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1. Introduction. The purpose of this paper is twofold. In [6] Tomiuk gives a representa-
tion theorem for a topologically simple right complemented algebra that is also an annihilator
algebra. We strengthen this and then give a converse, so as to characterise right complemented
algebras among respectively primitive Banach algebras and primitive annihilator Banach
algebras. Our second aim is to investigate the relationship between the different annihilator
conditions—left annihilator, right annihilator, annihilator, and dual—when imposed on a
complemented algebra. Tomiuk [6] has already shown that a right complemented semi-
simple algebra that is a left annihilator algebra is an annihilator algebra; further, a topologically
simple bi-complemented algebra that is also an annihilator algebra is dual. We show that for
a topologically simple right complemented algebra all four annihilator conditions are equi-
valent. Further, for a semi-simple Banach algebra the first three are equivalent provided it is
right complemented, and if it is also left complemented, then they are equivalent to duality.

This work was done while the author was a research student at Edinburgh University
under the supervision of Professor F. F. Bonsall, whom she would like to thank for his
encouragement.

Notation. This is mostly consistent with [4]; however, we follow [1] in denoting by
Sr, Si the left and right annihilators, respectively, of a subset S of an algebra. The two nota-
tions cl( ) and ~ will denote closure. The following set notations are adopted: (i) if A, B
are subsets of an algebra, then AB = {ab: a e A, b e B}; (ii) if S is a subspace of a linear space V
and T is a set of operators on V, then TS = {ts: t e T, s e S} ; (iii) if a -> Ta is a representation
of an algebra and A is a subset of the algebra, then TA = {Ta: as A}.

2. Definitions and preliminary lemmas. Let A be a complex Banach algebra and let R
denote the set of all closed right ideals of A. Following [6] we say that A is a right comple-
mented algebra if there is a mapping p: R -> Rp of R onto itself that has the following pro-
perties :

d : RnRp = (0)

C2: R+RP = A

C3: (RP)P = R

(Re

(Re

(Re

then

R),

R),

R),

R

The mapping p is called a right complementor on A. Analogously, we define a left comple-
mentor and a left complemented algebra. An algebra that is both left complemented and right
complemented is said to be bi-complemented.

A Banach algebra is a left annihilator algebra if, for any closed right ideal R of the algebra,
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R, = (0) if and only ifR is the whole algebra. A right annihilator algebra is defined analogously.
An annihilator algebra is an algebra that is both a left annihilator and a right annihilator
algebra. The algebra is dual if, for every closed right (or left) ideal R (or L), (R,)r = R (or
O*)i = L).

LEMMA 1. In the definition of a right complementor, C3 may be replaced by

C3:(RP)P=>R (Rei?).

Proof. Rp © R = A = Rp © Rpp. Hence one inclusion between R and Rpp will give
equality.

Note. It is natural to ask whether C2 can be replaced by cl (R + Rp) = A. This is not
possible, as will be demonstrated by the author in a subsequent paper.

LEMMA 2. Let Abe a Banach algebra andp a mapping of R into itself that satisfies C3, C4.
If {Rx: Ae A} is a family of closed right ideals of A, then

Proof Write I = f) Rj[, and J = cl(£RA). Then, for each X, R£ => I and so, by C3 and
x x

C4, we have I P 3 R 7 = > R ^ . Therefore, since Ip is closed, Ip => J ; thus Jp => Ipp => I.
Conversely, J •=> Rk; therefore, J p c RJ and hence Jp c I. Combining the two inclusions,
we have equality.

LEMMA 3. Let Abe a right complemented algebra such that A, = (0). Then aeaAfor all
a in A.

Proof. Let aeA and R = aA. Then a has a unique decomposition a = aY +a2, where
«! e R, and a2 eRp. Now, for any b in A, a2b = ab — atb. However, a2beRp and ab, atbeR.

Thus a2beRr>Rp = (0). Therefore, a2A = (0) and, by hypothesis, a2 = 0 and aeR = aA.

LEMMA 4. Every non-zero closed left ideal of a semi-simple right complemented algebra
A contains a minimal left ideal.

Proof. From Lemma 2 in [6] it can be seen that, if M is any maximal modular right ideal
of A, there exists a minimal idempotent e that satisfies M = (1 — e)A, M" = eA. Now suppose
that L is a left ideal of A that does not contain a minimal left ideal. Let M be as above;
then Ae is a minimal left ideal. Now, since, for each u in A, Aeu is either minimal or zero (see
the proof of Lemma 2.1.11 in [4]), we have AeL = (0). Thus L c (Ae),. However, if a e (Ae),,
then ea = 0 and so a = (1 — e)a\ therefore ae ( l — e)A = M. Thus L c M . It follows that L
is contained in every maximal modular right ideal of A and hence, by the semi-simplicity of A,
it is zero.

COROLLARY. Every minimal-closed left ideal of A is minimal.

3. Representation theorems for a primitive Banach algebra. In this section A will denote a
primitive Banach algebra with a right complementor p. From Lemma 5 in [6] we see that A
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has a dense socle. Since, in particular, it has minimal one-sided ideals, the discussion in § 5
of Chapter 2 of [4] is relevant. Let L = Ae be a minimal left ideal and e a fixed minimal
idempotent in A. Then the left regular representation a -* Ta of A on L is faithful, continuous,
and strictly dense. Further, the image of the socle of A is the set of all elements of finite rank
in TA. Using this, together with the density of the socle, we see that A is topologically simple.
The following proposition is implicit in [6].

PROPOSITION 1. For any closed right ideal R of A and any closed subspace S of L,

RnL = RL = RL; SA = {aeA:cL <= S}.

Proof. It is clear that RL c RnL and, since the latter is closed, we have RLcRnL.
Conversely, if XG RnL, then x = xe and so xe RL. The first part of the proposition follows.

Since S <= L, we have S = Se; therefore SAnL => Se. Ae = S. eAe = S .Ce = S. Now,
if zeSAnL, then z = limzn, where zneSA. Therefore z = ze = lim(zne)eel (SAnL) c S.
Thus SAnL c S; since S = Se, the reverse inclusion is clear and thus we have equality.
Therefore SA. L = S, from which the second part follows.

Now for any closed right ideal R of A denote by S(R) the closed subspace RL of L; for
any closed subspace S of L denote by J(S) the closed right ideal SA of A. Then, from the
corollary to Lemma 10 in [6], it is clear that the map 5" is one-to-one. Also, from the above
proposition, we can see that S maps the set of all closed right ideals of A onto the set of all
closed subspaces of L. It is now easy to verify that / is the inverse map of S. Now as in
Lemma 6 of [6] it can be seen that the map p defined on the closed subspaces of L by

satisfies the hypotheses of Theorem 1 of [2], Thus, if L is infinite dimensional, an inner pro-
duct may be induced in L so that (i) for any closed subspace S of L, S x = S", or equivalently,
for any closed right ideal R of A, (RL)x = RPL; (ii) L, endowed with the inner product, is a
Hilbert space and the resulting norm is equivalent to the given norm. It is clear that the inner
product can be varied by any positive real multiplicative constant, and thus we may assume
that it is chosen so that (e, e) — 1.

Notice that, since A is primitive, the condition that L be infinite-dimensional is equivalent
to the condition that A itself be infinite-dimensional.

THEOREM 1. Let A be an infinite-dimensional primitive Banach algebra, and let p be a right
complementor on A. Then A has a faithful, continuous, strictly dense representation a-*Taon
a Hilbert space H. The representation has the following properties:

(i) For any ReR, R" = {aeA: 7aH± J R H}.
(ii) The socle of A consists of all elements of A whose images are of finite rank on H. Its

image is generated by the set of all operators of the form x ® y, where x ranges through H and
y ranges through a subspace Ho ofH.

(iii) Ho is dense in H.
(iv) IfE is any orthogonal projection on H and as A, then there is an element b in A satisfying

ETa=Tb
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Proof. Let L = Ae be a given minimal left ideal of A and let ( , ) be the inner product
induced in L as in the above discussion. Let H denote the resultant Hilbert space and let
a -* Ta be the representation of A on H corresponding to the left regular representation of A
on L. Since A is semi-simple and L is minimal, a -* Ta is continuous and faithful and strictly
dense. Theorem 2.4.12 in [4] gives (ii). Let R be any closed right ideal of A. Then, if a eRp,
aL <= R"L = ( RL) x and so Ta H x TRU. Conversely, if Ta H i TR H, then a L c ( R L ) 1 = RPL;
therefore J([aL]) c J(R"L) = R"; thus aeR". This completes the proof of (i).

It is clearly sufficient to prove the remainder of the theorem for A an algebra of operators
on a Hilbert space H. A will be the closure of a set of operators of finite rank on H (since the
socle is dense) with respect to a norm || || that majorises the operator norm | |. Let £ be any
orthogonal projection on H, and let S be its range. Let R = { a e A : a H c S } ; then
R" = {creA:aH c S 1 } . Now, for any a in A, a = at+a2, where ^ e R , a 2 eR p ; therefore,
for all /; in H, ah = alh + a2h, where a^eS, a2heSx. But also ah = Eah + (l—E)ah, where
EaheS, (1 -E)aheS. It follows that Eah = at h. Since this holds for all h in H, we have
Ea = «! e A.

We show finally that H o is dense in H. If the contrary holds, then there is a non-zero
element JC of H that is orthogonal to Ho. Therefore, if an is any element of A of finite rank,
then anx = 0. However, if ceA, there is a sequence {an} of elements of finite rank such that
| | a B - a | | - > 0 ; therefore | a n - a | - > 0 , and hence ax = 0. It follows that x = 0, and this
contradiction establishes (iii).

Note. That the dimension restriction here is necessary can easily be deduced from a
counterexample in [2]. By introducing a concept of continuity of a complementer (a property
that is found to be automatic in the infinite-dimensional case) the restriction can be relaxed.
The author hopes to do this in a later paper.

THEOREM 2. Let A be as in Theorem 1. Then, if A is also known to be a left annihilator
algebra, the image TK of A contains all operators of finite rank on H.

Proof. Let x be any non-zero element of H and let S be the set of elements that are
orthogonal to x. Let R = {ae A: r a H c S}. Then it is clear that R is a proper closed right
ideal of A, and so, by hypothesis, R, is non-zero. By Lemma 4, this will contain a minimal
left ideal Lo. Lo will be {asA: Ta = u ® v, u varying through H, u a fixed non-zero element
of H}. We show that v is a scalar multiple of x. Let heS; then, since S = r R H ,

(M ® v)h = (h, v)u = 0;

this holds for all u in H. It follows that (/», v) = 0 for all h in S, and hence veS1. Thus
XxeH0 for some non-zero X in C, and, therefore, xeH0. Thus H o = H.

Notice that this theorem together with Theorem 1 gives a slightly strengthened form of the
representation theorem (Theorem 7) of [6]. We now establish a converse to these two theorems.

THEOREM 3. Let H be any Hilbert space and A a strictly dense subalgebra of the algebra
K(H) of all compact operators on H; suppose that A is a Banach algebra under a norm \\ \\.
Then A is right complemented if EA c A for any orthogonal projection E on H. If, further, A
contains all operators of finite rank on H, then A is an annihilator algebra.
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Proof. A contains minimal one-sided ideals, and so, from Theorem 2.4.14 in [4], || ||
majorises the operator norm | |. Now for any closed right ideal R of A define Rp to be
( a e A i a H c (RH)1}. We show first that this is closed. Suppose that a n eR p and that {an}
converges to a in A. Then || an—a || -+ 0, and so | an—a | -»0; therefore, since a , H i R H , we
have aH x RH and hence a e Rp. Thus p maps the set of all closed right ideals of A into itself.
Also it is clear that p satisfies C^ and C4. Again

Rpp = { a e A : a H c ( R p H ) i } => { a e A r a H c R H } => R,

and so C3 holds too.
It is clear that [cl(R + Rp)]H contains RH and (RH) 1 and is therefore the whole of H.

Thus, since elements of finite rank are dense in A and using Theorem 2.4.18 in [4], we have
cl(R + Rp) = A. Thus to establish C2 we need only show that R + Rp is closed. We notice
first that, if £ is any orthogonal projection on H, then there exists a scalar constant k such that,
for all a in A, || Ea\\ ^ k \\ a ||. This is a simple consequence of the closed graph theorem and
the fact that || || majorises | |. Now let {an + bn} be a Cauchy sequence in R+R p that
converges to c in A (an e R, bn e Rp). Let £ be the orthogonal projection of H onto RH. Then
|| Ean+Ebn-Ec || ^ k \\ an+bn-c || ->0. However, for all h in H, Eanh = anh and Ebnh = 0;
therefore Ean = an and Ebn = 0. Thus || an—Ec \\ -*0. Since aneR for all n and R is closed,
we have £ceR. Now it follows that {bn} must also be Cauchy and, since bne~Rp, which is
closed, {bn} converges to an element d of Rp. Thus c = Ec+deR + R". Therefore R + Rp

is closed and C2 follows. Hence, by Lemma 1, p is a right complementer.
If A contains all operators of finite rank on H, then, from Theorem 2.8.23 in [4], A is an

annihilator algebra.
The following corollary is of more practical use in establishing that a given algebra is

right complemented.

COROLLARY. A is also right complemented if the condition on orthogonal projections on H
is replaced by the following: There is a scalar constant k such that \\ Ea\\ <k\\a \\ (ask) for
each orthogonal projection E of finite rank on H.

Proof Define Rp as before. Then it is again clear that || || majorises the operator norm
and hence that Rp is closed. Also Cl5 C'3, Q. hold with unchanged proofs as does the fact
thatc l (R+R p ) = A.

Now suppose that R is a closed right ideal of A that is the topological sum of a family
{RA:AeA} of minimal right ideals of A. We show that R + Rp is closed. For simplicity
assume that k > 1, which can clearly be done. Let {an + bn} be a Cauchy sequence in R + Rp

and let its limit be c (aneR,bneRp). Now, given any e > 0, there exists anee £ R x such that
x

|| an> e—an || < e/2A:. There exist indices A(l, « ) , . . . , A(r, n) (r = r(«, e)) of A such that
fln>1!€R^iin) + ...-t-RA(rjn). Also, since {an + bn} converges to c, there is some N such that
|| an + bn — c|| < £Jk for all n> N. Let Ene be the orthogonal projection of H onto

then Ent is of finite rank. Also ane = Eneanie and consequently
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Now let F be the orthogonal projection onto any other finite-dimensional subspace of RH
and denote by FuEn<t the orthogonal projection of H onto (FH+En,SH); notice that FuEn c

is also of finite rank. Then

, J (1)

Also, writing Qnm for £n eu£m i E , we have

\\Qn.m(an-c)\\ = \\QnJan + bn-c)\\Ze for n > N. (2)

Now, taking F to be £„,_,, in (1) and using (2), we have

II an-am || ^ || Qn,mam-am || +1| e B , m a n -a n || + || QmJflH-c) II + || &,.„(«„-<:) ||
g2e(l+A:) + 2e (n,m>N).

Thus {«„} is Cauchy and, as before, converges to an element a of R. Then {£„} is also Cauchy
and converges to b in Rp. Therefore c = a+b and so is contained in R + Rp. This completes
the proof that R + Rp is closed and therefore establishes C2. C3 now follows from Lemma 1.

We complete the proof by showing that every closed right ideal R of A is equal to the
topological sum of all the minimal right ideals that it contains. Let R be any closed right
ideal of A and {R^AeA} the family of all those minimal right ideals of A that are contained
in R. Let R' be cl(^R^). Then we have shown that Cu C2, C3 hold for R'. Let a be any

k

element of R; then we may write a = b + c, where beR', ceR'p. Also, from Lemma 2,
R'" = flRf. Since R => R', beR and thus ceR n(f)RS). Let E be any one-dimensional

projection of H onto a subspace of RH. Then EA. consists of elements of rank one whose
range is contained in RH. Therefore EX c R and so EX = Rx for some k in A. Since
ceRJ, cH c (R^H)1 = (£AH)X = (EH)1; thus cU is orthogonal to every one-dimensional
subspace of RH. Therefore, since ceR, ch = 0 for all h in H and so c = 0. Therefore
a = beR', and hence R c: R'. Since the reverse inclusion is clear, we have R = R'. This
completes the proof that A is right complemented.

4. Relationships between annihilator conditions. Let A be an infinite-dimensional primitive
Banach algebra (norm || ||) with a right complementer p. Let L = Xe be a given minimal
left ideal and let a -> Ta be the representation of A on H obtained in Theorem 1 (H is a Hilbert
space whose elements are those of L and whose norm | | is equivalent on L to || ||). Then

Ho ={yeH:x®yeTA for some, and hence all, x in H}.

Now for any y in Ho define

||.y||*=|MI, where Ta =

Notice that, if xeH, then Tx = x® e.
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LEMMA 5. H o is a Banach space with respect to the norm || ||*. On Ho, || ||* majorises
both || || and\ |.

Proof. Consider the minimal right ideal ~R={a:Ta = e®y, j e Ho} of A. The mapping
y->a, Ta — e®y clearly defines an algebraic equivalence between H o and R. Also, by the
definition of || || *, it is an isometry. However, since R is minimal, it is closed. Therefore
it is clear that Ho, with the norm || || *, is a Banach space.

For any x in Ho, (x ® x)(x ® x) = (x, x)(x ® x). Therefore

x) | (since (e, e) = 1)
| = \x\ \\*

Hence | x | ^ || x || *. Since the norms | |, || || are equivalent on H, this also proves that
|| || is majorised by || || * on Ho.

THEOREM 4. If A. is a primitive Banach algebra with a right complementer p, then the
following are equivalent:

(i) A is a left annihilator algebra;
(ii) A is a right annihilator algebra;

(iii) A is an annihilator algebra;
(iv) A is dual.

Proof, (i) =*• (ii): If A is finite-dimensional, then the result is clear, since A will certainly
be an annihilator algebra (any minimal left ideal L of A is homeomorphic to the Hilbert
space C , and, by using the argument of the last part of the proof of Theorem 1, it can be seen
that the image of A under its left regular representation on L contains all operators of finite
rank on L). The remaining case follows from Theorems 2 and 3.

(ii) => (iii): Again we have only to consider the infinite-dimensional case. We show first
that no proper closed subspace S of H o (closure with respect to || || *) can be dense in H.
Let L' = {aeA: T*H0 c S}; then L' is a closed left ideal of A. Also L' is proper; for, if
xeH0 but x ^ S , then there exists a in A such that Ta = x®x and hence a^L'. Therefore,
by hypothesis, there is a non-empty closed right ideal R of A that annihilates L'. Then, for
all h,h' in H, (TVRh,h') = (0); i.e. (TRh, Tv*h') = (0). However, for any ^ in S, h' ® se TK

and thus we have (TR h, S) = (0). If S is dense in H, we deduce from this that TR h = (0) and,
since h is arbitrary in H, TRH =(0), which is the required contradiction.

Now consider the identity mapping / from the normed linear space (Ho, || || *) onto the
normed linear space (Ho, || ||). Denote these spaces by Xj, X2 respectively. Then, since H o

is || ||-dense in H, we have just shown that, if S is any proper closed subspace of X,, then /(S)
is not dense in X2. Now suppose that T is any maximal closed subspace of X2. Then, since
|| || * majorises || ||, / " *(T) is closed. If it is not maximal closed, then it is strictly contained
in a proper closed subspace M of X^ 7(M) 3 T and, by the maximality of T, is dense in X2.
This contradiction shows that 7- 1(T) is maximal closed. Conversely, suppose that S is a
maximal closed subspace of Xj. 7(S) is not dense in X2 and so it is contained in a proper
closed subspace N of X2. 7~1(N) is closed and contains S. Therefore, by the maximality of
S, it must either be S or Xj. Since the latter is impossible, N being proper, we have / " *(N) = S
and thus 7(S) is closed. By the same argument it can be shown that 7(S) cannot be strictly
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contained in any other proper closed subspace of X2 and is therefore maximal closed. Now,
from Lemma B in [3], / is a homeomorphism. Since H o is complete with respect to || || *
and dense in H with respect to || ||, we have H o = H. Thus, by Theorem 2, A is an annihilator
algebra.

(iii) => (iv): By Lemma 3, aeaA for all a in A. Then, by the proof of Theorem 2.8.27
in [4], we see that A is dual.

The remaining implications are automatic.
We can extend much of Theorem 4 to the semi-simple case. We note first that, if A is a

semi-simple right complemented algebra, then A is the direct topological sum of its family of
minimal closed two-sided ideals, each of which is a topologically simple right complemented
algebra (Theorem 4 in [6]).

THEOREM 5. Let A be a semi-simple Banach algebra with a right complementor p. Then
the following are equivalent:

(i) A is a left annihilator algebra.
(ii) A is a right annihilator algebra.

(iii) A is an annihilator algebra.
(iv) Every closed right ideal of A is an annihilator ideal.

Proof, (i) => (iii): Let {Ix: Ae A} be the family of all minimal closed two-sided ideals of
A. Then each Ix is a topologically simple, semi-simple right complemented algebra, and,
from the proof of Theorem 8 in [1], it is also a left annihilator algebra. Then, from Theorem 4,
Ix is an annihilator algebra. Now, from Theorem 2.8.29 in [4], A is an annihilator algebra.

(ii) => (iii): This can be established by a proof analogous to the above with right annihi-
lator replacing left annihilator throughout.

(iii) => (iv): By Theorem 4, each lx is dual and, by Lemma 3, a e aA for all a in A. Then,
by the proof of Theorem 2.8.29 in [4], it can be seen that every closed right ideal of A is an
annihilator ideal.

This completes the proof, since (iv) => (i) is automatic.
As a corollary we obtain a generalisation of Theorem 9 of [6].

COROLLARY. If A satisfies the conditions of the theorem and also some left complementor
can be defined on A, then A is dual.

Proof. Immediate from the analogue for a left complemented algebra of Lemma 3 and
Theorem 2.8.29 in [4].
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