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1. Introduction

The Ritz method reduces eigenvalue problems involving linear opera-
tors on infinite dimensional spaces to finite matrix eigenvalue problems.
This paper shows that for a certain class of linear operators it is possible
to choose the coordinate functions so that numerical solution of the matrix
equations is considerably simplified, especially when the matrices are large.
The method is applied to the problem of overtone pulsations of stars.

This paper is mainly concerned with the special case of the eigenvalue
problem

(1) Au = XBu

with appropriate boundary conditions in which A and B have the form
given by (3).

More generally if A and B are self-adjoint linear operators on some
Hilbert space of functions, and u must satisfy given boundary conditions,
numerical solutions of (1) may, if certain conditions are satisfied, be found
very simply by applying the Ritz method to the corresponding variational
problem. This gives rise to a matrix equation

(2) Px = AQx

where, if the space of allowable functions is reduced to one of dimension
M, the matrices P and Q are nxn. In this case denote the kth eigenvalue
of (2) by Ah(n). Then, for all k, Ak(n) provides an upper bound for the kth

eigenvalue, Xk, of (1) and, provided the appropriate conditions are satisfied,

It is well known that the rate of convergence is generally very good
for the first one or two eigenvalues, especially if the coordinate functions
are chosen carefully. For larger k, much larger n must be used to obtain
comparable accuracy. For very large n, (2) is more difficult to solve and,
if P and Q had quite general form, considerable computer storage would
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be required. Then one of the main advantages of the variational method,
its speed even with limited computing facilities, would be lost.

It is shown here that if, when the Ritz method is applied to (4), the
space of allowable functions is taken to be those continuous piecewise
linear functions satisfying the required boundary conditions, then P and Q
in (2) are symmetric and tri-diagonal and if the operator B1 is positive
then for most boundary conditions the matrix Q is positive definite. This
result has been discovered independently for a slightly more restricted class
of operators by Wendroff [1]. An extremely efficient method [2; p. 340]
exists for solving equations of this form numerically. This method for
solving (2) is considerably more efficient than that suggested in [1].

In section 4 this method is applied to the equation governing small
radial adiabatic oscillations of stars. This equation is important in the
theory of stellar stability [3].

The Ritz method has already been applied very successfully to this
equation to determine the fundamental mode of oscillation — the mode
for which the method converges most rapidly. Ledoux and Pekeris [4]
used the Ritz method to determine the fundamental mode of the standard
model (a classical stellar model). They also gave approximations to the first
two overtones, but these were not accurate. Later Chandrasekhar and
Lebovitz [5], in a paper which also deals with non-radial oscillations, used
variational methods to determine the fundamental mode for a number of
polytropic models.

For the very high modes, Ledoux has shown that excellent approxima-
tions for both eigenvalues [6] and eigenfunctions [7] may be obtained by
an asymptotic method, provided (as is usually the case) that the outer
layers of the star can be characterised by an effective polytropic index. But
for modes in between these very high modes and the fundamental mode,
the only method which has so far been used successfully is the tedious
method of numerical integration of the differential equation. This method is
slow and a completely new calculation is required if a slight change is made
in the model. Also many methods of numerical integration require an initial
guess for the eigenvalue. It would be useful if this could be provided rapidly
and accurately by asymptotic or variational methods. Such methods also
provide a useful check, and the analysis required for them is often useful
in itself. Thus as well as providing an illustration of the methods described
in section 3, the accurate determination of overtone pulsations (higher
modes of oscillation) of stars by variational means is an important question
in its own right.

Only one stellar model was considered in the present calculations
but the same methods (and indeed the same computer programme, with
only the data input changed) could be used for any other model. The model
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used was one constructed by Van der Borght [8] for which molecular weight
(i is constant, and [t2M = 10Mo where M is the mass of the star and MQ

that of the sun. (These conditions are satisfied, for example, by a star of
forty solar masses consisting entirely of ionized hydrogen.) In this model,
the ratio fi of gas pressure to total pressure varies from 0.794 at the centre
to 0.904 at the surface.

Van der Borght [9] has used numerical integration to determine the
first thirteen modes of oscillation of the model used here. He also modified
Ledoux's asymptotic expression for the eigenvalues. Later (private com-
munication) he determined the next seven modes by numerical integration.

Table 1 compares Van der Borght's eigenvalues with those obtained
here and Table 2 compares the eigenfunctions. More detailed numerical
results of the present calculations are given elsewhere [10].

2. The eigenvalue problem

Let A j , Bx be operators on the space of all real scalar-valued functions
with domain [a, b], defined by

A1u=-{f1u')'+f2u
Bxu = -fou'Y+Uu

where the f{ are given bounded integrable functions and fx and /3 are dif-
ferentiable. Then Axu, Bxu will be defined at those points where u is twice
differentiable. Consider the eigenvalue problem

(4) Axu = lBxu

where at each boundary one of the following four conditions holds:

(i) Both fx and /3 vanish and it is merely required that u be bounded.
(This is the case at both boundaries in the problem considered in section 4.)

(ii) It is required that u = 0 at the boundary.
(iii) It is required that u' = Ku at the boundary where K is some given

constant, non-negative in the boundary condition at a and non-positive
in that at b.

(iv) It is required that u' = Ku at the boundary where K does not
satisfy the sign requirement of condition (iii).

The designation "(4)" will be taken to mean the eigenvalue problem
Axu = XBxu with one of the above four conditions imposed at each boundary.
Clearly (4) is self-adjoint.

3. Choice of coordinate functions

Let {Pn} be a sequence of partitions of the interval [a, b] in which Px

consists only of the points a and b and, for each n, Pn+X is a refinement of
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Pn containing exactly one extra point. Define a sequence {<£„} of functions
on [a, b] as follows

4>x(x) = (x-a)l(b-a)

(5) f (x~ai)l(an-ai) for at ^ x ^ an

<f>n(x) = j (a{+1-x)l{aM-an) for an ̂  a; ̂  a<+1

V 0 for all other x on [a, b]

( n > l )

where, in the definition of <£n, the points of Pn_x are labelled (in increasing
order) a0, alt • • •, an_x, the extra point in Pn is an, and it is supposed
tha t a{ < an < a i + 1 .

The first » + l functions of this sequence form a basis for the space
of all continuous functions defined on [a, b] whose derivatives are constant
in each of the subintervals of Pn.

In solving (4) by the Ritz method when both boundary conditions
are of type (i), {<£J defined by (5) may be taken as the sequence of coor-
dinate functions. This was done in the example discussed in section 4.
With other boundary conditions some minor modification of (5) is required.
(For instance if both boundary conditions are of type (ii), </>0 and <f>x should
be omitted from the sequence.)

The space spanned by the first (w+1) members of the sequence defined
by (5) is isomorphic with the space of all («-f l) tples (x0, • • •, xn) where
xt is the value of u at a( and where now the points of Pn are labelled
(in increasing order) a0, ax, • • -, an. For any u in this space, and for
at < x < ai+1 where O ^ i g n—1,

(6) u(x) ^ xi+(x-ai){xi+1-xi)l{ai+l-ai).

For each n define /„ and Cn on Rn+1 by

, 7 a ) '»(*<» • • •> *n) = Mi« u)

xn) = {Bxu, u)

where u is given by (6). The inner product («1( u2) where ux and «2 belong
to the space is defined as usual as /„ u1(x)u2(x)dx. The Ritz method may be
carried out by extremising IJCn for various n.

THEOREM. / / in (4) the boundary conditions are of types (i), (ii), or
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(iii) then when the Ritz method is applied to (4) by extremising InjCn given
by (7), the matrices P and Q in (2) are symmetric and tri-diagonal. If the
operator Bx is positive then Q is positive definite. If Ax is positive then P is
positive definite.

PROOF. Consider first the case when both boundary conditions are of
type (i). The equations to be solved in the Ritz method are then

(8) ^ (In-ACn) = 0, i = 0, • • ; n.

This system is of the form of (2) where P= (^>o), Q = (qi}) and pu and
qit are the coefficients of x,_x in dljdx^ and dCJdx^ respectively. Sub-
stituting (6) in (7) shows that In{x0, • • •, xn) and Cn(x0, • • •, xn) are
quadratic expressions in the xi in which the coefficient of xtXj is zero
whenever \i—j\ > 1. Thus P and Q are symmetric and tri-diagonal (that
is pu = q{j = 0 whenever \i—j\ > 1).

If B1 is positive then (B-^u, u) > 0 for all non-zero u in the domain
of Bx. In particular the inequality still holds when u is further restricted
to be of the form given by (6). The quadratic form Cn and hence the matrix
Q are then positive definite.

When the boundary condition at a is of type (ii) the equations to be
solved in the Ritz method are the last n of the system (8). Since in this
case x0 = 0, P and Q will be « x » matrices. They are in fact precisely
those obtained before with the first row and column deleted. Thus they are
symmetric and tri-diagonal and when Bx is positive, Q is positive definite.

Denote the point next after a in the partition Pn by a-\-h. Then if the
boundary condition at a is of type (iii) it is required that xo = xJtyK+l)
so that x0 will not occur explicitly in (8). Argument similar to that above
shows that P and Q are symmetric tri-diagonal nxn matrices. Denote the
value of Q in this case by Qa. Denote by Qb the value of Q that would
have been obtained had all the ft been replaced by zero in the interval
[a, a+h) but left unchanged in [a+h, b]. Clearly Qb is nxn and the ar-
gument used for boundary conditions of type (i) shows that if Bt is positive
then Qb is positive definite unless J*+A ft(x)dx = 0 in which case Qb is
singular but its principal minors are all positive. Substitution of (6) and
(7) in (8) shows that Qa may be obtained from Qb by adding to its top left-
hand element the non-negative number

In the case when J*+A ft(x)dx = 0 this quantity must be positive for
to be positive. Hence in all cases Qa is positive definite.
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Exactly the same arguments prove the result of the theorem when
the boundary condition at b is of type (ii) or (iii).

Similarly it may be shown that if the operator Ax is positive then P
is positive definite whenever the boundary conditions are of types (i), (ii)
or (iii).

If all functions in the domains of Ax and Bx are continuous then,
provided at least one of the boundary conditions is of type (ii), (iii) (with
K ^ 0) or (iv), a sufficient condition for B1 to be positive is that /3/4 ^ 0
and / 3 + / 4 > 0 almost everywhere on (a, b). If both boundary conditions
are of type (i) or type (iii) with K — 0, the above conditions are not suf-
ficient, but if the additional condition J* fi(z)dx > 0 is added then B± will
be positive. Corresponding conditions for Ax to be positive are obtained
by replacing /3 and /4 in the above inequalities by f1 and /2 respectively.

If the boundary condition at a is of type (iv) then, provided Pn is
chosen so that Kh ̂  —1, P and Q will be symmetric and tri-diagonal.
If Bx is positive then sufficient conditions for Q to be positive definite in
this case are that /3 vanish and /4 be positive in some neighbourhood of a
(a condition always satisfied with the regular Sturm-Liouville system) and
that h be sufficiently small.

If P and Q are symmetric and tri-diagonal and Q is positive definite
then the eigenvalues of (2) may be found very rapidly by Wilkinson's
[2; p. 340] simple generalisation of Givens' well-known method [2; p. 300]
for the case where Q is the identity matrix. The method requires very little
storage and, if P and Q are n x n, the time required to find each eigenvalue
increases linearly with n, so that very large n may be handled. Unless Q
is very ill-conditioned the method is very accurate. If P is positive definite
but not Q the eigenvalues A'1 may be obtained by the same method.
A refinement of the method which gives an even better guarantee of
accuracy for large n is given in [11]. Eigenvectors of (2), the sign-changes
of which clearly locate the zeros of the approximate eigenfunctions u, may
be found very accurately and simply using Wilkinson's recurrence relation
(P-AQ)xT=QxT_1.

The elements of P and Q are all integrals over subintervals of the
partition. Each of the terms in the integrands is a quadratic expression
multiplied by one of the / ; . Hence if the ft do not vary greatly over the
(small) subintervals of the partition, the integrals may be obtained very
accurately by Simpson's rule.

It can be shown that if the maximum distance between a pair of
consecutive points in Pn tends to zero as n ->- oo then {<̂ } defined by (5)
has the completeness properties required for the Ritz method to give
convergence. In that case if u is any continuous real scalar-valued function,
defined on [a, b], which is differentiable except perhaps at a finite number
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of points and whose derivative is bounded and Riemann integrable, then
for all e > 0 there is a un = 2"=o c*& (where the c{ are constants) such
that (A^u—un), u—un) < e. The value of n will generally depend on the
fluctuation of «'. Sufficient conditions for convergence of eigenvalues and
eigenfunctions are given in Mikhlin's [12] standard work. Further, Wendroff
[13] has shown that with this choice of coordinate functions it is often
possible to obtain actual lower bounds to ?.k from Ak(n).

In the example considered in section 3, the higher eigenfunctions
are known to have violently fluctuating first derivative. It might be ex-
pected that the method would give relatively slow convergence in that
case. Yet useful results were obtained for quite high modes.

The use of continuous piecewise linear coordinate functions in the Ritz
method can be generalised to many other cases of (1). For instance if
(Au, u) and (Bu, u) have the form

Jf 5 S
the coordinate functions may be taken as {0O} where (j>u is the w-vector-
valued function whose j t h component is (j>t defined by (5). Procedure similar
to that described above leads to an equation of the form (2) where P and
Q are symmetric and for suitable boundary conditions Q is positive definite
if B is positive. This time P and Q are not tri-diagonal but of the form
(Ptj) where each of the Pti (i, j = 1, • • • m) is itself a tri-diagonal matrix.
The equation may no longer be solved by Wilkinson's simple method, but
it is possible to utilize the large number of zero elements in the matrix to
speed calculation and reduce storage requirements. A method is described
elsewhere [10] for triangulating such matrices without introducing any
extra non-zero elements. In this method m non-zero elements in the same
row are eliminated simultaneously by subtracting an appropriate linear
combination of m other rows.

Completeness of the coordinate functions and convergence of the
method may be established for most generalisations. The special im-
portance of (4) depends on the efficiency of Wilkinson's method for solving
(2) in that case.

4. Radial oscillations of stars

For any spherically symmetric stellar model, define functions glt g2,
#4 by d

( 9 ) gi(r) = rxpr\ ga(r) = ~r* -
gt(r) = Pr*
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where p and p are the equilibrium values of pressure and density respectively
at a distance r from the centre and the adiabatic exponent / \ is given by

where y is the ratio of specific heats.
This section considers oscillations governed by the well-known equation

(10) U = o*gj

where the Lagrangian displacement at time t is r£(r)ei<Ti and the operator
L is defined by

Boundary conditions with which (10) must be solved are

(lla) r|(r) = 0 at r = 0

(lib) ra^(3|(r)+r| '(y)) = 0 at r = R (the radius of the star).

Since p(R) = 0 in the model considered (and in most models) it is sufficient
that | and | ' be bounded. The problem is thus a special case of (4) with
boundary conditions of type (i). When Van der Borght's model [7] is used
the singularities at the boundaries are simple poles and present no serious
difficulty.

Derivation of (10) and a discussion of the effects of relaxing some of
the assumptions made in the derivation are given in an excellent review
article by Ledoux and Walraven [14].

It can be deduced [10] from the differential equations on which Van
der Borght's model is based that the operator L is positive in this case.
It is not positive definite as f could be taken as zero except in an arbitrarily
small neighbourhood of the boundaries. However the operator L*, defined
by L*£(r) = (pr4)"1^!^), is positive definite and the Ritz method is ap-
plicable. Since L* is positive definite, all eigenvalues <r2 are positive. This
rules out exponential instability for oscillations of the type considered here,
but does not ensure stability.

In [4] and [5], | was assumed to be of the form

() f ,
Ledoux and Pekeris [4] considered the cases N = 0, 1, 2, while Chandrase-
khar and Lebovitz [5] considered only the case N = 1. With that choice
of coordinate functions, the matrices obtained for large N are much less
tractable than those obtained by the method of section 3, which was used
in the present calculations. As large N is necessary for accurate estimates
of the higher modes, the method used here would seem more satisfactory
for the calculation of these higher modes.
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The Pn chosen for the present calculations divided the interval [0, R]
into n equal parts. Separate calculations of eigenvalues were made using
n = 10, n = 25 and n = 50. Comparison of the results illustrates the rate
of convergence. Eigenfunctions were calculated in the case n = 50 only.
In Table 1 eigenvalues obtained with these three values of n are compared
with those obtained by Van der Borght [9] using numerical integration
and those given by his asymptotic formula. These asymptotic values appear
to be slightly too small. Instead of or2, Table 1 shows the dimensionless
o)2 where MG<o2 = R3a2 and G is the universal gravitational constant.

TABLE 1

Comparison of eigenvalues

k

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

n = 50

2.050678
3.6522
4.9939
6.3084
7.6239
8.954

10.305
11.671
13.025
14.289
15.448
16.725
18.188
19.77
21.42
23.14
24.93
26.77
28.68
30.65

Variational method

n = 25

2.0509
3.663
5.043
6.437
7.864
9.28

10.51
11.71
13.28
15.10
17.10
19.2
21.6
24.1
26.8
29.8
33.2
36.8
40.9
45.6

n = 10

2.052
3.73
5.29
6.65
7.91

10.0
12.9
16.7
22.0
29.6
46.3

Numerical
integration

2.050683
3.6486
4.9762
6.2584
7.5158
8.758
9.990

11.217
12.439
13.657
14.870
16.079
17.285
18.50
19.71
20.91
22.11
23.32
24.52
25.72

Asymptotic
formula

3.06
4.25
5.44
6.63
7.82
9.01

10.20
11.40
12.59
13.78
14.97
16.16
17.35
18.54
19.73
20.92
22.11
23.30
24.49
25.68

Even if much higher n had been used equation (2) would still have been
easily handled. With n = 50, an IBM 1620 with a Fortran programme
calculated the 20 eigenvalues shown in less than an hour. This computer
would have taken far longer had the method of numerical integration of
the differential equation been used. On faster modern computers, using the
methods described here, calculation of the first few eigenvalues is practical
even for n = 0(10*).

The pu and qti in (2) were evaluated by Simpson's rule using three
points. To test the accuracy of the integrations a separate calculation using
five points was made in the case n = 25. The consequent difference in the
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eigenvalues was generally a fraction of 1 %. This is not surprising as the
gt vary slowly over most of the interval.

There will be errors in the numerical processes but consideration of the
form of the eigenfunctions obtained by the variational method, and of the
rapid decrease in accuracy as the mode increases or n decreases, suggests
that in this case, except probably with the fundamental, the value of n,
and not rounding errors, was the main factor limiting accuracy.

The eigenfunctions obtained by Van der Borght [9] and others have
two important properties, (a) The zeros of £ are not evenly distributed but
become much denser near r = R. (b) The magnitude of f is much greater
very near r = R than in the rest of the star. These two effects increase as
the mode increases.

There is some difficulty approximating a function whose derivative
changes so rapidly by one of piecewise constant derivative. With the coor-
dinate functions used here, separations of less than \jn between zeros cannot
be made clearly. Thus it is not surprising that zeros of the approximate
eigenfunctions obtained by this method are slightly further from r = R
than those of the true eigenfunctions. Nevertheless all the approximate
eigenfunctions obtained here had the correct number of zeros.

Let £n be the approximation to I obtained using a partition containing
n equal subintervals. If the last zero of | re is to be very near r = R,
\gn(R)l£n(R — Rln)\ must be small. This makes it difficult for | n to satisfy
property (b). Property (a) turns out to be much better satisfied. Even for
quite high modes, the nodes and antinodes of f50 are in much the same
position as those of | . But |f50(i?)/^50(0) | although it increases initially,
levels off for the higher modes, ultimately decreasing almost exponentially.
(It is less than one for modes higher than the twentieth.) A third property
of £ is rather better satisfied by | 5 0 , but this property does not require rapid
change of derivative. This is that, for higher modes, |(0), although much less
than £(R), is still appreciably greater than the values of £ at the inter-
mediate maxima.

Because of the more rapid change of £' near r = R it might seem that
better results would be obtained from a Pn whose points were not evenly
spaced but closer together near r = R. This may be so but experiments
with this modification were inconclusive.

Table 2 compares the ratio |(i?)/|(0) and the value of rjR at the first
two zeros of f for the first 15 eigenfunctions obtained by variational means
(£ = f50) with those of Van der Borght. For each quantity the latter value
is in the column immediately to the right of that showing the value for
| 5 0 . The first column shows the number of the mode. The agreement of
the eigenfunctions is better than these figures might suggest, as the discre-
pancy in £{R)l£(0) is mainly due to a very sharp increase in f very near
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r = R in Van der Borght's more accurate results. Until very near the
surface the amplitudes agree quite well.

TABLE 2

Comparison of eigenfunctions

k

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

w
2.54

—27.5
61.3

—100
136

—167
198

—236
- 295
—372
327

—175
85

—44
24

?)/f(0)

2.57
—28.0

69.6
—126

194
—277
362

—460
566

—678
792

—908
1028

—1150
1273

First

.603

.520

.462

.417

.380

.347

.320

.297

.279

.260

.246

.230

.215

.200

zero

.603

.520

.463

.420

.384

.354

.328

.306

.286

.265

.253

.239

.226

.215

Scond

.803

.725

.654

.596

.548

.508

.473

.445

.422

.400

.375

.353

.332

zero

.803

.726

.659

.604

.558

.520

.487

.458

.432

.409

.388

.370

.352

The use of variational methods to determine higher modes in the
more difficult case of non-radial stellar oscillations will be considered in a
forthcoming paper [15].

I thank Professor R. Van der Borght for suggesting the problem and
for his general guidance, and Dr. A. R. Jones for many valuable suggestions.
I also thank the referee for his helpful comments.
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