ON UNRAMIFIED SEPARABLE ABELIAN *p*-EXTENSIONS OF FUNCTION FIELDS I

HISASI MORIKAWA

1. Let k be an algebraically closed field of characteristic p > 0. Let K/k be a function field of one variable and L/K be an unramified separable abelian extension of degree p^r over K. The galois automorphisms $\varepsilon_1, \ldots, \varepsilon_{p^r}$ of L/K are naturally extended to automorphisms $\eta(\varepsilon_1), \ldots, \eta(\varepsilon_{p^r})^{(1)}$ of the jacobian variety J_L of L/k. If we take a system of p-adic coordinates on J_L , we get a representation $\{M_p(\eta(\varepsilon_{\gamma}))\}$ of the galois group G(L/K) of L/K over p-adic integers.

The aim the present note is to determine the *p*-adic integral representation $\{M_p(\eta(\varepsilon_v))\}$ for cyclic L/K (as a representation over *p*-adic integers). Use will be made of the results in our previous paper [2].

2. Let $\{H_0, H_1, \ldots, H_s\}$ be the set of all the subgroup of G(L/K) such that $G(L/K)/H_i$ $(i = 0, 1, \ldots, s)$ are cyclic, where H_0 means G(L/K). We denote by L_{H_i} the subfield of L corresponding to H_i .

We use the following notations:

 p^{ν_i} : the degree of L_{II_i} over K,

 $J_{L_{II}}$: the jacobian variety of L_{II}/k ,

 $\pi_{L'/L''}$: the trace mapping of $J_{L'}$ onto $J_{L''}$, where $L' \supset L''$,

 $B_{L'/L''}$: the irreducible component of $\pi_{L'/L''}(0)$ containing $\{0\}$,

 $\overline{A}_{L'/L''}$: the quotient abelian variety of $J_{L'}$ by $B_{L'/L''}$,

 $\alpha_{L'/L''}$: the natural homomorphism of $J_{L'}$ onto $A_{L'/L''}$,

 $\overline{\pi}_{L'/L''}$: the homomorphism of $A_{L'/L''}$ onto $J_{L''}$ such that $\overline{\pi}_{L'/L''} \alpha_{L'/L''} = \pi_{L'/L''}$,

 $\rho_{L'/L''}$: the cotrace mapping of $J_{L''}$ into $J_{L'}$,

 $\overline{B}_{L'/L''}$: the quotient abelian variety of $J_{L'}$ by $\rho_{L'/L''}(J_{L''})$,

f(n): the group consisting of all points t on f such that nt = 0, where f is an abelian variety.

Received May 8, 1958.

^{1) 2)} See 1.2 in [2].

HISASI MORIKAWA

3. When the order of $\mathcal{A}(p)$ is p^r , we say, for the sake of simplicity, that the *p*-dimension of \mathcal{A} is γ . We denote by $\gamma(\mathcal{A})$ the *p*-dimension of \mathcal{A} .

The next Safarevič's lemma is fundamental for our study:

LEMMA 1 (Šafarevič).³⁾ Let K be a function field of one variable over an algebraically closed field k and K' be a separable normal extension of p-power degree over K, where p is the characteristic of k. Let $\gamma_{\rm K}$ and $\gamma_{\rm K'}$ be respectively the number of independent unramified separable cyclic extensions of degree p over K and K'. Then we have

$$\gamma_{K'} = \begin{bmatrix} K' : K \end{bmatrix} (\gamma_K - 1) + 1$$

On the other hand, the number of independent unramified separable cyclic extensions of degree p over K equals to the p-dimension $r(J_K)$ of $J_K([2])$. Therefore we get:

LEMMA 2. If $L \supset L_{H_i} \supset L_{H_i} \supset K$, we have

(1)

$$\begin{split} \gamma(J_L) &= [L: \ L_{H_i}] \ (\gamma(J_{L_{H_i}}) - 1) + 1 = p^{r - \nu_i}(\gamma(J_{H_i}) - 1) + 1, \\ \gamma(J_{H_i}) &= [L_{H_i}: \ L_{H_j}] \ (\gamma(J_{H_j}) - 1) + 1 = p^{\nu_i - \nu_j}(\gamma(J_{H_j}) - 1) + 1. \end{split}$$

If x is a generic point of J_{H_i} over k, then $(\delta_{J_{H_i}} - \eta(\bar{\epsilon}_{H_i}))x$ is a generic point of $B_{L_{H_i}}/K$ over k, where $\delta_{J_{H_i}}$ is the identity automorphism of $J_{L_{H_i}}$ and $\eta(\bar{\epsilon}_{H_i})$ is the extension of a generator $\bar{\epsilon}_{H_i}$ of the galois group $G(L_{H_i}/K)$ of L_{H_i}/K . Therefore we may denote

$$B_{L_{H_i}}/K = (\delta_{J_{L_{H_i}}} - \eta(\overline{\epsilon}_{H_i})) \ (J_{L_{H_i}}).$$
Lemma 3. $\gamma(B_{L_{H_i}}/K) = (\gamma(J_K) - 1) \ ([L_{H_i}: K] - 1))$

$$= (\gamma(J_K) - 1) \ (p^{\vee_i} - 1)$$

Proof. $\rho_{L_{H_i}/K}(J_K)$ and $B_{L_{H_i}/K}$ generate $J_{L_{H_i}}$ and $\rho_{L_{H_i}/K}(J_K) \cap B_{L_{H_i}/K}$ is a finite group. Hence we have

$$\begin{split} \gamma(B_{L_{H_i}/K}) &= \gamma(J_{L_{H_i}}/\rho_{L_{H_i}/K}(J_K)) = \gamma(J_{L_{H_i}}) - \gamma(\rho_{L_{H_i}/K}(J_K)) \\ &= ([L_{H_i}: K] (\gamma(J_K) - 1) + 1) - \gamma(J_K) \\ &= (\gamma(J_K) - 1) ([L_{H_i}: K] - 1) = (\gamma(J_K) - 1) (p^{\vee_i} - 1). \end{split}$$

4. First we shall show that $\rho_{L/L_{H_i}}$ and $\rho_{L_{H_i}/K}$ are purely inseparable. ³⁾ See § 3 in [3].

LEMMA 4. $\rho_{L/L_{IIi}}(\rho_{L_{IIi}/K})$ is purely inseparable.

Proof. Assume that $\rho_{L/L_{H_i}^{-1}}(0)$ $(\rho_{L_{H_i}/K}^{-1}(0))$ constains a $L_{H_i}(K)$, non-zero element t. Then there exists an element f in $L(L_{H_i})$, not in such that $f^{p^{p-\nu_i}}(f^{p^{\nu_i}})$ is contained in $L_{H_i}(K)$. This contradics with the separability of $L/L_{H_i}(L_{H_i}/K)$.

LEMMA 4. If G(L/K) is cyclic, the p-addic representation $M_p(\eta(\varepsilon_v))$ is equivalent to the direct sum of $(\gamma(J_K) - 1)$ times of the regular representation and the identical representation as a representation over p-addic numbers.

Proof. We shall prove the proposition by the induction on the degree p^r of L/K. If r = 0, the proposition is clearly true. We assume that the proposition is true for the subfield L_{II} such that L/L_{II} is of degree p. Let ε be a generator of G(L/K). Then the subgroup H corresponding to L_H is $(\varepsilon^{p^{r-1}})$. Since $\eta(\varepsilon)$ $(\rho_{L/L_H}(J_{L_H})) = \rho_{L/L_H}(J_{L_H}), \ \eta(\varepsilon)$ induces an automorphism $\eta^*(\varepsilon)$ on $J_L/\rho_{L/L_H}(J_{L_H})$. On the other hand $B_{L/L_H} = (\delta_{J_L} - \eta(\varepsilon^{p^{r-1}}))$ (J_L) and $J_L/\rho_{L/L_H}(J_{L_H})$ is isogeneous with $B_{L/L_{H_i}}$ hence $\eta^{\sharp}(\varepsilon^{p^{r-1}}) \neq \delta_{J_{L/P_L/L_H}}(J_{L_H})$. By virtue of lemma 3 the *p*-dimension of B_{L/L_H} is $(p-1)(\gamma(J_{L_H})-1) = (p-1)p^{r-1}(\gamma(J_K)-1)$. Therefore, since $B_{L/L_H} = (\delta_{J_L} - \eta(\varepsilon^{p^{r-1}})) (J_L)$, we observe that the *p*-adic representation $\{M_p(\eta^*(\varepsilon^{\vee}))\}$ of $\{\eta^*(\varepsilon^{\vee})\}$ is equivalent to $(\gamma(J_K) - 1)$ -times of the faithful irreducible representation of G(L/K) over p-adic integers as a repre-This shows that $\{M_p(\eta(\varepsilon^{\vee}))\}$ is equivalent to sentation over *p*-adic numbers. the direct sum of $(\gamma(J_{\kappa}) - 1)$ -times of the regular representation and the identical representation as a representation over *p*-adic numbers.

PROPOSITION 1. The p-adic representation $\{M_p(\eta(\varepsilon_{\gamma}))\}$ of G(L/K) is equivalent to the direct sum of $(\gamma(J_K) - 1)$ -times of the regular representation and the identical representation as a representation over p-adic numbers.

Proof. Since G(L/K) is abelian, $\{M_p(\eta(\varepsilon_v))\}$ is equivalent to a direct sum of *p*-adic irreducible representations of cyclic factor groups of G(L/K). By virtue of lemma 4, $\{M_p(\eta(\varepsilon_v))\}$ contains at least $(\gamma(J_K) - 1)$ -times of the *p*-adic irreducible faithful representation of any non-trivial cyclic factor group of G(L/K). On the other hand the degree $p^r(\gamma(J_K) - 1) + 1$ of $\{M_p(\eta(\varepsilon_v))\}$ is equal to that of the direct sum of $(\gamma(J_K) - 1)$ -times of the regular representation and the identical representation. Moreover the latter sum contains exactly $(\gamma(J_K) - 1)$ -times of *p*-adic irreducible faithful representation of any non-trivial cyclic factor group of G(L/K) and $\gamma(J_K)$ -times of the identical representation. This shows that $\{M_p(\gamma(\varepsilon_v))\}$ is equivalent to the sum of $(\gamma(J_K) - 1)$ -times of regular representation and the identical representation as a representation over *p*-adic numbers.

PROPOSITION 2.
$$\rho_{LH_i/K}(J_K) \cap B_{LH_i/K} = \rho_{LH_i/K} \pi_{LH_i/K}(J_{LH_i}(p^{\vee_i}))$$
$$= (\delta_{J_{B_{LH_i}/K}} - \eta_{B_{LH_i/K}}(\overline{\varepsilon}_{H_i}))^{-1}(0),$$

where $\eta_{B_{L_{H_i}/K}}(\bar{\epsilon}_{H_i})$ is the restriction of $\eta(\bar{\epsilon}_{H_i})$ on $B_{L_{H_i}/H}$.

Proof. Since $\pi_{LH_i/K} \rho_{LH_i/K} = \overline{\pi}_{LH_i/K} \alpha_{LH_i/K} \rho_{LH_i/K} = p^{\vee_i} \delta_{JK}$, we have $\rho_{LH_i/K} \overline{\pi}_{LH_i/K}$ $(\overline{A}_{LH_i/K}(p^{\vee_i})) = \alpha_{LH_i/K}^{-1}(0) \cap \rho_{LH_i/K}(J_K) = B_{LH_i/K} \cap \rho_{LH_i/K}(J_K)$. On the other hand $\pi_{LH_i/K}(J_{LH_i}(p^{\vee_i})) = \overline{\pi}_{LH_i/K}(\overline{A}_{LH_i/K}(p^{\vee_i}))$, hence we have $\rho_{LH_i/K}(J_K) \cap B_{LH_i/K} = \rho_{LH_i/K}$ $\pi_{LH_i/K}(J_{LH_i}(p^{\vee_i}))$.

From $(\delta_{J_{LH_i}} - \eta(\bar{\epsilon}_{H_i}))\rho_{L_{H_i}/K}(J_K) = 0$, we observe that $\rho_{L_{H_i}/K}(J_K) \cap B_{L_{H_i}/K}(\bar{\epsilon}_{K_i}))^{-1}(0)$. Therefore it is sufficient to prove that the order of $\rho_{L_{H_i}/K}(J_K) \cap B_{L_{H_i}/K}$ equals to that of $(\epsilon_{R_{LH_i}/K} - \eta_{B_{LH_i}/K}(\bar{\epsilon}_{H_i}))^{-1}(0)$. Since $J_K(p^{\nu_i})/\rho_{L_{H_i}/K}J_{L_{H_i}}(p^{\nu_i}) \cong G(L_{H_i}/K)$ and $\rho_{L_{H_i}/K}$ is purely inseparable, the order of $\rho_{L_{H_i}/K}(J_K) \cap B_{L_{H_i}/K}$ is $p^{(\gamma(J_K)-1)\nu_i}$. On the other hand, by virtue of proposition 1, the *p*-adic representation $\{M_p(\eta_{B_{LH_i}/K}(\bar{\epsilon}_{H_i}))\}$ of $G(L_{H_i}/K)$ is equivalent to $(\gamma(J_K) - 1)$ -times of the sum of all the non-trivial irreducible *p*-adic representations of $G(L_{H_i}/K)$ as a representation over *p*-adic numbers. This shows that the order of $(\delta_{J_{B_{LH_i}/K}} - \eta_{B_{LH_i}/K}(\bar{\epsilon}_{H_i}))^{-1}(0)$ is $p^{\nu_i(\gamma(J_K)-1)}$. We have proved proposition 2.

5. Using proposition 2, we shall determine the structure of J_L .

PROPOSITION 3. Let H_j be the subgroup of H_i such that H_i/H_j is a cyclic group of order p. Then $\rho_{L/L_j}(B_{L_j/L_i})$ is the invariant abelian subvariety for $\{\eta(\varepsilon_v)\}$ on J_L such that the p-adic representation $\{M_p^*(\eta(\varepsilon_v))\}$ of $\{\eta(\varepsilon_v)\}$ on $\rho_{L/L_{H_j}}(B_{L_{H_j/L_{H_i}}})$ is equivalent to $(\gamma(J_K) - 1)$ -times of the p-adic irreducible. representation $\{M_p^{H_i}(\eta(\varepsilon_v))\}$ of G(L/K) whose kernel is H_j , as a representation over p-adic numbers.

Proof. By virtue of proposition 1, the multiplicity of $\{M_p^{H_i}(\eta(\varepsilon_{\gamma}))\}$ in

 $\rho_{L/L_{H_i}}(J_{L_{H_i}})$ is $(\gamma(J_K) - 1)$ and that in $\rho_{L/L_{H_i}}(J_{L_{H_i}})$ is zero. This proves the proposition.

We denote by B_{H_j} the above $\rho_{L/L_{H_j}}(B_{L_{H_j}/L_{H_i}})$. Namely B_{H_j} means the invariant subabelian variety on J_L for $\{\eta(\varepsilon^{\vee})\}$ such that the *p*-adic representation of $\{\eta(\varepsilon_{\vee})\}$ on B_{H_j} is equivalent to $(\gamma(J_K) - 1)$ -times of the *p*-adic irreducible representation of G(L/K) whose kernel is H_j , as a representation over *p*-adic numbers. Then we get

THEOREM 1. J_L is isogeneous with $B_{H_1} + \ldots + B_{H_s} + \rho_{L/K}(J_K)$ and the subvarieties B_{H_1}, \ldots, B_{H_s} and $\rho_{L/K}(J_K)$ satisfy the following conditions:

(1)
$$\rho_{L/K}(J_K) \cap B_{H_2} = \rho_{L/K} \pi_{L_{H_1}/K}(J_{H_1}(\not p)),$$

then

$$B_{H_i} \cap B_{H_j} = \rho_{L/L_{H_l}}(\pi_{L_{H_i}/L_{H_l}}(J_{L_{H_i}}(p)) \cap \pi_{L_{H_j}/L_{H_l}}(J_{L_{H_j}}(p))$$
$$= \rho_{L/L_{H_i}}(J_{L_{H_i}}) \cap B_{H_j} \cap B_{H_j}.$$

Proof. The first assertion has been proved in proposition 1. Let H'_i be the subgroup of G(L/K) such that H'_i/H_i is a cyclic group of order p. Then, by virtue of theorem 2 in [2], we observe that $J_K(p^{\vee_i-1})/\pi_{LH_i'/K}(J_{LH_i'}(p^{\vee_i-1}))$ $\cong G(L/K)/H'_i$ and $J_K(p^{\vee_i})/\pi_{LH_i/K}(J_{LH_i}(p^{\vee_i})) \cong G(L/K)/H_i$, hence $J_K(p)/\pi_{LH_i'/K}(J_{LH_i'}(p^{\vee_i-1}))$ of $(J_{LH_i'}(p))$ and $J_K(p)/\pi_{LH_i/K}(J_{LH_i}(p))$ are isomorphic. On the other hand $\pi_{LH_i'/K}(J_{LH_i}(p)) \subseteq \pi_{LH_i'/K}(J_{LH_i'}(p))$, therefore we have $\pi_{LH_i'/K}J_{LH_i'}(p) = \pi_{LH_i/K}(J_{LH_i}(p))$ for $L_{H_i'} \neq K$. Moreover, since $[J_{LH_i'}(p) : \pi_{LH_i/LH_i}(J_{LH_i}(p))] = p$ and $\rho_{LH_i'/K} \pi_{LH_i/K}(J_{LH_i}(p)) = \rho_{LH_i'/K}(J_{LH_i}(p))$.

On the other hand, by virtue of proposition 2 and the pure inseparability of $\rho_{L/K}$, we have

$$\rho_{L/K}(J_{K}) \cap B_{H_{i}} = \rho_{L/K}(J_{K}) \cap \rho_{L/LH_{i}}(B_{LH_{i}/LH_{i}'})$$

$$= \rho_{L/LH_{i}}(\rho_{LH_{i}/K}(J_{K}) \cap (\rho_{LH_{i}/LH_{i}'}(J_{LH_{i}}) \cap B_{LH_{i}/LH_{i}'}))$$

$$= \rho_{L/LH_{i}}(\rho_{LH_{i}/K}(J_{K}) \cap \rho_{LH_{i}/LH_{i}'}\pi_{LH_{i}/LH_{i}'}(J_{LH_{i}}(\not p))$$

$$= \rho_{L/LH_{i}'}(\rho_{LH_{i}/K}(J_{K}) \cap \pi_{LH_{i}/LH_{i}'}(J_{LH_{i}}(\not p))),$$

This proves (1).

By virtue of (1) we have

$$\rho_{L'L\Pi_i}(J_{L\Pi_i}) \cap B_{\Pi_j} = \rho_{L/L\Pi_i} \pi_{L\Pi_i \frown \Pi_j}(J_{L\Pi_i \frown \Pi_j}(p))$$

and

$$\rho_{L/L_{H_j}}(J_{L_{H_j}}) \cap B_{H_i} = \rho_{L/L_{H_j}} \pi_{L_{H_i} \cap H_j}(J_{L_{H_i} \cap H_j}(p))$$

On the other hand $\rho_{L/L_{H_i}}(J_{L_{H_i}}) \cap \rho_{L'L_{H_j}}(J_{L_{H_j}}) \subset \rho_{L'L_{H_i} \cap L_{H_j}}(J_{L_{H_i} \cap L_{H_j}})$ hence

$$B_{H_i} \cap B_{H_j} = \rho_{L/L_{H_i}} \pi_{L_{H_i} \cap H_j/L_{H_i}} (J_{L_{H_i} \cap H_j}(p))$$

$$\cap \rho_{L/L_{H_j}} \pi_{L_{H_i} \cap H_j/L_{H_j}} (J_{L_{H_i} \cap H_j}(p)) \subset \rho_{L/L_{H_i} \cap L_{H_j}} (J_{L_{H_i} \cap L_{H_j}}).$$

This shows that

$$B_{H_i} \cap B_{H_j} = B_{H_i} \cap B_{H_j} \cap \rho_{L/L_{H_i} \cap L_{H_j}}(J_{L_{H_i} \cap L_{H_j}}(p)).$$

Therefore, if $L_{H_i} \cap L_{D_i} = L_{H_i}$, we have

$$B_{H_{i}} \cap B_{H_{j}} = (\rho_{L/L_{H_{l}}}(J_{L_{H_{l}}}) \cap B_{H_{i}}) \cap (\rho_{L/L_{H_{l}}}(J_{L_{H_{l}}}) \cap B_{H_{j}})$$

= $\rho_{L/L_{H_{l}}}(\pi_{L_{H_{i}}/L_{H_{l}}}(J_{L_{H_{i}}}(p)) \cap \rho_{L_{H_{i}}/L_{H_{l}}}(J_{L_{H_{i}}}(p))).$

6. In this section we shall study some p-adic integral representations of cyclic groups.

LEMMA 5. Let $\{R(\varepsilon)\}$ be a regular representation and $\{M(\varepsilon)\}$ be any representation of a cyclic group (ε) . Then a p-adic integral representation

$$\left\{ \begin{pmatrix} M(\varepsilon^{\mathbf{v}}) & 0 \\ A(\varepsilon^{\mathbf{v}}) & R(\varepsilon^{\mathbf{v}}) \end{pmatrix}
ight\}$$

is equivalent to

$$\left\{ \begin{pmatrix} M(\varepsilon^{\vee}) & 0 \\ 0 & R(\varepsilon^{\vee}) \end{pmatrix} \right\}$$

as a p-adic integral representation.

Since the group ring $Z_p[G]$ over *p*-adic integers is projective as a left G-module, this lemma is clearly time.

LEMMA 6. Let $G = (\varepsilon)$ be a cyclic group of order p^r and G_{r-1} be the subgroup $(\varepsilon^{p^{r-1}})$. Let $\{N(\varepsilon^{p^{r-1}})^{\vee}\}$ be the non-trivial irreducible p integral representation of G_{r-1} . Let $\{\hat{M}(\varepsilon)^{\vee}\}$ be the representation of G induced by

 $\{N(\varepsilon^{p^{r-1}})^{\vee}\}$ and $\{R_{r-1}(\overline{\varepsilon})^{\vee}\}$ be the regular representation of G/G_{r-1} . Then any *p*-adic integral representation of the following type

$$\left\{ \begin{pmatrix} E_n \times \hat{M}(\varepsilon) & 0\\ J(\varepsilon) & E_n \times R_{r-1}(\overline{\varepsilon}) \end{pmatrix}^{\vee} \right\}$$

is equivalent to

$$\left\{ \begin{pmatrix} E_n \times \hat{M}(\varepsilon) & 0\\ \mathfrak{a} & 0 & E_n \times R_{r-1}(\overline{\varepsilon}) \end{pmatrix}^{\flat} \right\}$$

as a representation over p-adic integers, where $\overline{\epsilon}$ is the class of ϵ in G/G_{r-1} and α is a p-adic integral $(np^{r-1}, n(p-1))$ -matrix.

Proof. Since $\{\hat{M}(\varepsilon)^{\nu}\}$ is the induced representation of G by $\{N(\varepsilon^{p^{\nu-1}})^{\nu}\}$, we have

$$E_n \times \hat{M}(\varepsilon) = \begin{pmatrix} 0 & E_{n(p-1)} & 0 \dots 0 \\ 0 & \bigcirc & E_{n(p-1)} \\ 0 & & E_{n(p-1)} \\ E_n \times N & \bigcirc \dots \dots 0 \end{pmatrix},$$

where $N = N(\varepsilon^{p^{r-1}})$. We put

$$\begin{pmatrix} E_n \times \hat{M}(\varepsilon) \\ A(\varepsilon) \\ E_n \times R(\overline{\varepsilon}) \end{pmatrix} = \begin{pmatrix} 0 & E_{n(p-1)} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ E_n \times N & E_{n(p-1)} \\ \hline E_n \times N & 0 \\ \hline A_{00} & \cdots & A_{0, p^{p-1}-1} & 0 & E_n \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots \\ A_{p^{p-1}-1, 0} & \cdots & A_{p^{p-1}-1, p^{p-1}-1} & E_n & 0 \end{pmatrix}.$$

We choose p-adic integral matrices X_{ij} such that

$$X_{i,0} = 0, X_{i+1,1} = A_{i,1}, X_{i+1,j} = A_{i,j} - X_{i,j-1}$$

 $(i = 0, 1, \ldots, p^{r-1} - 1; j = 1, 2, \ldots, p^{r-1} - 1)$, where $X_{p^{r-1}, j} = X_{0, j}$ and $X_{i, -1} = X_{i, p^{r-1}-1}$. Then we have

$$\begin{pmatrix} E_{np^{r-1}(p-1)} \\ X_{01} \cdots \cdots \cdots X_{0, p^{r-1}-1} \\ \vdots \\ X_{p^{r-r-1, 0}} \cdots X_{p^{r-1}-1, p^{r-1}-1} \end{pmatrix}^{-1} \begin{pmatrix} E_n \times \hat{M}(\varepsilon) \\ \vdots \\ I(\varepsilon) \end{pmatrix} = E_n \times R_{r-1}(\overline{\varepsilon}) \end{pmatrix}$$

$$\times \begin{pmatrix} E_{np^{r-1}(p-1)} \\ X_{01} \cdots \cdots X_{0p^{r-1-1}} \\ \vdots \\ \vdots \\ X_{p^{r-1-1}, 0} \cdots X_{p^{r-1-1}, p^{r-1-1}} \end{pmatrix} = \begin{pmatrix} E_n \times \hat{M}(\varepsilon) \\ a_0 \\ a_1 \\ \vdots \\ 0 \\ \vdots \\ a_{p^{r-1-1}} \\ a_{p^{r-1-1}} \end{pmatrix},$$

where

$$a_i = A_{i,0} + X_{i+1,0} (E_n \times N - E_{n(p-1)}).$$

This proves the lemma.

LEMMA 7. In the notations in lemma 6, let

(*)
$$\left\{ \begin{pmatrix} E_n \times \hat{M}(\varepsilon) \\ \Lambda'(\varepsilon) & R_{r-1}(\overline{\varepsilon}) \end{pmatrix}^{\nu} \right\}$$

and

(**)
$$\left\{ \begin{pmatrix} E_n \times \hat{M}(\varepsilon) \\ \Lambda''(\varepsilon) \end{pmatrix} | E_n \times R_{r-1}(\overline{\varepsilon}) \end{pmatrix}^{\vee} \right\}$$

be p-adic integral representations of (ε) whose restrictions on the subgroup $(\varepsilon^{p^{r-1}})$ are equivalent (as p-adic integral representation). Then the representations (*) and (**) are equivalent (as p-adic integral representations).

Proof. By virtue of lemma 6, we may assume that

 $\Lambda'(\varepsilon) = (\mathfrak{a}', 0)$ and $\Lambda''(\varepsilon) = (\mathfrak{a}'', 0)$

with *p*-adic integral $(np^{r-1}, n(p-1))$ -matrices a' and a''. From the assumption of the lemma, we have

$$\Lambda^{\prime\prime}(\varepsilon^{p^{r-1}}) = \Lambda^{\prime}(\varepsilon^{p^{r-1}}) + E_n \times R_{r-1}(\overline{\varepsilon}^{p^{r-1}}) X - X \cdot E_n \times \hat{M}(\varepsilon^{p^{r-1}})$$
$$= \Lambda^{\prime}(\varepsilon^{p^{r-1}}) + X - X \begin{pmatrix} E_n \times N(\varepsilon^{p^{r-1}}) \\ & \ddots \\ & & \vdots \\ & & E_n \times N(\varepsilon^{p^{r-1}}) \end{pmatrix},$$

with a p-adic integral matrix X.

On the other hand we observe that

$$E_n \times \hat{M}(\varepsilon) = \begin{pmatrix} 0 & E_{n(p-1)} & 0 \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \ddots & E_{n(p-1)} \\ E_n \times N(\varepsilon^{p^{r-1}}) & 0 \end{pmatrix}$$

and

$$A^{\prime\prime\prime}(\varepsilon^{p^{r-1}}) - A^{\prime\prime}(\varepsilon^{p^{r-1}}) = \sum_{\nu=0}^{p^{r-1}-1} E_n \times R_{r-1}(\overline{\varepsilon})^{p^{r-1}-1-\nu} (A^{\prime\prime\prime}(\varepsilon) - A^{\prime}(\varepsilon)) E_n \times \hat{M}(\varepsilon)^{\nu}.$$

Therefore, putting

$$A''(\varepsilon^{p'^{-1}}) - A'(\varepsilon^{p'^{-1}}) = (P, Q),$$

we have

$$P = E_n \times R(\overline{\varepsilon})^{p^{n-1}-1} (\mathfrak{a}'' - \mathfrak{a}').$$

On the other hand, if we put

$$X = (\underbrace{Y,}^{n(p-1)}, \underbrace{Y,}^{n(p^{r-1}-1)(p-1)}, Z),$$

we have

$$P = Y(E_{n(p-1)} - E_n \times N(\varepsilon^{p^{r-1}})).$$

This shows that

$$\mathfrak{a}'' - \mathfrak{a}' = E_n \times R_{r-1}(\overline{\varepsilon})^{1-p^{r-1}} Y(E_{n(p-1)} - E_n \times N(\varepsilon^{p^{r-1}}))$$
$$= E_n \times R_{r-1}(\overline{\varepsilon}) Y(E_{n(p-1)} - E_n \times N(\varepsilon^{p^{r-1}}))$$

Hence, putting $Y_1 = E_n \times R_{r-1}(\overline{\varepsilon})Y$, we have

$$\begin{pmatrix} \underline{E_n \times \hat{M}(\varepsilon)} & | \\ \underline{\Lambda''(\varepsilon)} & | \underline{E_n \times R_{r-1}(\overline{\varepsilon})} \end{pmatrix} = \left(\frac{\underline{E_{n(p-1)p^{r-1}}}}{Y_1 \ 0} & | \underline{E_{np^{r-1}}} \right)^{-1} \\ \times \left(\frac{\underline{E_n \times \hat{M}(\varepsilon)}}{\underline{\Lambda'(\varepsilon)}} & | \underline{E_n \times R_{r-1}(\overline{\varepsilon})} \right) \ \left(\frac{\underline{E_{n(p-1)p^{r-1}}}}{Y_1 \ 0} & | \underline{E_{np^{r-1}}} \right).$$

7. In this section, using proposition 2 and lemma 7, we shall prove the main theorem.

LEMMA 8. If G(L/K) is a cyclic group of order p, the p-adic representation $\{M_p(\eta(\varepsilon^{\nu}))\}$ of the galois group is equivalent to the direct sum of $(\gamma(J_K) - 1)$ -times of the regular representation and the identical representation as a representation over p-adic integers.

Proof. First we notice that there exist only two inequivalent *p*-adic integral representations of G(L/K)

$$\left\{ \begin{pmatrix} 1 & & \\ 1 & & \\ 0 & & \\ \cdot & N(\varepsilon) \\ \cdot & \\ 0 & & \end{pmatrix}^{\nu} \right\} \text{ and } \left\{ \begin{pmatrix} 1 & & \\ & N(\varepsilon) \end{pmatrix}^{\nu} \right\}$$

which have the same irreducible components 1 and $\{N(\varepsilon)^{\vee}\}$, where $\{N(\varepsilon)^{\vee}\}$ is the non-trivial irreducible representation.⁴¹

By virtue of proposition 2, we observe that

$$\rho_{L/K}(J_K) \cap B_{L/K} = (\delta_{B_{L/K}} - \gamma(\varepsilon)_{B_{L/K}})^{-1}(0).$$

This shows that $\{M_p(\eta(\varepsilon))^{\vee}\}$ contains no

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & N(\varepsilon) \end{pmatrix}^{\vee} \right\}$$

as a component. Namely there exists a system of p-adic coordinates on J_L such that

$$M_p(\eta(\varepsilon)) = \begin{pmatrix} R_1(\varepsilon) & & \\ & \ddots & \\ & & \ddots & \\ & & & R_1(\varepsilon) \end{pmatrix} \gamma(J_K) - 1 \\ & & & 1 \end{pmatrix},$$

where $(R_1(\varepsilon)^{\nu})$ is the regular representation of G(L/K). By virtue of lemma 5, there exists a system of *p*-adic coordinates on J_L such that

$$M_p(\eta(\varepsilon)) = \begin{pmatrix} R_1(\varepsilon) & & \\ & \ddots & \\ & & R_1(\varepsilon) \end{pmatrix} \gamma(J_{\mathcal{K}}) - 1 \\ & & R_1(\varepsilon) \end{pmatrix} 1$$

^{4) 5)} Since $[Q_p(\nu_{\sqrt{1}}^r): Q_p] = p^{r-1}(p-1)$ and the class number of $Q_p(\nu_{\sqrt{1}}^r)$ is one, there exists only one faithful *p*-adic integral irreducible representation. Moreover $G = (\varepsilon)$ is cyclic, hence a *p*-adic integral representation

$$\left\{\begin{pmatrix} \hat{M}(\varepsilon) & \\ \Delta(\varepsilon) & \hat{M}(\varepsilon) \end{pmatrix}^{\vee}\right\}$$

with an irreducible representation $\{\hat{M}(\varepsilon)^{\vee}\}$ is equivalent to

$$\left\{ \begin{pmatrix} \hat{M}(\varepsilon) & \\ & \hat{M}(\varepsilon) \end{pmatrix}
ight\}$$

as a representation over p-adic integers. See § 4, 6 in [1].

THEOREM 2. If G(L/K) is cyclic, the p-adic representation $\{M_p(\eta(z^{\flat}))\}$ of the galois group G(L/K) is equivalent to the direct sum of $(\gamma(J_K) - 1)$ -times of the regular representation and the identical representation as a representation over p-adic integers.

Proof. Let ε be a generator of G(L/K) and H_i be the subgroup (ε^{p^i}) $(i = 1, 2, \ldots, r)$. We shall prove the theorem by the induction on $G(L/K)/H_i$. If i = 1, by virtue of lemma 8, the theorem is true. We assume the theorem on $G(L/L_{D_{p-1}})$. Then, since G has only one faithful irreducible *p*-adic integral representation $\{\hat{M}(\varepsilon)^{\vee}\}$ and any *p*-adic integral representation of the following type

$$\left\{ \begin{pmatrix} \hat{M}(\varepsilon) & 0\\ A(\varepsilon) & \hat{M}(\varepsilon) \end{pmatrix}^{\vee} \right\}$$

is equivalent to

$$ig\{ egin{pmatrix} \hat{M}(arepsilon) & & & \ & & \hat{M}(arepsilon) \end{pmatrix}^{arphi}ig\},^{(5)}$$

there exists a system of *p*-adic coordinates on J_I such that

$$M_{p}(\eta(\varepsilon)) = \begin{pmatrix} E_{\tau(K)-1} \times \hat{M}(\varepsilon) \\ A(\varepsilon) \\ b(\varepsilon) \\ \end{pmatrix} \begin{bmatrix} E_{\tau(K)-1} \times R_{\ell-1}(\varepsilon) \\ 0 \end{bmatrix}$$

where $\{\hat{M}(\varepsilon)^{\vee}\}$ is the representation of G(L/K) induced by the non-trivial irreducible representation $N(\varepsilon^{p^{r-1}})$ of $(\varepsilon^{p^{r-1}})$ and $\{R_{r-1}(\overline{\varepsilon})^{\vee}\}$ is the regular representation of $G(L/K)/H_{r-1}$.

On the other hand, by virtue of lemma 8,

$$(*) \qquad \{M_p(\eta(z^{p^{p^{n-1}}})^{\vee})\}$$

is equivalent to the direct sum of $(\gamma(J_K) - 1)p^{r-1}$ -times of the regular representation of $(\varepsilon^{p^{r-1}})$ and the identical representation. The latter representation is equivalent to the restriction on $(\varepsilon^{p^{r-1}})$ of the direct sum of $(\gamma(J_K) - 1)$ -times of the regular representation of G(L/K) and the identical representation. Therefor, by virtue of lemma 5, 7, we have a system of p-adic coordinates on J_L such that

$$M_{p}(\eta(\varepsilon)) = \begin{pmatrix} R_{r}(\varepsilon) & & \\ & \ddots & \\ & & R_{r}(\varepsilon) \end{pmatrix} \gamma(J_{K}) - 1 \\ & & R_{r}(\varepsilon) \end{pmatrix},$$

where $\{R_r(\varepsilon)^{\nu}\}$ is the regular representation of G(L/K).

References

- [1] Diederichsen, Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Abh. Math. Hamb. Sem. Bd. 13 (1940).
- [2] H. Morikawa, Generalized jacobian varieties and separable abelian extensions of function fields, Nagoya Math. Jour. vol. 12 (1957).
- [3] Šafarević, On p-extensions, Math. Sbornik N.S. 20 (62), (1947).