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Buckling instabilities of thin sheets or plates of viscous fluid occur in situations
ranging from food and polymer processing to geology. Slim, Teichman & Mahadevan
(J. Fluid Mech., this issue, vol. 694, 2012, pp. 5–28) study numerically the buckling
of a sheared viscous plate floating on a denser fluid using three approaches: a classical
‘thin viscous plate’ model; full numerical solution of the three-dimensional Stokes
equations; and a novel ‘advection-augmented’ thin-plate model that accounts (in an
asymptotically inconsistent way) for the advection of perturbations by the background
shear flow. The advection-augmented thin-plate model is markedly superior to the
classical one in its ability to reproduce the predictions of the Stokes solution,
illustrating the utility of judicious violations of asymptotic consistency in fluid-
mechanical models.

1. Introduction

Among the most beautiful structures in fluid mechanics are those produced by
the buckling of thin fluid layers in response to external compression. Travellers in
mountainous regions marvel at the complex folded structures produced by the slow
buckling of ductile rock strata over geological time scales (Johnson & Fletcher 1994).
The figure by the title (S. Niebuhr & P. Morin, Polar Geospatial Center, copyright
DigitalGlobe, Inc., used with permission) shows a satellite image of ice-shelf surface
undulations on the George VI Ice Shelf along its boundary with the rocky coast
of Alexander Island, Antarctica. Depressed portions of the ice shelf fill with surface
meltwater to form pear-shaped, ‘en échelon’ lakes. The lakes are also covered with
thin floating lake ice that is variously fragmented, and are separated by upward arching
rolls on the ice shelf. Ice flows obliquely towards the coast (i.e. from upper right
to lower left) with speed vI . 50 m year−1. The undulations, and meltwater lakes
they trap, propagate along the coast (from lower right to upper left) at a speed
vU > 10vI , as an apparent consequence of viscous buckling of the ice shelf (LaBarbera
& MacAyeal 2012). A more familiar example much closer to home is the periodic
folding instability of a vertical sheet of viscous fluid (e.g. cake batter) falling onto a
surface (Skorobogatiy & Mahadevan 2000; Ribe 2003).
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Buckling viscous sheets are thin objects with one small dimension (the thickness)
and two much larger dimensions, and can moreover experience large changes of shape.
The dynamics of thin deformable sheets are described by a branch of mechanics
known as shell theory, which is highly developed for elastic sheets (Niordson 1985).
Derivations of the analogous equations for viscous sheets include those of Buckmaster,
Nachman & Ting (1975), Howell (1996), and Ribe (2002).

The essential physical content of shell theory is that a thin sheet can deform either
by stretching or by bending, depending on its shape and the distribution of the external
forces acting on it. Buckling instabilities are dominated by bending, whose defining
characteristic is a linear variation of the midsurface-parallel fibre stress σss(z) across
the sheet’s thickness, from compressional (σss < 0) on the side towards the centre of
bending to extensional on the other side. For a two-dimensional viscous sheet with
viscosity µ, σss = −4µK̇z, where z = 0 is the sheet’s midsurface and K̇ is the rate of
change of the curvature K of that surface. The first moment of this stress distribution
for a sheet of thickness h is the bending moment M =−µh3K̇/3, which shows that the
sheet resists bending as the cube of its thickness.

Buckling instabilities are governed by the balance of forces acting on the sheet in
the direction normal to the midsurface. With gravity and surface tension neglected
for simplicity, this balance is ∂2

ssM + KN = 0, where N is the extensional (N > 0)
or compressional (N < 0) membrane force acting parallel to the midsurface. Let
the deflection of the midsurface from an initially flat configuration be H(s, t) =
H0 sin ks exp σ t, where σ is the growth rate. With K = ∂2

ssH and K̇ = ∂t∂
2
ssH, the

force balance implies σ = −3N/µh3k2, which is positive only if N < 0. Buckling is
therefore possible only if the sheet is compressed along its midsurface.

2. Overview

Several authors (Taylor 1969; Suleiman & Munson 1981; Benjamin & Mullin
1988) have performed laboratory experiments on buckling of a sheared floating
plate of viscous fluid in the form of a circular annulus, in the configuration shown
schematically in figure 1(a). As reported in the following paper, Slim, Teichman &
Mahadevan (2012) study a simpler model in which the plate is infinitely long, as
shown in figure 1(b). The motion of the bounding walls at speeds ±U generates a
linear shear velocity profile (brown arrows) that compresses material elements in a
direction inclined at 45◦ to the walls (black arrows), leading to buckling.

Benjamin & Mullin (1988) analysed the buckling of a laterally infinite viscous
plate with uniform background shear using both a thin-plate model and a complete
analytical solution of the three-dimensional Stokes equations. Slim et al. (2012)
improve on their work in two ways. First, they include the influence of the bounding
walls, which constrain the form the buckling can take. Second, they propose a new
‘advection-augmented’ thin-plate model that includes advection of perturbations by the
background flow, and they compare its predictions with those of the simple thin-plate
model and the Stokes solution.

Slim et al.’s important result is that the advection-augmented plate model reproduces
the predictions of the Stokes solution much better than does the simple plate
model without advection. The advection-augmented model comprises a pair of partial
differential equations for the vertical deflection H and the vertical velocity w of the
midsurface:

−2µhS∂2
xyH =− 1

3µh3∇4w+ (γ + + γ −)∇2H − (ρ− − ρair)gH, (2.1a)
w= ∂tH + (Sy)∂xH, (2.1b)
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FIGURE 1. Configurations used to study buckling of thin sheared viscous plates. (a) Annular
geometry typically used in laboratory experiments (Taylor 1969; Suleiman & Munson 1981;
Benjamin & Mullin 1988), in which shear is induced by steady rotation of one bounding wall
with angular speed Ω . (b) Configuration of Slim et al. (2012), in which parallel bounding walls
move at speeds ±U. The background shear velocity profile is shown by brown arrows, and the
direction of the maximum rate of compression by black arrows. Colours indicate the amplitude
(in arbitrary units) of the most unstable buckling mode for d/L = 0.02 and γL/dµU = 0.3,
where γ is the surface tension coefficient (assumed to be the same on both surfaces of the plate).

where S= U/L is the shear rate. The equations of the simple plate model are the same
as (2.1) except that the advection term (Sy)∂xH in (2.1b) is absent.

Equation (2.1a) expresses the balance of vertical forces acting on the plate. The
left-hand side is the vertical component of the background membrane stress acting
along the curved midsurface, and is the driving force for buckling. It is balanced by
three resisting forces on the right-hand side: the viscous resistance to bending (first
term), surface tension acting on the plate’s upper (+) and lower (−) surfaces (second
term), and the restoring force of buoyancy (third term), which is proportional to the
difference of the densities of the fluids below and above the plate.

When the stabilizing effects of surface tension and buoyancy are absent,
perturbations of all wavelengths are unstable for any shear rate. But because viscous
bending resistance slows the growth of short wavelengths while the bounding walls
slow the growth of long ones, the fastest growth occurs at an intermediate wavelength
λ≈ 3.32L. The corresponding stationary buckling mode spans the width of the channel
and has crests and troughs aligned at roughly 45◦ to the walls, like the one shown in
figure 1(b).

The stabilizing influence of buoyancy is dominant at long wavelengths, and acts
primarily to reduce the wavelength of the fastest-growing mode. Surprisingly, surface
tension has the same effect, and in addition stabilizes long waves but not short ones!
This counterintuitive result seems to contradict the fact that surface tension penalizes
the curvature of an interface, which scales as λ−2. However, the membrane force in
(2.1a) also scales as λ−2, which implies that if it exceeds surface tension for some
wavelength (as it must if buckling is to occur) then it will do so for all wavelengths.
Surface tension therefore cannot suppress short waves. At the other extreme, long
waves are only weakly aligned with the compressional axis of the background shear,
and so even the small effect of surface tension at such wavelengths is sufficient to
suppress them.

A striking change of behaviour occurs for perturbation wavelengths below a critical
value ≈0.3–0.8 times the channel width (depending on the aspect ratio and the
surface tension). The two fastest growing stationary modes then join to form a
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pair of travelling waves with complex conjugate growth rates, and which become
progressively more confined near the walls as the wavelength decreases. Both the
Stokes and advection-augmented plate models capture this behaviour, whereas the
simple plate model does not. However, the real part of the growth rate of these waves
is much less than that of the dominant stationary mode, and it remains to be seen
whether they can be observed in the laboratory.

3. Future

The superiority of Slim et al.’s advection-augmented thin-plate model to the
classical one holds an important lesson. As the authors point out, the augmented model
violates strict asymptotic consistency, because the added advection term is of higher
order in the small parameter d/L than all the other terms in the model equations. The
model’s success suggests that asymptotic consistency is like the avoidance of parallel
fifths in musical composition: a worthy principle, but one to be abandoned without
hesitation when higher considerations so dictate. Another example in fluid mechanics
is the model of Eggers & Dupont (1994) for capillary breakup of a viscous jet, the
predictive power of which is greatly increased by use of the exact (but asymptotically
inconsistent) expression for the mean curvature of the jet’s surface.

The next step is clearly to compare the authors’ theoretical predictions with
laboratory experiments in which the vertical deflection of the plate is accurately
measured. Experiments in a long rectangular channel would be ideal, but this geometry
is hard to realize in the laboratory. It would probably be more practical to perform
careful experiments using the traditional annular geometry (figure 1a), and then to
extend the advection-augmented plate model to this case. It would also be desirable to
employ a more general theory for plates with finite midsurface curvature, which would
allow the amplitude (and not just the pattern) of the buckling to be predicted.
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