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Multi-Sided Braid Type Subfactors, II

Juliana Erlijman

Abstract. We show that the multi-sided inclusion R⊗l ⊂ R of braid-type subfactors of the hyperfinite

II1 factor R, introduced in Multi-sided braid type subfactors [E3], contains a sequence of intermediate

subfactors: R⊗l ⊂ R⊗l−1 ⊂ · · · ⊂ R⊗2 ⊂ R. That is, every t-sided subfactor is an intermediate

subfactor for the inclusion R⊗l ⊂ R, for 2 ≤ t ≤ l. Moreover, we also show that if t > m then

R⊗t ⊂ R⊗m is conjugate to R⊗t−m+1 ⊂ R. Thus, if the braid representation considered is associated

to one of the classical Lie algebras then the asymptotic inclusions for the Jones-Wenzl subfactors are

intermediate subfactors.

1 Introduction

In this paper we show that the braid type subfactors of the hyperfinite II1 factor R

constructed in [E3]—called multi-sided or l-sided subfactors—contain a sequence of
intermediate subfactors. This sequence of intermediate subfactors has the property

that the inclusion of any two consecutive subfactors is conjugate to the two-sided
pair, and that the inclusion of any t consecutive subfactors is conjugate to the t-sided
pair.

The result says in particular that the two-sided inclusion has a special role among

the multi-sided pairs, since any multi-sided inclusion can be obtained as a composi-
tion of inclusions all conjugate to the two-sided inclusion. In the case where the braid
representations—used in the construction of the subfactors—come from Lie repre-
sentation theory of classical type, the two-sided inclusion is also special, because it

has been shown (see [E2], [G]) that they are conjugate to the asymptotic inclusions
for the one-sided or Jones-Wenzl subfactors (see [W1], [W2]). This brings up the
question of finding out what the asymptotic inclusion is for any multi-sided inclu-
sion, and of whether the asymptotic inclusion of the asymptotic inclusion is again

conjugate to a multi-sided subfactor.

The l-sided subfactors were defined in [E3] as inclusions R⊗l ⊂ R—with R the
hyperfinite II1 factor—where the embedding is defined from finite dimensional in-
clusions of the form A⊗l

n ⊂ûn
Aln, where ûn is the conjugation by a special unitary in

un ∈ Aln, and the An’s are finite dimensional braid group quotients. The l-sided sub-
factors generalize the construction of the already known two-sided subfactors [Ch],
[E1]. As an interesting observation, in the examples associated to Lie type A, if β1

is the index value for an l-sided subfactor (computed in [E3]) and if β2 is that for

the multiple interval subfactor corresponding to 2l intervals on S1 for Wassermann’s
SU(n) construction, [Wa] (computed in [X]), then the relation β1 =

1
nl−1 β2 holds.
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(In the previous version of this article and in [E3] the constant 1
nl−1 was mistakenly

left out, as pointed out by the referee.)

The paper is organised as follows:

2. Preliminaries.

2.1. Basic definitions, properties and assumptions of the braid groups and their
representations.

2.2. The construction of the multi-sided subfactors.

3. Intermediate inclusions.
4. References.

Acknowledgements I would like to thank Hans Wenzl for useful discussions.

2 Preliminaries

2.1 Basic Definitions, Properties and Assumptions of the Braid Groups and Their
Representations

Recall that the braid group Bn on n strands is defined by generators σ1, . . . , σn−1 and
the braid relations

(B1) σi+1σiσi+1 = σiσi+1σi , for i = 1, . . . , n − 2,

(B2) σiσ j = σ jσi , for |i − j| ≥ 2.

A geometric picture of the standard generator σi is given by the following diagram:

. . . i i + 1 . . .

. . .
i i + 1

. . .

and multiplication is given by concatenation of such diagrams (see [Bi] for more

details). Bn is embedded into Bn+1 by adding one vertical strand at the end of each
generator of Bn. Denote

⋃

Bn by B∞.
We state below some well known basic relations for elements in Bn that will be

needed in the next sections. If 1 ≤ i, j ≤ n − 1, we denote by

(σi · · ·σ j)

the element of Bn given by the increasing product σiσi+1 · · ·σ j if i < j, or by the
decreasing product σiσi−1 · · ·σ j if i > j.

The algebraic tensor product CBn ⊗CBm can be seen as a subalgebra of CBn+m via
the embedding defined by juxtaposition. For example, if n = 3, m = 4

σ1 ⊗ σ3 7−→ σ1 ⊗ σ3 = .
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In other words, the embedding CBn ⊗ CBm ↪→ CBn+m is defined by

β ⊗ γ 7−→ β ⊗ γ = β shiftnγ,

where shiftn σi = σi+n. Thus, the embedding CB⊗s
n ↪→ CBsn is given by

β1 ⊗ · · · ⊗ βs 7−→ β1 ⊗ · · · ⊗ βs = β1 shiftn(β2) · · · shiftn(s−1)(βn).

We shall work with representations ρ of CB∞ that satisfy the following properties

as in [E1]:

(i) ρ is locally finite dimensional: For every n ∈ N, ρ(CBn) is a finite dimensional
C∗-algebra, so that we can write ρ(CBn) '

⊕

λ∈Λn
Maλ

(C), for some index set
Λn. Set An = ρ(CBn).

(ii) ρ is unitary: That is, gi = ρ(σi) is a unitary for all i.

(iii) The ascending sequence of finite dimensional C∗-algebras (An) =
(

ρ(CBn)
)

is
periodic, in the sense of Wenzl, [W1, Lemma 1.4].

(iv) Any element x ∈ An+1 can be written as a sum of elements ag±1
n b + c with

a, b, c ∈ An.

(v) The unique positive faithful normalised trace tr on
⋃

An has the Markov prop-
erty:

tr(g±1
n x) = η(±) tr(x) for all x ∈ An, for all n,

where η(+), η(−) are fixed complex numbers. Given condition (iv), the Markov

condition implies the multiplicativity property for the trace:

tr(xy) = tr(x) tr(y),

if x and y are in subalgebras generated by disjoint subsets of generators g±1
i .

(vi) Existence of a projection p with the contraction property: p ∈ Ak has the con-

traction property if for all n ∈ N,

pAn+k p ' pAk+1,n+k ' Ak+1,n+k,

where As,t is the algebra generated by {1, g±1
s , . . . , g±1

t−1}. Note that since we
already have the multiplicative property of the trace by (iv) and (v), the second
isomorphism above is always true.

2.2 The Construction of the Multi-Sided Subfactors

The construction is done in detail in [E3, Section 3], where these subfactors are in-

troduced. The inclusions are generated by pairs of ascending sequences of finite di-
mensional C∗ algebras (Al

n ⊂ Aln)n where l ≥ 2 is fixed and

(i) An is an n-braid quotient as in the preliminaries (i),
(ii) Al

n = ul
n(A⊗l

n )ul
n

∗
for a unitary ul

n ∈ Anl,
(iii) (Al

n)n ⊂ (Aln)n is periodic and has the commuting square property as in [W1].
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Having the conditions (i)–(iii) as above allows us to define an inclusion of sub-

factors of the hyperfinite II1 factor R by taking
⋃

n Al
n ⊂

⋃

n Aln, where we are taking
the weak closure with respect to the GNS representation with respect to the unique
positive trace on the unions.

These unitaries u(l)
n are images of braids γ(l)

n ∈ Bln defined by

γ(l)
n = Φ

(l)
1

−1
Φ

(l)
2

−1
· · ·Φ(l)

n−1

−1
,

where Φ
(l)
t = (σ(l−1)(t+1) · · ·σl(t+1)−2)(σ(l−2)(t+1) · · ·σl(t+1)−3) · · · (σt+1 · · ·σlt ). (No-

tice that γn+1 = γnΦ
−1
n for every n.) See below the geometric illustrations for some

of these braids when l = 4.

γ(4)
2 = Φ

(4)
1

−1
=

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

γ(4)
3 = γ(4)

2 Φ
(4)
2

−1
=

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

γ
(4)
4 = γ

(4)
3 Φ

(4)
3

−1
=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

As a map from B⊗l
n into Bln, the conjugation Ψn by the braid γ(l)

n can be seen

geometrically in a simple way, since conjugating by (Φ(l)
t )−1 pulls the t + 1-st strand

in the j-th tensor factor of B⊗l
n to the strand in Bln labeled by lt + j. Below we

include a picture of how conjugation by γ(l)
n , Ψn, acts on each generator of B⊗l

n : For

1 ≤ i ≤ n − 1 and 1 ≤ j ≤ l,

(1 ⊗ · · · ⊗ σi
j-th position

⊗ · · · ⊗ 1) 7→

1

j

l

1-st row

li

l(i − 1) + j

i-th row

l(i + 1)

li + j

i + 1-st row

ln

n-th row

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
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Note that we are arranging the ln strands in n rows with l strands each, so that
Ψn(1 ⊗ · · · ⊗ σi

j-th position
⊗ · · · ⊗ 1) can be seen as a crossover between the j-th dots

belonging to the i-th and i + 1-st rows.

3 Intermediate Inclusions

Theorem 3 in this section is technical, and the main result of the article will follow as

a corollary.

Proposition 1 The two-sided inclusion R⊗2 ⊂ R is stable, that is, R⊗2 ⊗ R ⊂ R ⊗ R is

conjugate to R⊗2 ⊂ R, with respect to the embedding u(2) ⊗ idR, where u(2)
= lim

−→
û(2)

n

is the two-sided embedding.

Proof There is a necessary and sufficient condition for stableness due to Bisch and
McDuff: An inclusion N ⊂ M of II1 factors is stable if and only if there exist two non-
trivial non-commuting central sequences for N ⊂ M. In [E2, Section 3 Lemma 6] we

have shown that the two-sided inclusions coming from representations of the braid
group of type A have the Bisch-McDuff property (see [B]). This can be shown as
well for the general two-sided inclusions defined from braid representations that just
satisfy the properties listed in the preliminaries.

Let us recall that a sequence (xn) in a II1 factor M is central if for every x ∈ M,
‖[x, xn]‖2 → 0, where ‖.‖2 is the trace norm. A sequence (xn) is trivial if there exists

a complex sequence (λn) such that ‖xn − λn‖2 → 0. Finally, two sequences (xn) and
(yn) are commuting if ‖[xn, yn]‖2 → 0. A central sequence (xn) for an inclusion of
II1 factors N ⊂ M is central if (xn) is contained in N and is central for M.

Let us define the following projections e1 and e2 in R. If the An’s are the braid
quotients as in the preliminaries (i)–(vi), there must be an n0 ∈ N such that An0

has
a subalgebra isomorphic to M2(C) (we assume that the An’s have growing dimension

since otherwise the weak closure of their union would be finite dimensional). In this
subalgebra of An0

, we choose e1 and e2 to satisfy

(∗)
e1e2e1 = αe1,

e2e1e2 = αe2,

where α 6= 0, 1 is a complex number. (E.g., take e1 and e2 to be the projections

corresponding to the matrices
(

1 0
0 0

)

and
(

1
2

1
2

1
2

1
2

)

.)

Define projections en ∈ R for n ∈ N in the following way:

e2i−1 = shifti−1(e1) = 1i−1 ⊗ e1 ∈ Ai,i+n0−1 ⊂ R,

e2i = shifti−1(e2) = 1i−1 ⊗ e2 ∈ Ai,i+n0−1 ⊂ R.

Now we are ready to produce two non-commuting, non-trival, central sequences
for the two-sided inclusion R⊗2 ⊂ R: Take (xn) and (yn) in R⊗2 with xn = en ⊗ 1R

and yn = en+1 ⊗ 1R.

https://doi.org/10.4153/CMB-2003-008-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-008-7


Multi-Sided Braid Type Subfactors, II 85

(a) (xn) is non-trivial (and therefore so is (yn)): Let (λn) be a sequence of complex
numbers.

‖xn − λn.1‖
2
2 = tr(xn − xnλn − λnxn + |λn|

2)

= tr(xn) − 2 Re(λn) tr(xn) + |λn|
2

= λ − 2 Re(λn)λ + |λn|
2

= λ|1 − λn|
2 + (1 − λ)|λn|

2

≥
1

4
min{λ ; 1 − λ} > 0,

where λ := tr(xn) ∈ (0, 1) (since the non-zero projections xn are all conjugate).
Thus, the sequence ‖xn − λn.1‖2 cannot converge to zero.

(b) (xn) is central for R (and therefore so is (yn)): Let x ∈ R. Since the union of
the algebras A j = 〈g1, . . . , g j−1〉 is ‖.‖2-dense in R, there exists a sequence (w j) with

w j ∈ A j such that ‖x − w j‖2 → 0. If ε > 0 take j such that ‖x − w j‖2 < ε
2
. By

the definition of the projections xn, xn ∈ Ar(n),r(n)+n0−1 ⊗ 1R (where r(n) = [ n+1
2

]).

By the definition of the embedding u(2)
= lim

−→
û(2)

n , u(2)(xn) ∈ A2(r(n)−1),2(r(n)+n0) (see

the last figure in Section 2). Thus, if n is large enough then u(2)(xn) and w j ∈ A j will
commute. Therefore

‖[u(2)(xn), x]‖2 = ‖u(2)(xn)x − xu(2)(xn)‖2

≤ ‖u(2)(xn)x − u(2)(xn)w j‖2 + ‖u(2)(xn)w j − w ju
(2)(xn)‖2

+ ‖w ju
(2)(xn) − xu(2)(xn)‖2

≤ 2‖u(2)(xn)‖ ‖x − w j‖2 < 2
ε

2
= ε.

(c) The sequences (xn) and (yn) are non-commuting: We must show that the

sequence (an) with an = ‖[xn, yn]‖2 = ‖[en, en+1]‖2 does not converge to zero. Con-
sider the subsequence (a2i−1)i . Using the relations (∗),

a2
2i−1 = ‖[e2i−1, e2i]‖

2
2

= ‖[shift i−1(e1), shift i−1(e2)]‖2
2

= tr
(

shifti−1(−e1e2e1e2 + e1e2e1 + e2e1e2 − e2e1e2e1)
)

= tr(−e1e2e1e2 + e1e2e1 + e2e1e2 − e2e1e2e1)

= 2α(1 − α)λ ≡ κ > 0,

where λ = tr(e1) 6= 0, and where the fourth equality above follows from the fact

that shift2i−1 can be determined via conjugation by some unitary. The subsequence
(a2i−1) does not converge to zero, so neither does (an).

Proposition 2 Let l ≥ 3. The sequence of finite dimensional inclusions

(A⊗l
n ⊂

û(2)
n ⊗id⊗l−2

n

A2n ⊗ A⊗l−2
n )n

generates an inclusion of factors conjugate to the two-sided inclusion R⊗2 ⊂ R.
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Proof This is a corollary of Proposition 1. By definition of the maps, these finite
dimensional inclusions generate the inclusion of factors

R⊗2 ⊗ R⊗l−2 ⊂ R ⊗ R⊗l−2,

via the embedding given by u(2) ⊗ idR⊗l−2 , where u(2)
= lim

−→
û(2)

n is the two-sided

embedding. Since the hyperfinite II1 factor R is isomorphic to R⊗m for any m ∈ N,

it is easy to see that if the two-sided inclusion R⊗2 ⊂ R is stable (which is the case by
Proposition 1), then R⊗2 ⊂ R is conjugate to R⊗2 ⊗ R⊗m ⊂ R ⊗ R⊗m for any m ∈ N

via the embedding u(2) ⊗ idR⊗m .

Theorem 3 Let l ≥ 3 and 1 ≤ t ≤ l − 2. The sequence of finite dimensional inclusions

(A(l−t)n ⊗ A⊗t
n ⊂

û(l)
n ◦(û(l−t)

n ⊗id⊗t
n )−1

Aln)n

generates an inclusion of factors conjugate to the (t + 1)-sided inclusion R⊗t+1 ⊂ R.

Proof In order to prove this statement, it will be enough to show the existence of a
unitary r(l,t)

n ∈ Aln, for each n ∈ N, such that the diagrams in items (a), (b), and (c)
commute:

(a)

A(l−t)n ⊗ A⊗t
n

û(l)
n ◦(û(l−t)

n ⊗id⊗t
n )−1

−−−−−−−−−−−→ Aln

ι⊗ι⊗t

x





x




r̂(l,t)

n ◦ι

An ⊗ A⊗t
n −−−−→

û(t+1)
n

A(t+1)n

where the maps ι are the canonical embeddings (with ι : Am → Am+p, m, p ∈ N;

we shall denote all of these maps by ι, with no subindices), and where the map
r̂(l,t)

n denotes conjugation by r(l,t)
n .

(b)

A(t+1)(n+1)

r̂
(l,t)
n+1◦ι

−−−−→ Al(n+1)

ι

x





ι

x





A(t+1)n −−−−→
r̂

(l,t)
n ◦ι

Aln

A[n+2
l−t]t

r̂
(l,t)−1

n+1 ◦ι
−−−−−→ Al(n+1)

ι

x





x





ι

A[n+1
l−t]t −−−−−→

r̂
(l,t)−1
n ◦ι

Aln

(c)

A(l−t)(n+1) ⊗ A⊗t
n+1

û(l)
n+1◦(û(l−t)

n+1 ⊗id⊗t
n+1)−1

−−−−−−−−−−−−→ Al(n+1)

ι⊗ι⊗t

x





x





ι

A(l−t)n ⊗ A⊗t
n −−−−−−−−−−−→

û(l)
n ◦(û(l−t)

n ⊗id⊗t
n )−1

Aln
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The reason that having (a), (b), and (c) will be enough for proving this propo-
sition is the following: Firstly, the faces of the cube-diagram shown below with the

embeddings defined as in (a), (b), and (c), will all be commuting:

An+1 ⊗ A⊗t
n+1

ι

An ⊗ A⊗t
n

û(t+1)
n

A(t+1)n

r̂(l,t)
n ◦ ι

Aln

ι

Al(n+1)

û(l)
n+1 ◦ (û(l−t)

n+1 ⊗ id⊗t
n+1)−1

A(l−t)(n+1) ⊗ A⊗t
n+1

ι

û(t+1)
n+1

A(t+1)(n+1)

ι

ι
A(l−t)n ⊗ A⊗t

n

û(l)
n ◦ (û(l−t)

n ⊗ id⊗t
n )−1

ι

r̂(l,t)
n+1 ◦ ι

Secondly, because the canonical maps will generate the trivial inclusion, and because

the map lim
−→

(r̂(l,t)
n ◦ ι) will be an automorphism, then the inclusions

û(l)
n ◦ (û(l−t)

n ⊗ id⊗t
n )−1 : A(l−t)n ⊗ A⊗t

n ↪→ Aln

will generate an inclusion of factors conjugate to that generated by the embeddings
û(t+1)

n : A⊗t+1
n ↪→ A(t+1)n, namely, the (t +1)-sided inclusion, which is what we wanted

to show.

Let us remark that having the commuting diagrams in item (b) is the reason why
the morphism lim

−→
(r̂(l,t)

n ◦ ι) is an automorphism: The first commuting diagram in (b)

will force lim
−→

(r̂
(l,t)−1

n+1 ◦ ι) ◦ (r̂(l,t)
n ◦ ι) to be the trivial inclusion, so that lim

−→
(r̂

(l,t)−1

n+1 ◦ ι)

is the right inverse for lim
−→

(r̂(l,t)
n ◦ ι), and the second commuting diagram in (b) will

force lim
−→

(r̂
(l,t)−1

n+1 ◦ ι) ◦ (r̂(l,t)
n ◦ ι) to be the trivial inclusion, so that lim

−→
(r̂

(l,t)−1

n+1 ◦ ι) is the

left inverse for lim
−→

(r̂(l,t)
n ◦ ι).

Now we shall proceed by describing the embeddings û(l)
n ◦ (û(l−t)

n ⊗ id⊗t
n )−1 at

the braid level, so that we can find the right unitaries rn. By definition (Section 2.2),
u(l)

n = ρ(γ(l)
n ), where ρ is the braid representation considered, and γ (l)

n ∈ Bln (see also
the geometric description). Thus, u(l)

n ◦ (u(l−t)
n ⊗1⊗t

n )−1
= ρ

(

γ(l)
n ◦ (γ(l−t)

n ⊗1⊗t
n )−1

)

.

See below the diagrams for γ(l)
n ◦ (γ(l−t)

n ⊗ 1⊗t
n )−1, for the cases n = 4, n = 5, l = 4

and t = 2:

γ(4)
4 ◦ (γ(2)

4 ⊗ 1⊗2
4 )−1

=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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γ
(4)
5 ◦ (γ(2)

5 ⊗ 1⊗2
5 )−1

=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

One can describe geometrically γ̂(l)
n ◦ (γ̂(l−t)

n ⊗ id⊗t
n )−1 : B(l−t)n ⊗ B⊗t

n → Bln in the
following way: This map acts by pulling the i-th strand (1 ≤ i ≤ n) from the p-th
non-trivial tensor factor in 1(l−t)n ⊗ B⊗t

n ⊂ B(l−t)n ⊗ B⊗t
n , and by placing it right

after the (l − t + p − 1)i-th strand in Bln, for p = 1, . . . , t . This becomes clear if
one looks at the diagrams for the examples below, for n = 4, l = 4, and t = 2: Take
β ⊗ β1 ⊗ β2 ∈ B(l−t)n ⊗ B⊗t

n = B8 ⊗ B4 ⊗ B4.

(

γ̂(4)
4 ◦ (γ̂(2)

4 ⊗ id⊗2
4 )−1

)

(β ⊗ β1 ⊗ β2) =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

β β1 β2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Now that one can see what happens with this conjugation geometrically, one can
compare this with what happens with the conjugation û(t+1)

n : A⊗t+1
n → A(t+1)n, fol-

lowed by the embedding ι : A(t+1)n → Aln. From this comparison, one can define
a unitary r(l,t)

n that satisfies what is required in (a), (b), (c), as follows: At the braid

level, we want a braid Ω = Ω(n, l, t) ∈ Bln such that its conjugation Ω̂ acts by pulling
strands that are labeled by i(t + 1) − j, with i = 1, . . . , n and j = 0, . . . , t − 1, to
the strands labeled by il − j. The braid Ω can be given geometrically by the diagram
of the permutation in Sln defined by il − j 7→ i(t + 1) − j, for i = 1, . . . , n and

j = 0, . . . , t − 1, where all the crossings “from left to right” are over-crossings. See
the examples below.

Ω(4, 4, 2) =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Ω(5, 4, 2) =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Now one can define the desired unitary by r(l,t)
n := ρ

(

Ω(n, l, t)
)

∈ Aln, written as

r(l,t)
n = (gl−t · · · g2) · · · (gl−2 · · · gt) (gl−1 · · · gt+1) (g(n−1)l−(t−1)−1 · · · g(n−1)(t+1)−(t−1))
· · · (g(n−1)l−2 · · · g(n−1)(t+1)−1) (g(n−1)l−1 · · · g(n−1)(t+1)) (gnl−(t−1)−1 · · · gn(t+1)−(t−1))
· · · (gnl−2 · · · gn(t+1)−1)(gnl−1 · · · gn(t+1)).

The algebraic formal proof that the diagrams in (a), (b), (c) are commuting is very

tedious, so we shall omit this formalism, but we shall show that these diagrams are
commuting at the braid level (and therefore in the braid quotients) by using braid
diagrams. To simplify the diagrams, we shall do it in the cases n = 4, l = 4, and
t = 2, using the last figures. We shall show first that the diagram in (a) is commuting

at the braid level:

B8 ⊗ B⊗2
4

γ̂
(4)
4 ◦(γ̂(2)

4 ⊗id⊗2
4 )−1

−−−−−−−−−−−→ B16

ι⊗id⊗2
4

x





x




Ω̂(4,4,2)◦ι

B4 ⊗ B⊗2
4 −−−−→

γ̂(3)
4

B12

If β1 ⊗ β2 ⊗ β3 ∈ B⊗3
4 ,

(

Ω̂(4, 4, 2)−1 ◦ γ̂(4)
4 ◦ (γ̂(2)

4 ⊗ id⊗2
4 )−1 ◦ (ι ⊗ id⊗2

4 )
)

(β1 ⊗ β2 ⊗ β3)

=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

β1 β2 β3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

β1 β2 β3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

= (ι ◦ γ̂
(3)
4 )(β1 ⊗ β2 ⊗ β3).

Now we shall show that the diagrams in (b) are commuting at the braid level:

B15
Ω̂(5,4,2)◦ι
−−−−−→ B20

ι

x





x





ι

B12 −−−−−→
Ω̂(4,4,2)◦ι

B16

B6
Ω̂(5,4,2)−1

◦ι
−−−−−−−→ B20

ι

x





x





ι

B4 −−−−−−−→
Ω̂(4,4,2)−1◦ι

B16

Take β ∈ B12. Then

(

Ω̂(5, 4, 2)
−1

◦ ι ◦ Ω(4, 4, 2) ◦ ι
)

(β)

=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

β

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

β

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

= ι(β).

Take β ′ ∈ B4. Then
(

Ω̂(5, 4, 2) ◦ ι ◦ Ω(4, 4, 2)−1 ◦ ι
)

(β ′)

=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

β ′

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

β ′

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

= ι(β ′).
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And finally, we show that the diagram (c) is commuting at the braid level:

B10 ⊗ B⊗2
5

γ̂
(4)
5 ◦(γ̂(2)

5 ⊗id⊗2
5 )−1

−−−−−−−−−−−→ B20

ι⊗id⊗2
4

x





x





ι

B8 ⊗ B⊗2
4 −−−−−−−−−−−→

γ̂
(4)
4 ◦(γ̂(2)

4 ⊗id⊗2
4 )−1

B16

If β ⊗ β1 ⊗ β2 ∈ B8 ⊗ B4 ⊗ B4, then

(

γ̂(4)
5 ◦ (γ̂(2)

5 ⊗ id⊗2
5 )−1 ◦ (ι ⊗ id⊗2

4 )
)

(β ⊗ β1 ⊗ β2)

=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

β β1 β2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

β β1 β2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

=
(

ι ◦ γ̂(4)
4 ◦ (γ̂(2)

4 ⊗ id⊗2
4 )−1

)

(β ⊗ β1 ⊗ β2).

Corollary 4 The l-sided inclusion R⊗l ⊂ R contains the s-sided subfactors R⊗s ⊂ R

(for s = 2, . . . , l) as a sequence of intermediate subfactors

R⊗l ⊂ R⊗l−1 ⊂ R⊗l−2 ⊂ · · · ⊂ R⊗2 ⊂ R.
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Furthermore, for j = 0, . . . , l − 2 and t = 1, . . . , l − j − 1 the inclusion

R⊗l− j ⊂ R⊗l− j−t

is conjugate to the (t + 1)-sided inclusion R⊗t+1 ⊂ R. In particular, the two-sided

inclusion is an intermediate subfactor for all the multi-sided inclusions, and any multi-

sided inclusion can be written as a composition of inclusions all conjugate to the two-

sided inclusion.

Proof For any n ∈ N, one can write

u(l)
n =

(

u(l)
n ◦ (u(l−1)

n ⊗ 1n)−1
)

◦
(

u(l−1)
n ◦ (u(l−2)

n ⊗ 1n)−1 ⊗ 1n

)

◦ · · · ◦
(

u(3)
n ◦ (u(2)

n ⊗ 1n)−1 ⊗ 1⊗l−3
n

)

◦
(

u(2)
n ⊗ 1⊗l−2

n

)

.

That is, the finite dimensional inclusion A⊗l
n ⊂

û(l)
n

Aln can be written as the composition

A⊗2
n ⊗ A⊗l−2

n −−−−−→
û(2)

n ⊗id⊗l−2
n

A2n ⊗ A⊗l−2
n −−−−−−−−−−−−−→

û(3)
n ◦(û(2)

n ⊗idn)−1⊗id⊗l−3
n

A3n ⊗ A⊗l−3
n

· · · −→ · · · −−−−−−−−−−−−−−→
û(l−1)

n ◦(û(l−2)
n ⊗idn)−1⊗idn

A(l−1)n ⊗ An −−−−−−−−−→
û(l)

n ◦(û(l−1)
n ⊗idn)−1

Aln.

By the Proposition 2 and Theorem 3, the composition of any t consecutive em-
beddings above, for j = 1, . . . , l−1, and t = 1, . . . , l− j, gives us a pair of ascending
sequences

(A( j+1−t)n ⊗ A⊗l−( j+1−t)
n ⊂

û
( j+1)
n ◦(û

( j+1−t)
n ⊗id⊗t

n )−1⊗id
⊗l− j−1
n

A( j+1)n ⊗ A⊗l− j−1
n )n

which generates an inclusion R⊗l− j+1 ⊂ R⊗l− j+1−t which is conjugate to the (t + 1)-
sided inclusion.
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