∈ X

}
.

The elements of the set ∂cϕ(u) are called (convex) subgradients of ϕ at u ∈ X .
A function J : X →R is called locally Lipschitz at u ∈ X , if there exists a neighbourhood Ou of

u and a constant Lu > 0 such that |J (w) − J (v)| ≤ Lu‖w − v‖X for all w, v ∈ Ou. Given a locally
Lipschitz function J : X →R, its generalised (Clarke) directional derivative at the point u ∈ X in
the direction v ∈ X is defined by

J0(u; v) = lim sup
λ→0+, w→u

J (w + λv) − J (w)

λ
.

The generalised gradient of J : X →R at point u ∈ X is given by ∂J (u) = { ξ ∈ X ∗ | J0(u; v) ≥
〈ξ , v〉 for all v ∈ X }.

A function h : X →R is (sequentially) upper semicontinuous (u.s.c., for short), if vn → v in
X , as n → +∞ implies lim sup h(vn) ≤ h(v).

The next proposition, see [20, Proposition 5.6, p. 114], provides an example of a multivalued
pseudomonotone operator corresponding to superposition of the generalised subgradient with a
compact operator.

Proposition 1 Let V and X be reflexive Banach spaces. Let M : V → X be a linear, continuous
and compact operator with its adjoint M∗ : X ∗ → V ∗, and J : X →R be a locally Lipschitz func-
tion such that ‖∂J (v)‖X∗ ≤ c (1 + ‖v‖X ) for all v ∈ V with c > 0. Then, the multivalued operator
F : V → 2V∗

defined by F(v) = M∗∂J (Mv) for v ∈ V is pseudomonotone.

Let T ∈ (0, ∞) and q ∈ [1, ∞) be given. Denote by π a finite partition of the interval [0, T]
by a family of disjoint subintervals �i := [li, ri] such that [0, T] = ∪n

i=1�i. Let P denote the
family of all such partitions. Furthermore, we introduce the space BV q(0, T ; X ) := {

x : (0, T) →
X | ‖x‖BVq(0,T ;X ) < ∞}

, where ‖x‖BVq(0,T ;X ) stands for the seminorm of x ∈ BV q(0, T ; X ) given by

‖x‖q
BVq(0,T ;X ) := sup

π∈P

∑
�i∈π

‖x(ri) − x(li)‖q
X .

Let X and Z be Banach spaces with the continuous embedding X ⊂ Z. For 1 ≤ p, q < ∞ fixed,
the space Mp,q(0, T ; X , Z) = Lp(0, T ; X ) ∩ BV q(0, T ; Z) becomes a Banach space under the
norm ‖ · ‖Mp,q(0,T ;X ,Z) := ‖ · ‖Lp(0,T ;X ) + ‖ · ‖BVq(0,T ;Z). The following compactness result will be
needed, see [26, Proposition 2.8].

Proposition 2 Let 1 ≤ p, q < ∞ and X1 ⊂ X2 ⊂ X3 be Banach spaces such that X1 is reflexive,
the embedding X1 ⊂ X2 is compact and the embedding X2 ⊂ X3 is continuous. Then, any bounded
subset of Mp,q(0, T ; X1, X3) is relatively compact in Lp(0, T ; X2).

The following result provides a surjectivity criterion for an operator which is the sum of a
pseudomonotone and a maximal monotone operator, see [29, Theorem 2.2].
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Theorem 3 Let F : D(F) ⊂ X → 2X∗
be a maximal monotone operator, G : D(G) = X → 2X∗

a
bounded multivalued pseudomonotone operator and L ∈ X ∗. Assume that there exist u0 ∈ X and
R ≥ ‖u0‖X such that D(F) ∩ BR(0X ) �= ∅ and

〈ξ + η − L, u − u0〉 > 0, (2.1)

for all u ∈ D(F) with ‖u‖X = R and all ξ ∈F(u), η ∈ G(u), where BR(0X ) stands for the open ball
centred at 0X with radius R. Then, there exists an element u ∈ D(F) such that F(u) + G(u) � L.

In the proofs of next section, we will apply the following modified Cauchy–Schwarz inequality
on several occasions: for any reals a and b, and any ε > 0,

a b ≤ ε a2 + C b2 with C = 1/(4 ε). (2.2)

3 Variational–hemivariational inequalities of hyperbolic type

In this section, we study a new class of dynamical systems which consists of a generalised
hyperbolic variational–hemivariational inequality coupled with a non-linear evolution equation.
Results on existence, uniqueness and regularity of solution to the dynamical system are provided.

The functional framework used in this section is the following (we refer to [9, 10, 48] for
details). Let V ⊂ H ⊂ V ∗ be an evolution triple of spaces, that is, (V , ‖ · ‖) is a reflexive and
separable Banach space with its dual (V ∗, ‖ · ‖V∗ ), (H , ‖ · ‖H ) is a separable Hilbert space and
the embedding of V into H is dense and continuous. Moreover, we assume that the embedding
operator i : V → H is compact. The duality pairing between V ∗ and V and the scalar product
of H are denoted by 〈·, ·〉 and (·, ·)H , respectively. Given T ∈ (0, ∞), we consider the standard
Bochner–Lebesgue function spaces

V = L2(0, T ; V ), H= L2(0, T ; H) and W = {v ∈ V | v′ ∈ V∗},
where the time derivative v′ = ∂v/∂t is understood in the sense of vector-valued distributions.
Note that spaces V and V∗ = L2(0, T ; V ∗) are reflexive Banach spaces, W endowed with graph
norm ‖v‖W = ‖v‖V + ‖v′‖V∗ is a separable and reflexive Banach space, and the embeddings
W ⊂ V ⊂H⊂ V∗ are continuous. Also, the embedding W ⊂ C(0, T ; H) is continuous, where
C(0, T ; H) stands for the space of continuous functions on [0, T] with values in H .

Furthermore, assume that (X , ‖ · ‖X ) and (Y , ‖ · ‖Y ) are two Banach spaces with duals
(X ∗, ‖ · ‖X∗ ) and (Y ∗, ‖ · ‖Y∗), respectively, the duality pairing for X being denoted by 〈·, ·〉X∗×X .
Additionally, we introduce function spaces Y = L2(0, T ; Y ), Y∗ = L2(0, T ; Y ∗), X = L2(0, T ; X )
and X ∗ = L2(0, T ; X ∗). We use the notations 〈·, ·〉V∗×V and 〈·, ·〉X ∗×X for the dualities between
V and V∗, and X and X ∗, respectively.

In the rest of the paper, we denote by C a generic constant whose value may change from line
to line.

Given a non-linear operator A : V → V ∗, a linear operator B : V → V ∗, a locally Lipschitz
function J : Y × X →R, a non-linear function F : (0, T) × X × Y → Y , a proper, convex and
lower semicontinuous function ϕ : V →R :=R∪ {+∞}, a linear operator M : V → X , elements
f ∈ V∗, u0, v0 ∈ V and β0 ∈ Y , the goal of this paper is to study the following system of a gen-
eralised hyperbolic variational–hemivaritional inequality coupled with a non-linear evolution
equation.
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Problem 4 Find (u, β) ∈ V × W 1,2(0, T ; Y ) with u′ ∈W such that there exists ξ ∈X ∗ and⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

〈u′′(t), v − u′(t)〉 + 〈Au′(t) + Bu(t), v − u′(t)〉 + ϕ(v) − ϕ(u′(t))
+ 〈ξ (t), M(v − u′(t))〉X∗×X ≥ 〈 f (t), v − u′(t)〉 for all v ∈ V , a.e. t ∈ (0, T),

ξ (t) ∈ ∂J (β(t), Mu′(t)) for a.e. t ∈ (0, T),

β ′(t) = F(t, Mu(t), β(t)) for a.e. t ∈ (0, T),

u(0) = u0, u′(0) = v0, β(0) = β0.

(3.1)

We impose the following assumptions on the data of Problem 4.

H(A): The operator A : V → V ∗ is such that

(i) A is pseudomonotone.
(ii) There exist constants aA ≥ 0 and bA > 0 satisfying

‖Av‖V∗ ≤ aA + bA‖v‖ for all v ∈ V .

(iii) There exist mA > 0 and cA ≥ 0 such that the inequality is true

〈Au − Av, u − v〉 ≥ mA‖u − v‖2 − cA‖u − v‖2
H for all u, v ∈ V .

H(B): The operator B ∈L(V , V ∗) is symmetric and coercive, that is, there exists
a constant �B > 0 such that

〈Bu, v〉 = 〈Bv, u〉 and 〈Bu, u〉 ≥ �B‖u‖2 for all u, v ∈ V .

H( f ): f ∈ H1(0, T ; V ∗).

H(J ): The function J : Y × X →R is such that

(i) x �→ J (y, x) is locally Lipschitz for all y ∈ Y .
(ii) The growth condition holds

‖∂J (y, x)‖X∗ ≤ cJ (1 + ‖x‖X ) for all x ∈ X , y ∈ Y with some cJ > 0.

(iii) There exists mJ ≥ 0 such that for all ξi ∈ ∂J (yi, xi) and (yi, xi) ∈ Y × X , i = 1, 2,

〈ξ1 − ξ2, x1 − x2〉X∗×X ≥ −mJ (‖x1 − x2‖X + ‖y1 − y2‖Y )‖x1 − x2‖X .

(iv) (y, x) �→ J0(y, x; z) is u.s.c. from Y × X into R for all z ∈ X .

H(ϕ): The function ϕ : V →R :=R∪ {+∞} is proper, convex and l.s.c.

H(M): The operator M : V → X is linear, continuous, and its Nemytskii operator
M : M2,2(0, T ; V , V ∗) ⊂ V →X is compact, where M is defined by

(Mv)(t) = M(v(t)) for a.e. t ∈ (0, T) and v ∈ V .

H(F): F ∈ L∞([0, T] × X × Y ; Y ) with MF := ess sup ‖F(·, ·, ·)‖Y < ∞ and

(i) t �→ F(t, x, y) is measurable on (0, T) for all x ∈ X , y ∈ Y .
(ii) (x, y) �→ F(t, x, y) is Lipschitz continuous for a.e. t ∈ (0, T) with a Lipschitz constant

LF > 0,

https://doi.org/10.1017/S0956792520000030 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000030


New class of hyperbolic variational–hemivariational inequalities 65

that is, for any (x1, y1), (x2, y2) ∈ X × Y , it holds

‖F(t, x1, y1) − F(t, x2, y2)‖Y ≤ LF(‖x1 − x2‖X + ‖y1 − y2‖Y ) for a.e. t ∈ (0, T).

H(0): The following compatibility and smallness conditions are satisfied:

(i) u0 ∈ V , v0 ∈ D(∂cϕ), β0 ∈ Y , and there exist z0 ∈ H and ξ0 ∈ ∂J (β0, Mv0) such that
for all v ∈ V , it holds

(z0, v − v0)H + 〈Av0 + Bu0, v − v0〉 + 〈ξ0, M(v − v0)〉X∗×X + ϕ(v) − ϕ(v0) ≥ 〈 f (0), v − v0〉.
(ii) mA > mJ‖M‖2

L(V ,X ).

The following lemmata will be useful, see [36, Lemmata 7 and 8].

Lemma 5 Assume H(J ) (i)–(ii) and H(J )(iv). Then the multivalued operator (y, x) �→ ∂J (y, x) is
upper semicontinuous from Y × X endowed with the norm topology to the subsets of X ∗ endowed
with the weak∗ topology.

Lemma 6 Assume H(F) and β0 ∈ Y. Then, for any u ∈X , there exists β ∈ W 1,2(0, T ; Y ) ⊂
C(0, T ; Y ) a unique solution to the Cauchy problem{

β ′(t) = F(t, u(t), β(t)) for a.e. t ∈ (0, T)

β(0) = β0.
(3.2)

Moreover, given ui ∈X and denoting by βi ∈ W 1,2(0, T ; Y ) the unique solution to problem (3.2)
corresponding to ui, for i = 1, 2, the following inequality holds

‖β1(t) − β2(t)‖Y ≤ cF

∫ t

0
‖u1(s) − u2(s)‖X ds, (3.3)

for all t ∈ [0, T] with some cF > 0. Further, we have the estimate

‖β1 − β2‖W1,2(0,T ;Y ) ≤ C ‖u1 − u2‖X .

To establish existence of solutions to Problem 4, we start with its equivalent form.

Problem 7 Find u ∈ V with u′ ∈W and β ∈ W 1,2(0, T ; Y ) such that there exists ξ ∈X ∗ and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

(
〈u′′(t), v(t) − u′(t)〉 + 〈Au′(t) + Bu(t) + M∗ξ (t), v(t) − u′(t)〉

+ ϕ(v(t)) − ϕ(u′(t))
)

dt ≥
∫ T

0
〈 f (t), v(t) − u′(t)〉 dt for all v ∈ V ,

ξ (t) ∈ ∂J (β(t), Mu′(t)) for a.e. t ∈ (0, T),

β ′(t) = F(t, Mu(t), β(t)) for a.e. t ∈ (0, T),

u(0) = u0, u′(0) = v0, β(0) = β0.

(3.4)

Proposition 8 Problems 4 and (7) are equivalent.
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Proof Let (u, β, ξ ) be a solution to Problem 4. Then, for any v ∈ V ,

〈u′′(t) + Au′(t) + Bu(t) − f (t), v(t) − u′(t)〉 + 〈ξ (t), M(v(t) − u′(t))〉X∗×X

+ ϕ(v(t)) − ϕ(u′(t)) ≥ 0 for a.e. t ∈ (0, T).

Integrating the above inequality on (0, T), we see that the first inequality in (3.4) holds. Thus,
(u, β, ξ ) is a solution to Problem 7.

Conversely, assume (u, β, ξ ) is a solution of Problem 7, and we need to show that the first
inequality in (3.1) holds. Arguing by contradiction, we suppose that there exists a measurable
subset J ⊂ [0, T] with meas(J ) > 0 and v∗ ∈ V such that

〈u′′(t) + Au′(t) + Bu(t) − f (t), v∗ − u′(t)〉 + 〈ξ (t), M(v∗ − u′(t))〉X∗×X

+ ϕ(v∗) − ϕ(u′(t)) < 0 for all t ∈ J .

Since u′ ∈ V , we define v̂ ∈ V by

v̂(t) =
{

v∗, if t ∈ J ,
u′(t), otherwise.

Choose v = v̂ in the first inequality in (3.4) to obtain

0 ≤
∫ T

0
〈u′′(t) + Au′(t) + Bu(t) − f (t), v̂(t) − u′(t)〉 dt

+
∫ T

0
〈ξ (t), M (̂v(t) − u′(t))〉X∗×X dt +

∫ T

0
(ϕ(̂v(t)) − ϕ(u′(t))) dt

=
∫

J
〈u′′(t) + Au′(t) + Bu(t) − f (t), v∗ − u′(t)〉 dt

+
∫

J
〈ξ (t), M(v∗ − u′(t))〉X∗×X dt +

∫
J
(ϕ(v∗) − ϕ(u′(t))) dt < 0,

which is a contradiction. Thus, (u, β, ξ ) is a solution to Problem 4.

The main idea in the existence proof is to carry out a mixed kind of temporally semi-discrete
approximation and pass the limit as the time step approaches zero to find a solution to Problem 4.
Let N ∈N be a positive integer. We use a uniform partition of the time interval [0, T] into N equal
length subintervals. The time step is τ = T/N and the partition points are tk = kτ , 0 ≤ k ≤ N .
Define

f k
τ = 1

τ

∫ tk

tk−1

f (t) dt for k = 1, . . . , N .

The semi-discrete scheme for Problem 4 is as follows:

Problem 9 Find {vk
τ }N

k=0 ⊂ V, {ξ k
τ }N

k=1 ⊂ X ∗ and βτ ∈ W 1,2(0, T ; Y ) such that v0
τ = v0, uk

τ = u0 +
τ

∑k
i=1 vi

τ , u0
τ = u0, βτ (0) = β0, and for 1 ≤ k ≤ N,(vk

τ − vk−1
τ

τ
, v − vk

τ

)
H

+ 〈Avk
τ + Buk

τ , v − vk
τ 〉 + 〈ξ k

τ , M(v − vk
τ )〉X∗×X

+ ϕ(v) − ϕ(vk
τ ) ≥ 〈 f k

τ , v − vk
τ 〉 for all v ∈ V ,

(3.5)
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with ξ k
τ ∈ ∂J (βτ (tk−1), Mvk

τ ) and

β ′
τ (t) = F(t, Mûτ (t), βτ (t)), (3.6)

where ûτ is defined as follows:

ûτ (t) =

⎧⎪⎪⎨⎪⎪⎩
N∑

i=1

χ(ti−1,ti](t)u
i
τ , t > 0

u0, t = 0.

Here, χ(ti−1,ti] denotes the characteristic function on the interval (ti−1, ti], that is,

χ(ti−1,ti](t) =
{

1, t ∈ (ti−1, ti]
0, otherwise.

The following lemma shows that the hybrid iterative system formulated in Problem 9 is
uniquely solvable.

Lemma 10 Assume that H(A), H(B), H(J ) (i)–(iii), H(F), H(ϕ), H(M), H( f ) and H(0)(ii) are
fulfilled. Then, there exists τ0 > 0 such that for all τ ∈ (0, τ0), Problem 9 has a unique solution.

Proof We prove the result by induction. Let u0
τ , v0

τ , v1
τ , . . . , vk−1

τ and βτ ∈ W 1,2(0, tk−1
τ ; Y ) be

given. From (3.5), we have(
vk

τ − vk−1
τ

τ
, v − vk

τ

)
H

+ 〈Avk
τ + τBvk

τ , v − vk
τ 〉 + 〈ξ k

τ , M(v − vk
τ )〉X∗×X

+ ϕ(v) − ϕ(vk
τ ) ≥

〈
f k
τ − Bu0 − τ

k−1∑
i=1

Bvi
τ , v − vk

τ

〉
for all v ∈ V

with ξ k
τ ∈ ∂J (βτ (tk−1), Mvk

τ ). In order to verify the solvability of the above inequality, it suffices
to show that the following inclusion has at least one solution w ∈ V :

i∗iw

τ
+ Aw + τBw + M∗∂J (βτ (tk−1), Mw) + ∂cϕ(w) � Lk

τ , (3.7)

where

Lk
τ = i∗ivk−1

τ

τ
+ f k

τ − Bu0 − τ

k−1∑
i=1

Bvi
τ ,

i denotes the embedding operator from V to H , and the operator ∂cϕ stands for the convex
subdifferential of the function ϕ. We introduce the multivalued mappings F : D(∂cϕ) ⊂ V → 2V∗

and G : V → 2V∗
by

F(w) = ∂cϕ(w) for all w ∈ D(∂cϕ),

G(w) = i∗iw

τ
+ Aw + τBw + M∗∂J (βτ (tk−1), Mw) for all w ∈ V .

We will apply Theorem 3 and thus verify the conditions of the theorem.
Due to the convexity of ϕ, F is a maximal monotone operator ([10, Theorem 3.69]).
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To prove that G is a pseudomonotone operator, note that its boundedness follows from

‖G(w)‖V∗ ≤ 1

τ
‖i∗iw‖V∗ + ‖Aw‖V∗ + τ‖Bw‖V∗ + ‖M∗∂J (βτ (tk−1), Mw)‖V∗

≤ ‖i‖2
L(V ,H)

τ
‖w‖ + aA + bA‖w‖ + τ‖B‖L(V ,V∗)‖w‖ + ‖M‖L(V ,X )cJ (1 + ‖M‖L(V ,X )‖w‖).

We notice that the hypotheses H(B) and the continuity of the embedding operator i imply that
the operator i∗i

τ
+ τB is bounded, continuous and monotone, hence it is also pseudomonotone,

see [35, Theorem 3.69(ii)]. The growth condition on ∂J (see H(J )(ii)) combined with H(M)
and Proposition 1 entail that u �→ M∗∂J (βτ (tk−1), Mu) is pseudomonotone. Therefore, since A is
pseudomonotone (see H(A)(i)), we conclude that G is a pseudomonotone operator, being a sum
of pseudomonotone operators, see [35, Proposition 3.59(ii)].

Now, we show that the coercivity condition (2.1) is satisfied. Observe that

〈Lk
τ , w − v0〉 ≤ ‖Lk

τ‖V∗ (‖w‖ + ‖v0‖) ≤ C1(‖w‖ + 1) (3.8)

for all w ∈ V , where C1 = ‖Lk
τ‖V∗ max{1, ‖v0‖}. Let w ∈ D(∂cϕ), ξ ∈F(w) and η ∈ G(w). The

assumptions on ϕ guarantee that ϕ is bounded below by an affine functional, see [1, Lemma
11.3.5]. Together with an application of the modified Cauchy–Schwarz inequality (2.2), we have
the existence of constants k1, k2 ≥ 0 such that

〈ξ , w − v0〉 ≥ ϕ(w) − ϕ(v0) ≥ −k1 − k2‖w‖ − ϕ(v0) ≥ −ε‖w‖2 − k2
2

4ε
− k1 − ϕ(v0). (3.9)

For any ζ ∈ ∂J (βτ (tk−1), M(w)), condition H(J )(iii) implies

〈ζ , M(w − v0)〉X∗×X =〈ζ − ζ0, Mw〉X∗×X − 〈ζ − ζ0, Mv0〉X∗×X + 〈ζ0, M(w − v0)〉X∗×X

≥ −mJ‖M‖2
L(V ,X )‖w‖2 − (‖ζ‖X∗ + ‖ζ0‖X∗ )‖M‖L(V ,X )‖v0‖

+ ‖ζ0‖X∗‖M‖L(V ,X )(‖w‖ + ‖v0‖)

for all ζ0 ∈ ∂J (M0V ), where by hypothesis H(J )(ii), ‖ζ‖X∗ ≤ cJ (1 + ‖M‖L(V ,X )‖w‖). We use
these inequalities and apply the modified Cauchy–Schwarz inequality (2.2) to obtain

〈ζ , M(w − v0)〉X∗×X ≥ −mJ‖M‖2
L(V ,X )‖w‖2 − ε‖w‖2 − c1(ε), (3.10)

where the constant c1(ε) > 0 is independent of w. Similarly, it follows from hypotheses H(A)(ii)–
(iii), H(B) that for a constant c2(ε) > 0,

〈Aw, w − v0〉 + τ 〈Bw, w − v0〉
= 〈Aw − A0V , w〉 + 〈A0V , w〉 − 〈Aw, v0〉 + τ 〈Bw, w〉 − τ 〈Bw, v0〉
≥ mA‖w‖2 − cA‖w‖2

H + τ�B‖w‖2 − ‖A0V ‖V∗‖w‖ − (aA + bA‖w‖)‖v0‖ − τ‖B‖‖w‖‖v0‖
≥ (

mA + τ�B − ε
)‖w‖2 − cA‖w‖2

H − c2(ε). (3.11)
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So, taking into account (3.9)–(3.11), we have

〈ξ + η, w − v0〉 = 1

τ

(
w, w − v0

)
H

+ 〈Aw, w − v0〉 + τ 〈Bw, w − v0〉
+ 〈η, w − v0〉 + 〈ζ , M(w − v0)〉X∗×X

≥ 1

2τ
‖w‖2

H − 1

2τ
‖v0‖2

H + (
mA + τ�B − ε

)‖w‖2 − cA‖w‖2
H − c2(ε)

− ε‖w‖2 − k2
2

4ε
− k1 − ϕ(v0) − mJ‖M‖2

L(V ,X )‖w‖2 − ε‖w‖2 − c1(ε). (3.12)

Combining (3.8) and (3.12), after some elementary manipulations, we find that

〈ξ + η − Lk
τ , w − v0〉 ≥

( 1

2τ
− cA

)
‖w‖2

H + (mA − mJ‖M‖2
L(V ,X ) − 3ε)‖w‖2 − C1‖w‖ + c3(ε).

(3.13)
Taking τ0 = 1/(2cA) and ε = (mA − mJ‖M‖2

L(V ,X ))/6, we see easily from (3.13) that if ‖w‖ is
sufficiently large, then the coercivity condition (2.1) is valid.

We now apply Theorem 3 to conclude the existence of an element vk
τ ∈ V solving the problem

(3.7), which is a solution of the variational–hemivariational inequality (3.5).
The uniqueness of a solution of the inequality (3.5) is proved by a standard approach. Assume

vk
τ and ṽk

τ are two solutions of the problem (3.5). Then for all v ∈ V ,(vk
τ − vk−1

τ

τ
, v − vk

τ

)
H

+ 〈Avk
τ + Buk

τ , v − vk
τ 〉 + 〈ξ k

τ , M(v − vk
τ )〉X∗×X + ϕ(v)

− ϕ(vk
τ ) ≥ 〈 f k

τ , v − vk
τ 〉,( ṽk

τ − vk−1
τ

τ
, v − ṽk

τ

)
H

+ 〈Aṽk
τ + B̃uk

τ , v − ṽk
τ 〉 + 〈̃ξ k

τ , M(v − ṽk
τ )〉X∗×X + ϕ(v)

− ϕ(̃vk
τ ) ≥ 〈 f k

τ , v − ṽk
τ 〉,

where ξ k
τ ∈ ∂J (β(tk−1), Mvk

τ ) and ξ̃ k
τ ∈ ∂J (β(tk−1), M ṽk

τ ). Taking v = ṽk
τ in the first inequality and

v = vk
τ in the second one, we add the two resulting inequalities to get(vk

τ − ṽk
τ

τ
, vk

τ − ṽk
τ

)
H

+ 〈Avk
τ − Aṽk

τ , vk
τ − ṽk

τ 〉 + 〈Buk
τ − B̃uk

τ , vk
τ − ṽk

τ 〉
+ 〈ξ k

τ − ξ̃ k
τ , M(vk

τ − ṽk
τ )〉X∗×X ≤ 0.

Keeping in mind hypotheses H(A)(iii), H(B) and H(J )(iii), we have( 1

τ
− cA

)
‖vk

τ − ṽk
τ‖2

H + (mA − mJ‖M‖2
L(V ,X ))‖vk

τ − ṽk
τ‖2 + τ�B‖vk

τ − ṽk
τ‖2 ≤ 0.

Since τ < τ0 = 1
2cA

, the smallness condition mA > mJ‖M‖2
L(V ,X ) guarantees that vk

τ = ṽk
τ . This

completes the proof of uniqueness.
To finish the proof, it remains to show that there exists a unique solution to the following

Cauchy problem {
β ′

τ (t) = F(t, ûτ (t), βτ (t)) for a.e. t ∈ [0, tk],

βτ (0) = β0.
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Since ui
τ = u0 + τ

∑i
j=1 v

j
τ for i = 1, 2, . . . , k, it is easy to obtain u1

τ , u2
τ , . . . , uk

τ . Therefore, the

function ûτ (t) = ∑k
i=1 χ(ti−1,ti](t)u

i
τ with ûτ (0) = u0 is well defined on [0, tk] and ûτ ∈ L2(0, tk ; V ).

Lemma 6 ensures that the above Cauchy problem has a unique solution βτ ∈ W 1,2(0, tk ; Y ).

Denote zk
τ = vk

τ −vk−1
τ

τ
for k = 1, 2, . . . , N and z0

τ = z0, where z0 is given in hypothesis H(0)(i).
The following lemma provides a priori bounds for the solution of Problem 9.

Lemma 11 Assume H(A), H(B), H(J )(i)–(iii), H(M), H(F), H(ϕ), H(0) and H( f ). Then, there
exists τ0 > 0 and a constant C > 0 independent of τ such that for all τ ∈ (0, τ0):

max
1≤k≤N

‖uk
τ‖ ≤ C, (3.14)

max
1≤k≤N

‖vk
τ‖ ≤ C, (3.15)

max
1≤k≤N

‖zk
τ‖H ≤ C, (3.16)

max
1≤k≤N

‖ξ k
τ ‖X∗ ≤ C, (3.17)

N∑
k=1

‖vk
τ − vk−1

τ ‖2 ≤ C, (3.18)

N∑
k=1

‖zk
τ − zk−1

τ ‖2
H ≤ C, (3.19)

τ

N∑
k=1

‖zk
τ‖2 ≤ C. (3.20)

Proof For k ≥ 2, we let v = vk−1
τ in (3.5) for k and let v = vk

τ in (3.5) with k replaced by k − 1
to get (vk

τ − vk−1
τ

τ
, vk−1

τ − vk
τ

)
H

+ 〈Avk
τ + Buk

τ , vk−1
τ − vk

τ 〉 + 〈ξ k
τ , M(vk−1

τ − vk
τ )〉X∗×X

+ ϕ(vk−1
τ ) − ϕ(vk

τ ) ≥ 〈 f k
τ , vk−1

τ − vk
τ 〉,(vk−1

τ − vk−2
τ

τ
, vk

τ − vk−1
τ

)
H

+ 〈Avk−1
τ + Buk−1

τ , vk
τ − vk−1

τ 〉 + ϕ(vk
τ ) − ϕ(vk−1

τ )

+ 〈ξ k−1
τ , M(vk

τ − vk−1
τ )〉X∗×X ≥ 〈 f k−1

τ , vk
τ − vk−1

τ 〉,
where ξ k

τ ∈ ∂J (βτ (tk−1), Mvk
τ ) and ξ k−1

τ ∈ ∂J (βτ (tk−2), Mvk−1
τ ). Add the above two inequalities,(vk

τ − vk−1
τ − (vk−1

τ − vk−2
τ )

τ
, vk

τ − vk−1
τ

)
H

+ 〈Avk
τ − Avk−1

τ , vk
τ − vk−1

τ 〉
+ 〈Buk

τ − Buk−1
τ , vk

τ − vk−1
τ 〉 + 〈ξ k

τ − ξ k−1
τ , M(vk

τ − vk−1
τ )〉X∗×X

≤ 〈 f k
τ − f k−1

τ , vk
τ − vk−1

τ 〉.

Making use of the symbol zk
τ = vk

τ −vk−1
τ

τ
and noting that uk

τ − uk−1
τ = τ vk

τ , we rewrite the above
inequality as
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(zk
τ − zk−1

τ , zk
τ )H + 1

τ
〈Avk

τ − Avk−1
τ , vk

τ − vk−1
τ 〉 + 〈Bvk

τ , vk
τ − vk−1

τ 〉

+ 1

τ
〈ξ k

τ − ξ k−1
τ , M(vk

τ − vk−1
τ )〉X∗×X ≤ 1

τ
〈 f k

τ − f k−1
τ , vk

τ − vk−1
τ 〉.

Exploiting the identities

(zk
τ − zk−1

τ , zk
τ )H = 1

2
‖zk

τ‖2
H − 1

2
‖zk−1

τ ‖2
H + 1

2
‖zk

τ − zk−1
τ ‖2

H ,

〈Bvk
τ , vk

τ − vk−1
τ 〉 = 1

2

(
〈Bvk

τ , vk
τ 〉 − 〈Bvk−1

τ , vk−1
τ 〉 + 〈B(vk

τ − vk−1
τ ), vk

τ − vk−1
τ 〉

)
,

and assumptions H(A)(iii), H(B) and H(J )(iii), we deduce that

1

2
‖zk

τ‖2
H − 1

2
‖zk−1

τ ‖2
H + 1

2
‖zk

τ − zk−1
τ ‖2

H + mA

τ
‖vk

τ − vk−1
τ ‖2 − cA

τ
‖vk

τ − vk−1
τ ‖2

H

+ 1

2
‖vk

τ‖2
B − 1

2
‖vk−1

τ ‖2
B + 1

2
‖vk

τ − vk−1
τ ‖2

B − mJ

τ
‖M(vk

τ − vk−1
τ )‖2

X

− mJ

τ
‖βτ (tk−1) − βτ (tk−2)‖Y ‖M(vk

τ − vk−1
τ )‖X ≤ 1

τ
〈 f k

τ − f k−1
τ , vk

τ − vk−1
τ 〉, (3.21)

where ‖v‖B := 〈Bv, v〉 for v ∈ V . Now by H(F),

‖βτ (tk−1) − βτ (tk−2)‖Y ≤
∫ tk−1

tk−2

‖F(s, uk−1
τ , βτ (s))‖Y ds ≤ MFτ .

Also,

1

τ

〈
f k
τ − f k−1

τ , vk
τ − vk−1

τ

〉 ≤ ε τ ‖zk
τ‖2 + C

τ
‖f k

τ − f k−1
τ ‖2

V∗ .

Hence, from (3.21), we have

1

2
‖zk

τ‖2
H − 1

2
‖zk−1

τ ‖2
H + 1

2
‖zk

τ − zk−1
τ ‖2

H + 1

2
‖vk

τ‖2
B − 1

2
‖vk−1

τ ‖2
B

+ 1

2
‖vk

τ − vk−1
τ ‖2

B + τ
(
mA − mJ‖M‖2

L(V ,X ) − 2 ε
)‖zk

τ‖2

≤ C

τ
‖f k

τ − f k−1
τ ‖2

V∗ + cAτ‖zk
τ‖2

H + m2
J‖M‖2

L(V ,X )M
2
Fτ

4ε
.

Adding this inequality from k = 1 to k = n, where 1 ≤ n ≤ N , and using the coercivity of operator
B, we deduce that

1

2
‖zn

τ‖2
H − 1

2
‖z0

τ‖2
H + 1

2

n∑
k=1

‖zk
τ − zk−1

τ ‖2
H + �B

2
‖vn

τ‖2 − 1

2
‖v0

τ‖2
B

+ �B

2

n∑
k=1

‖vk
τ − vk−1

τ ‖2 + τ
(
mA − mJ‖M‖2

L(V ,X ) − 2 ε
) n∑

k=1

‖zk
τ‖2

≤ C

τ

n∑
k=1

‖f k
τ − f k−1

τ ‖2
V∗ + cAτ

n∑
k=1

‖zk
τ‖2

H + C. (3.22)
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Now

f k
τ − f k−1

τ = 1

τ

∫ tk

tk−1

[f (s) − f (s − τ )] ds = 1

τ

∫ tk

tk−1

∫ s

s−τ

f ′(s1) ds1 ds,

‖f k
τ − f k−1

τ ‖V∗ ≤
∫ tk

tk−1

‖f ′(s)‖V∗ds,

and so

C

τ

n∑
k=1

‖f k
τ − f k−1

τ ‖2
V∗ ≤ C ‖f ‖2

H1(0,T ;V∗). (3.23)

Thus, from (3.22) with ε = (mA − mJ‖M‖2
L(V ,X ))/4, we find that for some constant C > 0

depending on the data but independent of τ such that

‖zn
τ‖2

H +
n∑

k=1

‖zk
τ − zk−1

τ ‖2
H + ‖vn

τ‖2 +
n∑

k=1

‖vk
τ − vk−1

τ ‖2 + τ

n∑
k=1

‖zk
τ‖2

≤ C + C τ

n∑
k=1

‖zk
τ‖2

H . (3.24)

By a discrete version of the Gronwall’s inequality, see [22, Lemma 7.26], we deduce from (3.24)
that if τ is sufficiently small:

max
1≤n≤N

‖zn
τ‖2

H +
N∑

k=1

‖zk
τ − zk−1

τ ‖2
H + max

1≤n≤N
‖vn

τ‖2 +
N∑

k=1

‖vk
τ − vk−1

τ ‖2 + τ

N∑
k=1

‖zk
τ‖2 ≤ C.

Therefore, (3.15), (3.16) and (3.18)–(3.20) are valid. The bound (3.14) can be obtained immedi-
ately from uk

τ = u0 + τ
∑k

i=1 vi
τ and (3.15). By hypotheses H(M), H(J )(ii) and (3.15), we have

‖ξ k
τ ‖X∗ ≤ cJ (1 + ‖Mvk

τ‖X ) ≤ C,

that is, (3.17) holds. This completes the proof of the lemma.

For a fixed τ > 0, we define piecewise affine functions uτ , vτ , zτ and piecewise constant
interpolant functions uτ , vτ , zτ , fτ , ξτ by

uτ (t) = uk
τ + t − tk

τ
(uk

τ − uk−1
τ ) for t ∈ (tk−1, tk],

vτ (t) = vk
τ + t − tk

τ
(vk

τ − vk−1
τ ) for t ∈ (tk−1, tk],

zτ (t) = zk
τ + t − tk

τ
(zk

τ − zk−1
τ ) for t ∈ (tk−1, tk],

uτ (t) =
{

uk
τ , t ∈ (tk−1, tk],

u0
τ , t = 0,

vτ (t) =
{

vk
τ , t ∈ (tk−1, tk],

v0
τ , t = 0,

zτ (t) =
{

zk
τ , t ∈ (tk−1, tk],

z0
τ , t = 0,
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fτ (t) =
{

f k
τ , t ∈ (tk−1, tk],

f (0), t = 0,

ξτ (t) =
{

ξ k
τ , t ∈ (tk−1, tk],

ξ0, t = 0.

For these functions, based on Lemma 11, we present the following estimates.

Lemma 12 Under assumptions H(A), H(B), H(J )(i)–(iii), H(M), H(F), H(ϕ), H(0) and H( f ),
there exist τ0 > 0 and C > 0 independent of τ , such that for all τ ∈ (0, τ0), we have

‖uτ‖L∞(0,T ;V ) ≤ C, (3.25)

‖vτ‖L∞(0,T ;V ) ≤ C, (3.26)

‖zτ‖L∞(0,T ;H) ≤ C, (3.27)

‖ξτ‖X ∗ ≤ C, (3.28)

‖uτ‖C(0,T ;V ) ≤ C, (3.29)

‖vτ‖C(0,T ;V ) ≤ C, (3.30)

‖zτ‖C(0,T ;H) ≤ C, (3.31)

‖uτ‖M2,2(0,T ;V ,V∗) ≤ C, (3.32)

‖vτ‖M2,2(0,T ;V ,V∗) ≤ C. (3.33)

Proof The inequalities (3.14)–(3.17) imply (3.25)–(3.31). The bound (3.25) shows that {uτ } is
bounded in V . Without loss of generality, we may consider a division 0 = a0 < a1 < · · · < an = T
with ai ∈ ((mi − 1)τ , miτ ]. Then, one has uτ (ai) = umi

τ with m0 = 0, mn = N and mi+1 > mi for
i = 1, 2, . . . , N − 1. Using the continuity of the embedding V ⊂ V ∗, we deduce

‖uτ‖BV2(0,T ;V∗) =
n∑

i=1

‖umi
τ − umi−1

τ ‖2
V∗ ≤

n∑
i=1

(
(mi − mi−1)

mi∑
k=mi−1+1

‖uk
τ − uk−1

τ ‖2
V∗

)

≤
( n∑

i=1

(mi − mi−1)

)( n∑
i=1

mi∑
k=mi−1+1

‖uk
τ − uk−1

τ ‖2
V∗

)
= N

N∑
k=1

‖uk
τ − uk−1

τ ‖2
V∗

= T τ

N∑
k=1

∥∥∥∥uk
τ − uk−1

τ

τ

∥∥∥∥2

V∗
= T τ

N∑
k=1

‖vk
τ‖2

V∗ ≤ CT τ

N∑
k=1

‖vk
τ‖2. (3.34)

Obviously, we have ‖uτ‖BV2(0,T ;V∗) ≤ C due to (3.15). Therefore, (3.32) is valid.
Analogously, by (3.26), {vτ } is bounded in V . Similar to the derivation of (3.34), we have

‖vτ‖BV2(0,T ;V∗) ≤ CT τ

N∑
k=1

‖zk
τ‖2,

which is bounded by (3.20). Thus, the bound (3.33) holds.

We are now ready to show the existence of solution for Problem 4.
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Theorem 13 Assume H(A), H(B), H(J ), H(M), H(F), H(ϕ), H( f ) and H(0). Consider a
sequence {τ } converging to zero. Then, for a subsequence, still denoted by {τ }, we have

uτ → u weakly in V , (3.35)

uτ → u weakly in V , (3.36)

vτ → u′ weakly in V , (3.37)

vτ → u′ weakly in V , (3.38)

M(vτ ) →M(u′) in X , (3.39)

ξτ → ξ weakly in X ∗, (3.40)

zτ → u′′ weakly in H, (3.41)

βτ → β in W 1,2(0, T ; Y ), (3.42)

vτ → u′ in H, (3.43)

for some (u, ξ , β) ∈ V ×X ∗ × W 1,2(0, T ; Y ) with u′ ∈W . Moreover, the limit (u, β) is a solution
to Problem 4, ξ being a corresponding element of the subdifferential.

Proof It follows from (3.25) and the reflexivity of V that there exists a function u ∈ V such that
(3.35) holds. Note that

‖uτ − uτ‖2
V =

N∑
k=1

∫ tk

tk−1

(t − tk)2

τ 2
‖uk

τ − uk−1
τ ‖2 dt = τ 3

3

N∑
k=1

‖vk
τ‖2.

From the boundedness of τ
∑N

k=1 ‖vk
τ‖2 (see (3.15)), it follows that uτ → u weakly in V as well,

that is, (3.36) holds. By (3.26), there exists v ∈ V such that vτ → v weakly in V . Because of
u′

τ = vτ , we readily get v = u′, so the convergence result (3.37) is obtained. In addition,

‖vτ − vτ‖2
V =

N∑
k=1

∫ tk

tk−1

(t − tk)2

τ 2
‖vk

τ − vk−1
τ ‖2 dt = τ

3

N∑
k=1

‖vk
τ − vk−1

τ ‖2,

which by the boundedness of
∑N

k=1 ‖vk
τ − vk−1

τ ‖2 (see (3.18)) implies that vτ → u′ weakly in V ,
that is, (3.38) is valid.

The assumption H(M) together with (3.33) and (3.37) ensures that (3.39) is true. Moreover,
the boundedness of {ξτ } (see (3.28)) and the reflexivity of X ∗ entail that there exists ξ ∈X ∗ such
that (3.40) is satisfied. Similarly, since {zτ } is bounded in H (see (3.27)), there exists w ∈H such
that zτ → w weakly in H. Hence, exploiting the continuity of the embedding V ⊂H and the facts
vτ → u′ weakly in V , and v′

τ (t) = zτ (t) for all t ∈ (0, T), and applying [48, Proposition 23.19], we
conclude that w = v′ = u′′. Therefore, (3.41) is valid.

We turn to show (3.42) and (3.43). From H(F) and Lemma 6, we have

βτ (t) = β0 +
∫ t

0
F(s, Muτ (s), βτ (s)) ds,

for all t ∈ [0, T]. Analogously, for another time step h = T/N2 with N2 ∈N, we can write

βh(t) = β0 +
∫ t

0
F(s, Muh(s), βh(s)) ds,
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for all t ∈ [0, T]. Subtracting the last two equations and bounding, we get

‖βτ (t) − βh(t)‖Y ≤
∫ t

0

∥∥∥F(t, Muτ (s), βτ (s)) − F(t, Muh(s), βh(s))
∥∥∥

Y
ds

≤ LF

∫ t

0
‖M(uτ (s) − uh(s))‖X ds + LF

∫ t

0
‖βτ (s) − βh(s)‖Y ds,

for all t ∈ [0, T]. Apply a Gronwall’s lemma, see [44, Lemma 2.31], and the Hölder’s inequality,
to get

‖βτ (t) − βh(t)‖Y ≤ LF(1 + TLFeLF T )
∫ t

0
‖M(uτ (s) − uh(s))‖X ds

≤ LF(1 + TLFeLF T )
∫ T

0
‖M(uτ (s) − uh(s))‖X ds

≤ LF(1 + TLFeLF T )
√

T‖M(uτ − uh)‖X
for all t ∈ [0, T]. Further, directly from (3.2), we deduce

‖β ′
τ − β ′

h‖2
Y ≤ C‖M(uτ − uh)‖2

X + C‖βτ − βh‖2
Y .

From the last two inequalities, we infer

‖βτ − βh‖W1,2(0,T ;Y ) ≤ C‖M(uτ − uh)‖X .

Hence, using the fact that M : M2,2(0, T ; V , V ∗) ⊂ V →X is compact by H(M), and {uτ } is
bounded in M2,2(0, T ; V , V ∗) (see (3.32)) with uτ → u weakly in V , we see that {βτ } is a Cauchy
sequence in W 1,2(0, T ; Y ). The completeness of W 1,2(0, T ; Y ) implies that there exists a func-
tion β ∈ W 1,2(0, T ; Y ) such that βτ → β in W 1,2(0, T ; Y ). Thus, (3.42) holds. Moreover, (3.43)
follows from (3.33), (3.37) and Proposition 2.

It remains to show that (u, β) ∈ V × W 1,2(0, T ; Y ) is a solution to Problem 4. Since the operator
M : M2,2(0, T ; V , V ∗) ⊂ V →X is compact, fτ → f in V∗ as τ → 0, see [7, Lemma 3.3], we use
convergences (3.37), (3.40), (3.41) and (3.43) to deduce that⎧⎪⎪⎨⎪⎪⎩

(zτ , w − vτ )H → (u′′, w − u′)H,

〈ξτ , M(w − vτ )〉X ∗×X → 〈ξ , M(w − u′)〉X ∗×X ,

〈 fτ , w − vτ 〉V∗×V → 〈 f , w − u′〉V∗×V ,

(3.44)

for all w ∈ V . From (3.35), (3.37), the continuity of B and the fact ‖uτ − uτ‖V → 0 as τ → 0,

〈Buτ , w〉V∗×V → 〈Bu, w〉V∗×V and 〈B(uτ − uτ ), vτ 〉V∗×V → 0, (3.45)

where B : V → V∗ is the Nemytskii operator corresponding to B defined by B(u)(t) = Bu(t)
for t ∈ [0, T] and u ∈ V . The weak convergence uτ → u and u′

τ = vτ → u′ in V implies that
uτ → u weakly in W 1,2(0, T ; V ). The latter combined with the continuity of the embedding
W 1,2(0, T ; V ) ⊂ C(0, T ; V ) and [34, Lemma 4 (a)] entails uτ (t) → u(t) weakly in V for all t ∈
[0, T]. In particular, we have uτ (T) → u(T) weakly in V . Since the function V � u �→ 〈Bu, u〉 ∈R

is weakly l.s.c. (being convex and continuous), one has

〈Bu(T), u(T)〉 ≤ lim inf
τ→0

〈Buτ (T), uτ (T)〉.
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Combining the above inequality with (3.45), we obtain

lim sup
τ→0

〈Buτ , w − vτ 〉V∗×V = lim sup
τ→0

[
〈Buτ , w〉V∗×V − 1

2

(〈Buτ (T), uτ (T)〉 − 〈Bu(0), u(0)〉)
+ 〈B(uτ − uτ ), vτ 〉V∗×V

]
≤ lim sup

τ→0
〈Buτ , w〉V∗×V + lim sup

τ→0
〈B(uτ − uτ ), vτ 〉V∗×V

− 1

2
lim inf

τ→0
〈Buτ (T), uτ (T)〉 + 1

2
〈Bu(0), u(0)〉

≤ 〈Bu, w〉V∗×V − 1

2

(〈Bu(T), u(T)〉 − 〈Bu(0), u(0)〉)
= 〈Bu, w〉V∗×V −

∫ T

0
〈Bu(t), u′(t)〉 dt = 〈Bu, w − u′〉V∗×V . (3.46)

Next, we will show that the function � : V →R∪ {+∞} defined by

�(v) =
∫ T

0
ϕ(v(t)) dt for all v ∈ V

is proper, convex and l.s.c. In fact, hypothesis H(0)(i) implies v0 ∈ dom�, that is, �(v0) < +∞.
The convexity of � is a consequence of the convexity for ϕ. Let {wn} ⊂ V , w ∈ V and wn → w in
V . Again, we use the fact that ϕ is bounded below by an affine functional: there exist k1, k2 ≥ 0
such that

ϕ(v) ≥ −k1‖v‖ − k2 for all v ∈ V .

Hence, we have∫ T

0
ϕ(wn(t)) dt ≥ −k1

∫ T

0
‖wn(t)‖ dt − k2T ≥ −k2T − k1

√
T‖wn‖V ≥ C.

Applying the converse Lebesgue’s dominated convergence theorem ([35, Theorem 2.39]), by
passing to a subsequence if necessary, we may suppose that wn(t) → w(t) in V for a.e. t ∈ (0, T).
Now, the lower semicontinuity of ϕ and Fatou’s lemma, [35, Theorem 1.64], entail

�(w) =
∫ T

0
ϕ(w(t)) dt ≤

∫ T

0
lim inf

n→∞ ϕ(wn(t)) dt ≤ lim inf
n→∞

∫ T

0
ϕ(wn(t)) dt = lim inf

n→∞ �(wn).

Thus � is l.s.c. Because it is convex, it is also weakly sequentially lower semicontinuous on V .
Hence, we have �(u′) ≤ lim inf

τ→0
�(vτ ).

Now, we show that for all w ∈ V

lim sup
τ→0

〈Avτ , w − vτ 〉V∗×V ≤ 〈Au′, w − u′〉V∗×V (3.47)

or equivalently

lim inf
τ→0

〈Avτ , vτ − w〉V∗×V ≥ 〈Au′, u′ − w〉V∗×V , (3.48)
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where the operator A : V → V∗ stands for the Nemytskii operator corresponding to A defined by

A(u)(t) = Au(t) for a.e. t ∈ [0, T] and u ∈ V .

To prove inequality (3.48), first, we shall show that

lim sup
τ→0

〈Avτ , vτ − u′〉V∗×V ≤ 0. (3.49)

We rewrite the inequality (3.5) as

(zτ (t), v − vτ (t))H + 〈Avτ (t) + Buτ (t), v − vτ (t)〉 + 〈ξτ (t), M(v − vτ (t))〉X∗×X

+ ϕ(v) − ϕ(vτ (t)) ≥ 〈 fτ (t), v − vτ (t)〉,
for all v ∈ V and a.e. t ∈ (0, T). Choosing v = u′(t) in the above inequality and then integrating it
on (0, T), we obtain

〈Avτ , vτ − u′〉V∗×V ≤ (zτ , u′ − vτ )H + 〈Buτ , u′ − vτ 〉V∗×V + 〈ξτ , M(u′ − vτ )〉X ∗×X

+ �(u′) − �(vτ ) + 〈 fτ , vτ − u′〉V∗×V .

Then, we take into account (3.44)–(3.46) and pass to the upper limit, as τ → 0,

lim sup
τ→0

〈Avτ , vτ − u′〉V∗×V

≤ lim sup
τ→0

(zτ , u′ − vτ )H + lim sup
τ→0

〈Buτ , u′ − vτ 〉V∗×V + �(u′) − lim inf
τ→0

�(vτ )

+ lim sup
τ→0

〈ξτ , M(u′ − vτ )〉X ∗×X + lim sup
τ→0

〈 fτ , vτ − u′〉V∗×V

≤ 0,

which implies (3.49). Invoking [25, Lemma 1], H(A), (3.37), (3.49) and (3.33), we obtain Avτ →
Au′ weakly in V∗ and (3.48) holds.

Next, combining (3.44), (3.46) and (3.47), for all w ∈ V , we have

0 ≤ lim sup
τ→0

(
(zτ , w − vτ )H + 〈Avτ , w − vτ 〉V∗×V + 〈Buτ , w − vτ 〉V∗×V

+ 〈ξτ , M(w − vτ )〉X ∗×X + �(w) − �(vτ ) − 〈 fτ , (w − vτ )〉V∗×V
)

≤ (u′′, w − u′)H + 〈Au′, w − u′〉V∗×V + 〈Bu, w − u′〉V∗×V

+ 〈ξ , M(w − u′)〉X ∗×X + �(w) − �(u′) − 〈 f , w − u′〉V∗×V .

Finally, we will demonstrate that ξ (t) ∈ ∂J (β(t), Mu′(t)) for a.e. t ∈ (0, T). Since Mvτ →Mu′

in X , from the converse Lebesgue’s dominated convergence theorem, [35, Theorem 1.64],
by passing to a subsequence if necessary, we may assume that Mvτ (t) → Mu′(t) in X for
a.e. t ∈ (0, T). Since βτ → β in W 1,2(0, T ; Y ), βτ (t) → β(t) in Y for all t ∈ [0, T]. Now ξτ (t) ∈
∂J (βτ (t), Mvτ (t)) for a.e. t ∈ (0, T), ξτ → ξ weakly in X ∗, and ∂J is upper semicontinuous by
Lemma 5. We can apply [2, Theorem 1, p. 60] to get

ξ (t) ∈ ∂J (β(t), Mu′(t)) for a.e. t ∈ (0, T).

Applying Proposition 8, we conclude that (u, β) ∈ V ×Y is a solution to Problem 4.
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We complete this section with results on uniqueness and regularity of the solution to
Problem 4.

Theorem 14 Assume H(A), H(B), H(M), H(J ), H(ϕ), H(F), H( f ) and H(0). Then, Problem 4
has a unique solution.

Proof Assume that (u1, β1), (u2, β2) ∈ V × W 1,2(0, T ; Y ) are two solutions to Problem 4. We
have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈u′′
1(t), v − u′

1(t)〉 + 〈Au′
1(t) + Bu1(t), v − u′

1(t)〉 + ϕ(v) − ϕ(u′
1(t))

+〈ξ1(t), M(v − u′
1(t))〉X∗×X ≥ 〈 f (t), v − u′

1(t)〉 for all v ∈ V , a.e. t ∈ (0, T),

ξ1(t) ∈ ∂J (β1(t), Mu′
1(t)) for a.e. t ∈ (0, T),

β ′
1(t) = F(t, Mu1(t), β1(t)) for a.e. t ∈ (0, T),

u1(0) = u0, u′
1(0) = v0, β1(0) = β0

(3.50)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈u′′
2(t), v − u′

2(t)〉 + 〈Au′
2(t) + Bu2(t), v − u′

2(t)〉 + ϕ(v) − ϕ(u′
2(t))

+〈ξ2(t), M(v − u′
2(t))〉X∗×X ≥ 〈 f (t), v − u′

2(t)〉 for all v ∈ V , a.e. t ∈ (0, T),

ξ2(t) ∈ ∂J (β2(t), Mu′
2(t)) for a.e. t ∈ (0, T),

β ′
2(t) = F(t, Mu2(t), β2(t)) for a.e. t ∈ (0, T),

u2(0) = u0, u′
2(0) = v0, β2(0) = β0.

(3.51)

Taking v = u′
2(t) in (3.50) and v = u′

1(t) in (3.51), we add the resulting inequalities to get

〈u′′
1(t) − u′′

2(t), u′
1(t) − u′

2(t)〉 + 〈Au′
1(t) − Au′

2(t), u′
1(t) − u′

2(t)〉
+〈Bu1(t) − Bu2(t), u′

1(t) − u′
2(t)〉 + 〈ξ1(t) − ξ2(t), M(u′

1(t) − u′
2(t))〉X∗×X ≤ 0.

Next, we integrate the above inequality on (0, t), for any t ∈ (0, T), and obtain

1

2
‖u′

1(t) − u′
2(t)‖2

H + mA

∫ t

0
‖u′

1(s) − u′
2(s)‖2 ds − cA

∫ t

0
‖u′

1(s) − u′
2(s)‖2

H ds

+�B

2
‖u1(t) − u2(t)‖2 − mJ‖M‖2

L(V ,X )

∫ t

0
‖u′

1(s) − u′
2(s)‖2 ds

−mJ

∫ t

0
‖M(u′

1(s) − u′
2(s))‖X ‖β1(s) − β2(s)‖Y ds ≤ 0. (3.52)

From the Cauchy’s inequality and inequality (3.3), we have

mJ

∫ t

0
‖M(u′

1(s) − u′
2(s))‖X ‖β1(s) − β2(s)‖Y ds

≤ mJ cF

∫ t

0

∫ s

0
‖u′

1(s) − u′
2(s)‖‖u1(ζ ) − u2(ζ )‖ dζ ds
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≤ m2
J c2

F

4ε

∫ t

0

∫ s

0
‖u1(ζ ) − u2(ζ )‖2 dζ ds + ε T

∫ t

0
‖u′

1(s) − u′
2(s)‖2 ds

≤ m2
J c2

FT

4ε

∫ t

0
‖u1(s) − u2(s)‖2 ds + ε T

∫ t

0
‖u′

1(s) − u′
2(s)‖2 ds,

where ε = 1
2T (mA − mJ‖M‖2

L(V ,X )). Using the last inequality in (3.52), we deduce that

1

2
‖u′

1(t) − u′
2(t)‖2

H + (
mA − mJ‖M‖2

L(V ,X ) − ε T
) ∫ t

0
‖u′

1(s) − u′
2(s)‖2 ds

+�B

2
‖u1(t) − u2(t)‖2 ≤ C5

∫ t

0
‖u′

1(s) − u′
2(s)‖2

H + ‖u1(s) − u2(s)‖2 ds

for all t ∈ (0, T), where C5 is given by

C5 = max
{

cA,
m2

J c2
FT

4ε

}
.

Finally, we apply the Gronwall’s lemma, see [44, Lemma 2.31], to derive u1 = u2. Moreover,
Lemma 6 guarantees that β1 = β2, which completes the proof of the theorem.

Theorem 15 Assume H(A), H(B), H(J ), H(M), H(F), H(ϕ), H( f ) and H(0). If u is a solution
to Problem 4, then u : [0, T] → V is Hölder continuous with exponent 1

2 .

Proof By Theorem 13, it is known that u, u′ ∈ V . Applying the Hölder’s inequality, we have

‖u(t1) − u(t2)‖ ≤
∫ t2

t1

‖u′(s)‖ ds ≤ |t1 − t2| 1
2

( ∫ T

0
‖u′(t)‖2 dt

) 1
2
,

for all t1, t2 ∈ [0, T], which implies the desired regularity.

4 A dynamic viscoelastic frictional contact problem

In this section, we illustrate the applicability of theoretical results from Section 3 in the study
of a new dynamic frictional contact model for a viscoelastic material with adhesion effects.
The contact boundary conditions in this model are described by a generalised normal damped
response condition with a unilateral constraint together with a multivalued friction law.

The physical setting of the dynamic contact process is described as follows. Assume that the
viscoelastic body occupies a bounded and open domain � in R

d (d = 2, 3) with a Lipschitz
continuous boundary � := ∂�. The boundary ∂� is given by � = �D ∪ �N ∪ �C such that �D,
�N and �C are pairwise disjoint and measurable with meas(�D) > 0. We are interested in the
evolution of the body in a finite time interval (0, T).

We adopt the following standard notation. The unit outward normal vector on boundary and
the position vector in the body are denoted by ν = (νi) and x ∈ � = � ∪ ∂�, respectively. The
indices i, j, k, l run from 1 to d, and unless stated otherwise, the summation convention over
repeated indices is used. For simplicity, we often will not indicate explicitly the dependence
of the variables on x. Let (Sd , ‖ · ‖Sd ) be the space of second-order symmetric tensors on R

d .
Throughout this section, the inner products and norms in R

d and S
d are denoted by u · v = uivi,
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‖v‖Rd = (v · v)
1
2 for u = (ui), v = (vi) ∈R

d and σ : τ = σijτij, ‖τ‖Sd = (τ : τ )
1
2 for σ = (σij), τ =

(τij) ∈ S
d , respectively. In addition, we use the notation u = (ui), σ = (σij), and

ε(u) = (εij(u)), εij(u) = 1

2

(
ui,j + uj,i

)
, i, j = 1, . . . , d,

to denote the displacement vector, the stress tensor and the linearised strain tensor, respectively.
For a vector w defined on the boundary, its normal and tangential components are wν = w · ν and
wτ = w − wνν. For the stress tensor σ , its normal and tangential components on the boundary
are defined by σν = (σν) · ν and σ τ = σν − σνν, respectively. Let Q= � × (0, T), �D = �D ×
(0, T), �N = �N × (0, T) and �C = �C × (0, T).

We are now in a position to present the classical formulation of the contact problem.

Problem 16 Find a displacement field u : Q→R
d, a stress field σ : Q→ S

d and a bonding field
β : �C × (0, T) → [0, 1] such that

σ (t) = C(ε(u′(t))) + E(ε(u(t))) in Q, (4.1)

u′′(t) − Div σ (t) = f 0(t) in Q, (4.2)

u(t) = 0Rd on �D, (4.3)

σ (t)ν = f N (t) on �N , (4.4)⎧⎪⎪⎨⎪⎪⎩
u′

ν(t) ≤ g, σν(t) + ξ (t) ≤ 0(
u′

ν(t) − g
)(

σν(t) + ξ (t)
) = 0

ξ (t) ∈ ∂jν(β(t), u′
ν(t))

on �C , (4.5)

− σ τ (t) ∈ ∂jτ (β(t), u′
τ (t)) on �C , (4.6)

β ′(t) = F(t, u(t), β(t)) on �C , (4.7)

β(0) = β0 on �C , (4.8)

u(0) = u0, u′(0) = v0 in �. (4.9)

Let us briefly comment on the equations and conditions in Problem 16. The equation (4.1) is
the well-known Kelvin–Voigt viscoelastic constitutive law in which C and E stand for a non-
linear viscosity operator and a linear elasticity operator, respectively. The equation of motion
(4.2) reflects the fact that the contact process is dynamic. Here, ‘Div’ is the divergence operator
given by

Divσ = (σij,j) =
(

∂σij

∂xj

)
and f 0 is the density of applied volume forces (e.g., gravity). The boundary conditions (4.3)
and (4.4) mean that the body is clamped on �D, and it is subjected to the density f N of surface
tractions on �N . The initial displacement and velocity are given in (4.9). The surface variable
β is usually called the bonding field or the adhesion field, see [14–16, 21], which is a scale
(dimensionless) function describing the pointwise fractional density of active bonds on the con-
tact surface. In the model, we assume that the bonding field β is governed by a non-linear
evolution equation (4.7) on the surface of contact boundary �C , and the function F depends
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explicitly on the displacement field. The initial bonding field is assumed in (4.8). Moreover, we
can distinguish three cases:

(i) β = 1, when the adhesion is complete and all the bonds are active;
(ii) β = 0, if all bonds are inactive and there is no adhesion effect;

(iii) 0 < β < 1, when the adhesion is partial and a fracture β of the bonds is active.

The contact condition (4.5) represents a multivalued normal damped response condition with
unilateral constraint, which has been recently studied in [18]. It is worth mentioning that this
boundary condition can be rewritten to the following equivalent form:

−σν(t) ∈ ∂jν(β(t), u′
ν(t)) + ∂cI(−∞, g](u

′
ν(t)) on �C , (4.10)

where I(−∞, g] : R→ {0, +∞} is the indicator function of the interval (−∞, g] ⊂R,

I(−∞, g](r) =
{

0, r ∈ (−∞, g],

+∞, otherwise,

and g > 0 is a positive constant. Note that (4.10) involves both the Clarke’s generalised gradi-
ent and convex subdifferential, so this multivalued relation represents a more general boundary
condition than the ones which are often found in contact models.

Example 17 Let q : R×R→R be a continuous function and j : R×R→R be defined by

j(s, r) =
∫ r

0
q(s, t) dt for s, r ∈R.

It is clear that j is a Lipschitz continuous function and ∂j(s, r) = q(s, r) for all s, r ∈R. Moreover,
if the potential jν = j, then (4.5) reduces to ([44])

u′
ν(t) ≤ g, σν(t) + q(β(t), u′

ν(t)) ≤ 0,
(
u′

ν(t) − g
) (

σν(t) + q(β(t), u′
ν)(t)

) = 0 on �C .
(4.11)

In particular, when q is independent of the bonding field β, that is, q(s, r) = q(r) for all s, r ∈R,
then (4.11) becomes ([13])

u′
ν(t) ≤ g, σν(t) + q(u′

ν(t)) ≤ 0,
(
u′

ν(t) − g
) (

σν(t) + q(u′
ν(t))

) = 0 on �C . (4.12)

Furthermore, with q ≡ 0 and g ≡ 0, the boundary condition (4.12) is reduced to the classical
Signorini-type contact condition in velocity of the form, see [12, 22, 43, 45, 47]

u′
ν(t) ≤ 0, σν(t) ≤ 0, σν(t)u′

ν(t) = 0 on �C . (4.13)

The general friction condition with adhesion (4.6) is described by the generalised gradient of
a locally Lipschitz potential jτ , which is non-convex in general.

To derive a weak formulation of Problem 16, we introduce function spaces

V = { v ∈ H1(�; Rd) | v = 0 on �D } and H= L2(�; Sd). (4.14)

Since meas (�D) > 0, V is a Hilbert space endowed with the inner product

(u, v)V = (ε(u), ε(v))H, u, v ∈ V ,
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and the associated norm ‖ · ‖V . H is a Hilbert space equipped with the inner product

(σ , τ )H =
∫

�

σij(x) τij(x) dx, σ , τ ∈H,

and the norm ‖ · ‖H. The trace of an element v ∈ H1(�; Rd) will be denoted by the same symbol.
The trace theorem states

‖v‖L2(�C ;Rd ) ≤ ‖γ ‖ ‖v‖V for all v ∈ V ,

where γ is the trace operator from V to L2(�C; Rd). The unilateral constraint condition (4.5)
requires the use of the following set of admissible velocities

K = { v ∈ V | vν ≤ g on �C }. (4.15)

We now make assumptions on the problem data.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C : � × S
d → S

d is such that

(a) x �→ C(x, ε) is measurable on � for all ε ∈ S
d .

(b) ε �→ C(x, ε) is continuous on S
d for a.e. x ∈ �.

(c) there exist a constant cC > 0 and a function bC ∈ L2(�) such that

‖C(x, ε)‖Sd ≤ bC(x) + cC‖ε‖Sd for all ε ∈ S
d , a.e. x ∈ �.

(d) there exists a constant mC > 0 such that(C(x, ε1) − C(x, ε2)
)

:
(
ε1 − ε2

) ≥ mC‖ε1 − ε2‖2
Sd

for all ε1, ε2 ∈ S
d and a.e. x ∈ �.

(e) C(x, 0Sd ) = 0Sd for a.e. x ∈ �.

(4.16)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E : � × S
d → S

d is such that

(a) E(x, ε) = a(x)ε (the Hooke law) for all ε ∈ S
d , a.e. x ∈ �.

(b) a(x) = (aijkl(x)) with aijkl = ajikl = aijlk ∈ L∞(�).

(c) there exists mE > 0 such that aijkl(x)εijεkl ≥ mE ‖ε‖2
Sd

for all ε = (εij) ∈ S
d , a.e. x ∈ �.

(4.17)

The normal and tangential potentials enjoy the following hypotheses.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jν : �C ×R×R→R is such that

(a) x �→ jν(x, r, s) is measurable on �C for all r, s ∈R with jν(·, 0, 0) ∈ L1(�C).

(b) s �→ jν(x, r, s) is locally Lipschitz on R, for all r ∈R, a.e. x ∈ �C .

(c) there exists a constant cjν > 0 such that |∂jν(x, r, s)| ≤ cjν (1 + |s|)
for all r, s ∈R and a.e. x ∈ �C .

(d) either jν(x, r, ·) or − jν(x, r, ·) is regular for a.e. x ∈ �C , all r ∈R.

(e) R2 � (r, s) �→ j0
ν(x, r, s; z) ∈R is u.s.c. for all z ∈R, a.e. x ∈ �C .

( f) there exists a constant mjν ≥ 0 such that

(s∗
1 − s∗

2)(s1 − s2) ≥ −mjν

(|s1 − s2| + |r1 − r2|
)|s1 − s2|

for all s∗
1 ∈ ∂jν(x, r1, s1), s∗

2 ∈ ∂jν(x, r2, s2), for a.e. x ∈ �C

and all r1, r2, s1, s2 ∈R.

(4.18)
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jτ : �C ×R×R
d →R is such that

(a) x �→ jτ (x, r, ξ ) is measurable on �C for all (r, ξ ) ∈R×R
d

with jτ (·, 0, 0Rd ) ∈ L1(�C).

(b) ξ �→ jτ (x, r, ξ ) is locally Lipschitz on R
d , for all r ∈R, a.e. x ∈ �C .

(c) there exists a constant cjτ > 0 such that ‖∂jτ (x, r, ξ )‖Rd ≤ cjτ (1 + ‖ξ‖Rd )

for all (r, ξ ) ∈R×R
d and a.e. x ∈ �C .

(d) either jτ (x, r, ·) or − jτ (x, r, ·) is regular for a.e. x ∈ �C and r ∈R.

(e) R×R
d � (r, ξ ) �→ j0

τ (x, r, ξ ; η) ∈R is u.s.c. for all η ∈R
d , a.e. x ∈ �C .

( f) there exists mjτ ≥ 0 such that

(ζ 1 − ζ 2) · (ξ 1 − ξ 2) ≥ −mjτ

(‖ξ 1 − ξ 2‖Rd + |r1 − r2|
)‖ξ 1 − ξ 2‖Rd

for all ζ 1 ∈ ∂jτ (x, r1, ξ 1), ζ 2 ∈ ∂jτ (x, r2, ξ 2), a.e. x ∈ �C and

all r1, r2 ∈R, ξ 1, ξ 2 ∈R
d .

(4.19)

In hypotheses (4.18) and (4.19), symbols ∂jν and ∂jτ stand for the generalised gradient of jν
and jτ , respectively, with respect to their last argument, and j0

ν and j0
τ denote the generalised

directional derivatives of jν(x, r, ·) and of jτ (x, r, ·).
The non-linear function F is assumed to have the following properties.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F : �C × (0, T) ×R
d ×R→R is such that

(a) F(·, ·, ξ , r) is measurable on �C × (0, T) for all (ξ , r) ∈R
d ×R.

(b) there exists a constant LF > 0 such that

|F(x, t, ξ 1, r1) − F(x, t, ξ 2, r2)| ≤ LF(‖ξ 1 − ξ 2‖Rd + |r1 − r2|)
for a.e. (x, t) ∈ �C × (0, T) and all (ξ i, ri) ∈R

d ×R, i = 1, 2.

(c) F(x, t, ξ , 0) = 0, F(x, t, ξ , r) ≥ 0 for r ≤ 0 and F(x, t, ξ , r) ≤ 0

for r ≥ 1, for a.e. (x, t) ∈ �C × (0, T), and for all ξ ∈R
d .

(d) there exists a constant MF > 0 such that |F(x, t, ξ , r)| ≤ MF

for all (x, t, ξ , r) ∈ �C × (0, T) ×R
d × [0, 1].

(4.20)

Besides, the densities of volume forces and surface tractions satisfy

f 0 ∈ H1(0, T ; L2(�; Rd)), f N ∈ H1(0, T ; L2(�N ; Rd)). (4.21)

The initial displacement, velocity and boding field are assumed to satisfy the conditions.

u0 ∈ V , v0 ∈ K, β0 ∈ L2(�C), 0 ≤ β0(x) ≤ 1 a.e. x ∈ �C . (4.22)

To derive the weak formulation of the dynamic contact problem, we assume that (u, σ ) are
smooth functions on Q such that (4.1)–(4.9) hold. Let v ∈ V be arbitrary and H := L2(�; Rd).
We multiply the equation of motion (4.2) by v − u′(t) and employ the Green formula, see [35,
Theorem 2.25], to obtain

〈u′′(t), v − u′(t)〉 + 〈σ (t), ε(v) − ε(u′(t))〉H = (f 0(t), v − u′(t))H +
∫

∂�

σ (t)ν · (v − u′(t)) d�
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for a.e. t ∈ (0, T). Define f ∈ H1(0, T ; V ∗) (see hypothesis (4.21)) by

〈f (t), v〉 = (f 0(t), v)H + (f N (t), v)L2(�N ;Rd ) for all v ∈ V , a.e. t ∈ (0, T).

Then, apply boundary conditions (4.3)–(4.4) to get

〈u′′(t), v − u′(t)〉 + 〈σ (t), ε(v) − ε(u′(t))〉H = 〈f (t), v − u′(t)〉 +
∫

�C

σ (t)ν · (v − u′(t)) d�

(4.23)
for a.e. t ∈ (0, T). Since∫

�C

σ (t)ν · v d� =
∫

�C

(σν(t)vν + σ τ (t) · vτ ) d�,

and from boundary conditions (4.5)–(4.6),{ − σν(t)(vν − u′
ν(t)) ≤ j0

ν(x, β(t), u′
ν(t); vν − u′

ν(t))

− σ τ (t) · (vτ − u′
τ (t)) ≤ j0

τ (x, β(t), u′
τ (t); vτ − u′

τ (t))

on �C , we deduce from (4.23) that

〈u′′(t), v − u′(t)〉 + 〈σ (t), ε(v) − ε(u′(t))〉H +
∫

�C

j0
ν(x, β(t), u′

ν(t); vν − u′
ν(t)) d�

+
∫

�C

j0
τ (x, β(t), u′

τ (t); vτ − u′
τ (t)) d� ≥ 〈f (t), v − u′(t)〉

(4.24)

for all v ∈ K and a.e. t ∈ (0, T). So the weak formulation of Problem 16 is the following.

Problem 18 Find a displacement field u : (0, T) → V, and a bonding field β : (0, T) → L2(�C)
such that u ∈ V , u′ ∈W , β ∈ W 1,2(0, T ; L2(�C)), 0 ≤ β(t) ≤ 1 for all t ∈ [0, T], a.e. on �C, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈u′′(t), v − u′(t)〉 + 〈C(ε(u′(t))) + E(ε(u(t))), ε(v) − ε(u′(t))〉H
+

∫
�C

j0
ν(x, β(t), u′

ν(t); vν − u′
ν(t)) d� +

∫
�C

j0
τ (x, β(t), u′

τ (t); vτ − u′
τ (t)) d�

≥ 〈f (t), v − u′(t)〉 for all v ∈ K and a.e. t ∈ (0, T),

β ′(t) = F(t, u(t), β(t)) on �C ,

β(0) = β0 on �C ,

u(0) = u0, u′(0) = v0 in �.

(4.25)

Let X = L2(�C; Rd) and Y = L2(�C). We will apply Theorems 13 and 14 to study Problem 18.
For this purpose, we introduce operators A : V → V ∗ and B : V → V ∗ defined by

〈A(u), v〉 = 〈C(ε(u)), ε(v)〉H, (4.26)

〈B(u), v〉 = 〈E(ε(u)), ε(v)〉H, (4.27)

for all u, v ∈ V , respectively. Also, we define M : V → X and J : Y × X →R by

M = γ : V → X the trace operator, (4.28)

J (β, u) =
∫

�C

(
jν(x, β, uν) + jτ (x, β, uτ )

)
d� for β ∈ Y , u ∈ X . (4.29)
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Theorem 19 Assume (4.16)–(4.22). In addition, assume the compatibility condition(
A(v0) + Bu0 + γ ∗∂J (β0, γ v0) − f (0)

)
∩ H �= ∅, (4.30)

and mC > ‖γ ‖2(mjν + mjτ ). Then, Problem 18 has a unique solution (u, β) such that

u ∈ W 1,2(0, T ; V ), u ∈ L2(0, T ; V ∗), β ∈ C(0, T ; L2(�C)), 0 ≤ β(t) ≤ 1 for all t ∈ [0, T].

Proof Let i be the embedding from V to H which is compact. Define ϕ : V → {0, +∞} by

ϕ(v) = IK(v) =
{

0, if v ∈ K,
+∞, otherwise,

(4.31)

where K is given by (4.15). Since K is a non-empty, closed and convex subset of V , the indicator
function ϕ = IK satisfies H(ϕ), see [24, p. 12]. Hypotheses (4.18)(d) and (4.19)(d) imply, see [35,
Lemma 3.39(3) and Corollary 4.15(vi)]

J0(β, u) =
∫

�C

(
j0
ν(x, β, uν) + j0

τ (x, β, uτ )
)

d�, (4.32)

for all β ∈ Y and u ∈ X . Combining (4.26)–(4.29) with (4.31) and (4.32), we can reformulate
(4.25) as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈u′′(t), v − u′(t)〉 + 〈A(u′(t)) + B(u(t)), v − u′(t)〉 + ϕ(v) − ϕ(u′(t))
+ J0(β(t), Mu′(t); M(v − u′(t))) ≥ 〈f (t), v − u′(t)〉

for all v ∈ V , a.e. t ∈ (0, T),

β ′(t) =F(t, u(t), β(t)) on �C ,

β(0) = β0 on �C ,

u(0) = u0, u′(0) = v0 in �,

(4.33)

where F : (0, T) × X × Y → Y is the Nemytskii operator of F defined by

F(t, β, u)(x) = F(x, t, β(x), u(x)) for a.e. x ∈ �C . (4.34)

Furthermore, (4.33) is equivalent to, see [35, Proposition 3.23]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈u′′(t), v − u′(t)〉 + 〈A(u′(t)) + B(u(t)), v − u′(t)〉 + ϕ(v) − ϕ(u′(t))

+ 〈ξ (t), M(v − u′(t))〉X∗×X ≥ 〈f (t), v − u′(t)〉 for all v ∈ V , a.e. t ∈ (0, T),

ξ (t) ∈ ∂J (β(t), Mu′(t)) for a.e. t ∈ (0, T),

β ′(t) =F(t, u(t), β(t)) on �C ,

β(0) = β0 on �C ,

u(0) = u0, u′(0) = v0 in �.

(4.35)

We now verify the conditions stated in Theorem 13. The condition (4.16)(d) guarantees that
A is strongly monotone with constants mA = mC and cA = 0. Hypotheses (4.16)(b) and (c) imply
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that A is continuous and bounded. Therefore, it is pseudomonotone, see [35, Theorem 3.69], that
is, H(A)(i) is valid. The growth condition (4.16)(c) entails

‖Av‖V∗ = sup
‖w‖=1, w∈V

|〈Av, w〉| ≤
∫

�

‖C(x, ε(v))‖Sd ‖ε(w)‖Sd dx

≤
( ∫

�

(
bC(x) + cC‖ε(v)‖Sd

)2
dx

) 1
2 ≤ √

2 (‖bC‖L2(�) + cC‖v‖).

This implies that A satisfies H(A)(ii) with aA = √
2‖bC‖L2(�) and bA = √

2cC . As concerns oper-
ator B, it is easy to see that under hypothesis (4.17), B defined by (4.27) satisfies H(B) with
�B = mE .

By (4.18)(a)–(c) and (4.19)(a)–(c), we know that the function J defined by (4.29) satisfies
properties H(J )(i) and (ii), see [35, Corollary 4.15]. The assumptions (4.18)(e) and (4.19)(e)
show that either J (β, ·) or −J (β, ·) is regular on X for all β ∈ Y , see [35, Corollary 4.15(vii)].
Thus, by [35, Lemma 3.39(3) and Corollary 4.15(vi)]), we have

∂J (β, u) =
∫

�C

(
∂jν(x, β, uν) + ∂jτ (x, β, uτ )

)
d�. (4.36)

The upper semicontinuity of jν and jτ combined with the Fatou’s lemma, see [35, Theorem 1.64]
implies that (β, u) �→ J0(β, u; v) is upper semicontinuous on Y × X for all v ∈ X . Hence,
H(J )(iv) holds. The relaxed monotonicity of ∂J (cf. H(J )(iii)) is obtained using (4.18)(f),
(4.19)(f), (4.36) and the Hölder’s inequality.

By the Sobolev trace theorem, see, for example, [10, 35, 48], we know that the operator
M : V → X is linear and continuous. To check condition H(M), let {wn} be a sequence bounded in
M2,2(0, T ; V , V ∗) and δ ∈ (0, 1/2). The embedding M2,2(0, T ; V , V ∗) ⊂ L2(0, T ; H1/2+δ(�; Rd))
is compact by Proposition 2. Hence, there exists a subsequence {wnk } of {wn} such that wnk →
w in L2(0, T ; H1/2+δ(�; Rd)) for some element w ∈ L2(0, T ; H1/2+δ(�; Rd)). Since the trace
operator from L2(0, T ; H1/2+δ(�; Rd)) to L2(0, T ; Hδ(�C; Rd)) ⊂ L2(0, T ; X ) =X is linear and
continuous, we deduce that Mwnk →Mw in X . Thus, condition H(M) is satisfied.

Next, the compatibility conditions (4.30) and (4.22) imply 0V∗ ∈ ∂cIK(v0). So we are able to
find z0 ∈ H such that

z0 ∈ A(v0) + Bu0 + γ ∗∂J (β0, γ v0) − f (0).

This result and the smallness condition mC > ‖γ ‖2(mjν + mjτ ) imply H(0). It is easy to demon-
strate, by hypothesis (4.20), that the function F defined in (4.34) satisfies H(F). Finally, from
hypothesis (4.20)(c), by an analogous proof as in [33, Lemma 5], we deduce that β(t) ∈ [0, 1] for
all t ∈ [0, T], a.e. on �C .

The conclusion of Theorem 19 now follows from an application of Theorems 13 and 14.

Finally, we make a comment on the validity of the compatibility condition (4.30). Assume
the initial displacement and initial velocity are u0 = 0Rd , v0 = 0Rd and f N (0) = 0L2(�N ;Rd ). Then
hypotheses (4.16)(e) and (4.17) imply Av0 = Bu0 = 0V∗ . Since 0X∗ ∈ ∂J (γ 0V ) and v0 ∈ K (due
to v0 · ν = 0 ≤ g), the compatibility condition (4.30) is valid in this case.
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