
Can. J. Math., Vol. XXIX, No. 4, 1977, pp. 771-780 

THE CARATHEODORY METRIC AND 
ITS MAJORANT METRICS 

JACOB BURBEA 

1. I n t r o d u c t i o n . One of the main purposes of the present paper is to 
provide a proof for the following s ta tement : 

T H E O R E M A. Let M be a complex manifold of a complex dimension n. Let f 
be a fixed point in M such that there exists a square integrable holomorphic 
n-form a(z) on M with a ( f ) ^ 0. Then C(f : v) ^ S(f : D) for each holomorphic 
tangent vector v £ Cn. Here C = CM and S — SM are the Carathéodory and the 
Bergman (differential) metrics on M respectively. Moreover, if for some v, 
C(f :v) > 0, then C(f : v) < 5 ( f : v). 

When M is a. bounded domain in Cn , par t of this theorem is already men
tioned in the Fundamenta l Theorem I of Look [7] and was again amplified 
by Hahn [4]. Theorem A is obtained as a special case of Theorem 5. T h e 
method of proof used in this paper is tha t of the method of minimum integral 
(cf. Bergman [1, p. 26]) applied to the Bergman kernel function of M. Since 
this method could be well applied on any Hilbert space of holomorphic func
tions which possesses a reproducing kernel, we obtain a more general assertion 
(Theorem 1). 

As in the Bergman case the reproducing kernel induces a Kâhlerian metric 
on M. We compare the sectional Riemannian curvature of this metric with the 
Carathéodory metric (Theorems 2,6). As a corollary of this theorem we will 
establish an est imate for the curvature of the Bergman metric which is a 
slight improvement on a result of Fuks [3] (see Theorem 3). We also s tudy a 
function tha t generalizes the Bergman metric (Theorem 4) . 

Specifying our results for n = 1, we obtain relationships between the 
analytic capacity and curvatures of certain conformai invariant metrics. The 
most impor tan t relationship is the one showing tha t the curvature of the 
analytic capacity metric is always ^ — 4. This fact was first proved by Suita 
[9] and generalized in [2]. 

2. Kernel f u n c t i o n s and m e t r i c s . In this section we assume tha t M is 
a domain in Cn. T h e case when M is a complex manifold is postponed to the 
next section. We assume tha t on M we have a Hilbert space H2(M) of all 
holomorphic func t ions / in M normed by | | / | | 2 = j \f(z)\2dfjLM(z). Here d\iM is 
a positive measure on M or on any other set determining the holomorphic 
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functions in M, for example the "Silov boundary" of M. We also assume that 
point evaluations are bounded linear functionals on H2(M). Therefore, H2(M) 
possesses a reproducing kernel K(z, f) = KM{z, f) and convergence in the 
norm implies uniform convergence on compacta of M. K(z, z) is real analytic 
and non negative. Le t^# = {f G M: there exists/ G H2(M) wi th / ( f ) ^ OJ. 
T h e n ^ is open in M and c l e a r l y ^ = {f £ M: X(f, f) > 0}. 

Let Î) G C" - (0) and 2 G Cw. The following vector fields (in the direction 
of v) are defined for any C°°-function at z\ 

dv
m = dvdv

m~\ dv = è ^ ~ - , m = 0, 1, . . . . 

Thus dv°f(z) = f(z) for each / . Likewise we can define dv
m where 

$v = E*=i vj à/dZj. 

Let H(M : A) be the family of holomorphic functions from M into the unit 
disc Ain C. For fixed f G M we write Hf(M : A) = {/ G # ( M : A): / ( f ) = 0). 
The Carathéodory metric (cf. Reiffen [8]) is given by 

C(f :») = C«(r:i>) = s u p { | a f / ( f ) | : / € f T ( J W : A)}. 

Evidently 

C(r.v) = s u p ! | â „ / ( f ) | : / 6 H r ( i k T : A)}. 

By a normal family argument there exists an F G Hç(M : A) such that 
dvF(Ç) = C(f : v). Here F(z) = F(z\ f, v) and C(f : u) ^ 0. The Carathéodory 
metric is a function defined on the complex tangent space of M at f. In fact, 
if 0: M —» AT* is a holomorphic mapping then 

C^*(0(r): *•(»)) ^ CM(f :v), 

where [4>*ML = d,<^(f), j = 1, . . . , w, and 0(f) = (0i(f), . . . , 4>»(f)). Con
sequently, if 0: AT —•> M* is a biholomorphic mapping of M onto M* then 
G/*(4>(r): **(»)) = CM(f : v). Let J / = {(f, v) G M X (Gn - {0}): there 
exists/ G # ( M : A) with d„/(f) ^ 0}. Again, j / is open in M X (Cn - {0}) 
and for (f, v) G ^ , dvF(Ç) = C(f : ZJ) > 0 where i7 is as before. Clearly, 

j / = M x (Cw - {0}) whenever M is bounded. 
Let f G - ^ and (f, z;) G ^ . Consider the sets 

An(ï :») = {/€ ff2(M): a,*/({") = ôtro> * = 0, 1, . . . , m) ; 
m = 0, 1, . . . . 

These sets are convex and closed subsets of H2(M) and they are not empty; 
for, the function 

(2.1) <pm(z) = ^ § ^ ~ ; C = C(f : v),K = tf (J-, f), 

belongs to Am(Ç : v) for every m = 0, 1, . . . . Let \pm be the unique solution of 
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the minimum problem 

(2.2) Xm = Xm(r : v) = min {||/||2: / 6 AmQ; : »)}. 

Then (cf. [1, p. 26]) 

(2.o) Am = Jm—i/Jm, 

where 

is the (m + 1) order Wronskian with respect to the vector field dv evaluated 
at f. Here J-X = 1 and / 0 = #(f , f ). Thus 

Mt:v) = 
K d„K 

dyK dvdvK 
= K2dvdv\ogK. 

Therefore, K~2Ji(Ç : v) is exactly the Bergman metric 52(f : v) when d\xM is 
the usual volume element of M. 

Using (2.3) we find that Jn = (IlLo A*)-1 > 0. Let 

:'>-(a*!) (2.4) i?m(r :») = ^ U kl) K-(m+1,Jm(r-v), « e l , 

and we retain the alternative symbol S2(f : j;) for i?i(f : v). 

THEOREM 1 . L e t f G J ' C M . Then 
(i) [CM(f : »)]»(»+» g J?m(f : ») /or ^ » e C" - {0}. 

(ii) 7/also (f, v) £s/ and dy.M acts on M, then [CM(Ç : î))]'»("î+i) < J?m(f : D). 

Proof, (i) We can assume that (f, ») € J / . By (2.1) and (2.2) we have 
IWI2 è X,. But 

„ ,,, \\F*K( , 011% 1 

and so 

Upon multiplying these inequalities by running from k = 1 through k = m 
the assertion follows. 

(ii) If <W acts on M, then ||F*X( , f) | |2 < K(Ç, f) for jfe ^ 1. Indeed, if 
equality holds then J \K(z, f) |2(l - |F(z)|2*)<W(s) = 0. Thus \F(z)\ = 1 on 
M which is a contradiction. 

Remarks, (i) For m = 1 we have CM
2(? : v) ^ Ri(Ç : v) = SM

2(Ç : v). A 
special case of this result when M is bounded was proved by Look [7], using a 
different method. See also [4]. 

(ii) We actually proved a little more. Let 

- " » ( * • : » ) - ( f n j ) ' c * x 
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and 

rt..„N_-R»G':,0 
Mm — Mm\Ç -v) — ~"^m(m+D 

Then pii = v\ ^ 1 and nm ^ vm "^ 1, m > 1, where we have strict inequalities 
in the inequalities when d{jLm acts on M. This again implies Theorem 1. 

Assume now that SM
2(Ç : v) > 0 (this, of course, occurs, according to 

Theorem 1, if f G ^ a n d (f, v) G Ja/). Then, using the summation convention, 

d2 

SM
2(t :*>) = T0fik\ Tfli = - log if, 

and so 5M
2(f : ^) is a Kâhler metric. Let 7^* be the elements of the inverse 

matrix of the matrix (7^ ) . The sectional Riemannian curvature at f G M in 
a two-dimensional holomorphic direction is given by 

R = RM({ • v) = 5M~4(f : v)R-Qlp^vQvlvPvTn, 
where 

D_ __ u * pq I *r-tf/£ V-L yk U-L jq 

Here, again, we used the summation convention. Then (cf. Fuks [3]) 

(2.5) ju"1 = (2 - i^XS 4 , 

where 
M = M(f :») = m i n {H/11*: /€40" : »)}, 
4 ( f :») = {/ € H2(M):f(£) = df/dfr = . . . = â//âf„ = 0, 

5„2/(f) = 1}. 

Clearly, if i f is bounded and pM{M) < co then R < 2 at each point and every 
direction. We have 

THEOREM 2. Le/ f G - # C M aw(i (f, A) G ^ . 77^w 

(i) 4C4 g (2 - i?)S4, C = CM(r : v), and hence R < 2. 
(ii) 7/ JJUM acts on M then ±CA < (2 - 7?)S4. 

Proof. Exactly as in Theorem 1. <p2 of (2.1) belongs to A(Ç : v). Thus 
IMI 2 è M- But ||^2||2 ^ 1/4C4X and the assertion follows from (2.5). 

If M is a bounded domain and 5 is the Bergman metric (i.e., d\xM is the 
usual volume element of M) we have the following improvement on Fuies' 
result [3]. 

THEOREM 3. Let M be a bounded domain in Cn. The Riemannian curvature of 
the Bergman metric on M satisfies 

^ ( f : » ) < 2 - 7 — J - p p l ^ ^ l ; i G M,v£Cn- {0}, 
(n + 1) \ pM / 

where dM(£) = dist (f, dikf) awd pM w the radius of the smallest ball containing M. 
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Proof. Let f be fixed in M and let t £ Cn be the center of the smallest ball 
containing M. Then B C M C A where B = B(Ç; dM(f)) and ,4 = B(t\ pM). 
Here £(z0; r) = {2 G Cn: ||z - 30|| < r}, r > 0, with ||z|| = (2, s)1 /2 and 
(2, 70) = X^=i sy^i ^or 2 = (2i> • • • » 2n), ^ = (wu • • , ï̂ n) m Cn. In the 
Bergman metric case we have XJ

(jB) ^ X/M) ^ X?
(yl), j = 0, 1, . . . . Here X; = 

X;-(f : A). Therefore, 

(2.6) 5M
2(f : v) = ^ V ) ^ ^ 2 ( r : v) ^ m 

(M) > (A) 
0 ^ o 2 / . \ Ao 

A l Ao 

Clearly, CM(f : fl) è d ( f : v). For the unit ball Q = 5 (0 ; 1) we have [8] 

r V , - „ Ï - ( 1 " 1H1 2 )1H1 2 +1(^)1 2 

Also, the Bergman kernel for 12 is 

* 0 ( M ) = 4 ( i - INII2)-(B+1> 

7T 

and therefore 

(2.7) Sa2(s:*0 = ( » + l)Co2(s: iO. 

7£j = r - 1 ^ — 20) maps 5 (20; r) biholomorphically onto 12 and so 

ClizQ;r)(z : w) = Cu2(w\v*) = r-2Cfi2(w;^). 

Consequently 

/ O C A —2 it 1 12 H ^ /^2 / s ̂  2 M 

(2.8) r IHI ^ T r j ^ ^ W . ^ ^ r ^ ^ ^ 

Similarly 
(2.9) XB ( f o : r )(2 :z) = - - ^ V - | | « - 2 o | r ) 2x-(n+D 

7T 

By (2.5) - (2.9) and using the fact that K = 1/X0 we have 

\4fo+l) ||„, I I 
(2.10) 5 ^ : , ) g ( » + i r ( ^ ) 

1 . 4(n+l) 11 i | 4 
4 / v . . A ^ / . . , 1 \2 P M F 

|4 

Likewise 

(2.11) cM\r-v)^^. 

PM 

The theorem now follows from Theorem 2 (ii) and (2.10) - (2.11). 
Before we turn to the case where M is a complex manifold we make the 

following observation. Let <t>: M —» M* be a biholomorphic mapping of M on 
M* with the non-vanishing Jacobian/^, = dw/dz, w = 4>{z). Assume that there 
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is an a > 0 such that [^(s)]" is holomorphic in M and that M M * ( ^ W ) = 
JV \J<t>(z)\2adixM(z) for each Borel subset N of M. Then, / —> (/o4>)// is an 
isometry of H2(M*) onto H2(M). Therefore 

(2.12) KM(z,z) = KM*(4>(z),ï(z))\J+(z)\\ Z G M. 

THEOREM 4. Le/ /fte assumptions of formula (2.12) prevail. Then (see formula 
(2.4)) 

RJMKz;v) = RJM*ï {$(*); 4>*{v)), m = 1 , 2 , . . . . 

77za/ w, /fee non-negative function Rm(z; v) is biholomorphic invariant. 

Proof. We have Lw
(M)(s; v) = W2[KM, dvKM, . . . , 3 , " ^ ] , KM = KM(z, z). 

Using (2.12) and standard properties of Wronskians we obtain, writing 
KM* = KM*(w, w),w = 4>{z) and / = J<t>{z), 

Jm
iM\z;v) = Wz[JaJaKM*} Jadv(J

aKM*), . . . , rd,m(J"KM.)] 

= (Ja)m+1Wz[JaKM*, d,(JaKM.), . . . , 3,w(7"#**)] 

= (Ja)m+1w, JaKM*, 2Lt I • )5v
JJadv

 JKM*, . . . , 
;=0 \ J / 

JUL ( ™\ 

7=0 \ J / 

= (Ja)w (Ja)m WZ[KM*, dvKM*, . . . , 3v
mKM*] 

= \J\am WW[KM*} dv*KM*, . . . , dv*
mKM*], 

wThere w = <t>(z) and v* = (t>*(v). Consequently, 

JnM(z : v) = /„<"*>(*(*); «•(*0)|/*(*)l2a(w+1)-

The theorem now follows from this, (2.12) and (2.4). 

Remarks. Some comments about the nature of the function Rm(z, v) are in 
order. Clearly, RQ(Z; V) = 1. For w ^ 1, however, let the assumptions of 
formula (2.12) prevail. Then, a close examination of the definition of Rm(z : v) 
via (2.2) - (2.4) and Theorem 4 shows that, for each z £ M, Rm(z; ) is a 
function which is defined on the complex tangent space of M at z. For m = 1, 
R\(z : v) = S2(z : v) is a complex tensor field of M which is covariant of 
degree 2. It behaves exactly as the Bergman metric and induces a Rieman-
nian structure on M which is Kâhlerian. 

3. Extension to manifolds. We now assume that M is a complex n-dimen-
sional manifold. For sake of simplicity we consider only the Bergman kernel 
case. The extension of the Bergman kernel function theory to complex mani
folds is by now standard (cf. [5 and 6]). However, here we take a slightly 
different course. 
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Let F2(M) be the space of holomorphic w-forms a on M normed by ||a||2 = 
^n2 JM& A a. Here, a = adzi A . . . A dzn in a local coordinate neighborhood 
£/ of s £ ilf. Since |a(z)|2 is plurisubharmonic in U, we have, for each compact 
subset A of U 

(3.1) |a(f)| ^ NA\\a\\, Ï £ACU, 

where NA is a positive constant depending only on A. Therefore, F2(M) is a 
separable Hilbert space with the scalar product 

(3.2) (a, p) = in2 f a A ft 

Let v e Cn - {0}. For a fixed f 6 C/ C M we let 

(3.3) D^sa = d,ma(f), m = 0, 1, . . . . 

We write /$• = D0
vj and thus /$•« = a(f). According to (3.1) each £>™r is a 

bounded linear functional on F2(M) and therefore there exists a unique J f $• in 
F2(M) such that 

(3.4) Zf« = a(r) = (a,JTf) 

for every a £ F2(Af). We write J f ( , f ) = j f f and so 

(3.5) J f (z, f) = fe(z, f)dZl A . . . A dzn 

in a local neighborhood V of z G M. Let 77 G F C I . According to (3.4) 

(3.6) k(t,v) = ( J f „ J f r ) = ( J f r , J Q = M^T) 

and especially &(f, f) è 0. J^f =jf( , f) is called the Bergman n-form at 
f G M and in terms of a local coordinate system z of M it is given by (3.5) 
with a locally defined Bergman kernel function k(z, f), (z, f) Ç F X U. 
Clearly, &(z, f) is holomorphic in V X V, where V is the complex conjugate 
neighborhood of U. 

We should emphasize again that the Bergman w-form is not a globally 
defined form. On the other hand one can also define, although not essential 
for our present purposes, the Bergman 2w-form (cf. Kobayashi [5]) 

K(z,ï) = J f ( z f f ) # i A . . . A d£H 

which is invariant under the group of holomorphic transformations of M. 
K( , f) does not belong to F2(M). However, it reproduces F2(M) in the 
following sense; for fixed f G M and each a £ F2(M) 

«(f) = in2 f « A K( ,?). 

This immediately follows from (3.2) and (3.4) - (3.5). Of course, K(z, f) can 
be expressed in the usual way in terms of an orthonormal basis for F2{M) and 
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it is a holomorphic 2n-form on M X M. We also note that the latter 2n form 
differs from our w-form by only a constant in a given coordinate neighborhood. 

LEMMA 1. The Riesz représenter of £C,r ^ F%(M) is dv
mjf( , f), where, 

in a local neighborhood V of z Ç AT, 5„mjT(s, f) = 9»,rm^(s, f)<^i A . . . A rfzn. 
Moreover, (iC.r. £>*,r) = d,*3,ro*(f, f) aw* *> ll^C.rll2 = d/>3/^(f, f). 

Proo/. This follows from (3.1) - (3.6). 

The Carathéodory metric on the manifold M is defined exactly as before. 
The same applies for the set s/ namely, s/ = {(f, v) 6 M X (Cn - {0}): 
there ex is t s /£ ff(M: A) with d,/(f) ^ 0j . It is open in M X (Cn - (Oj)and 
for (f, v) 6 J / , dvF(Ç) = C(f : w) > 0 with F € fl>(M : A). Let ^ = 
( f G I : there exists a G P2(Af) with a(f) ^ 0}. Again ^ i is open in M and 
f 6 « ^ i implies, using (3.6), that jfe(f, f) > 0. 

We are now in a position to formulate minimum problems which are similar 
to the ones stated previously. Let 

Am(Ç : v) = {a 6 F2(M):Dj
v,ta = <5JW,j = 0,1 w), m = 0, 1, . . . . 

As before, -4m(f : fl) is a closed convex subset of F2(M). Moreover, Ao(£ : v) ^ 
0 if f G ^ i and 4OT(f : «;) ^ 0, m ^ 1, if also (f, v) Ç j / . Indeed, the n-form 

PmjTf 

is in Am(Ç : z/) for each m = 0, 1, . . . . Let ^m be the unique solution to the 
minimum problem 

A™ = Xm(f : v) = min {|H|2: a G ^m(f : »)}• 

By Lemma 1, 

h-m Jm—l/Jmi 

where 

Jn = Jm(t : v) = TFr[*, 3,fc, . . . , 3,w*], * = *(f, f). 

Here again, J_i = 1, /<, = £(f, f) and Jw = (Il7=o X*)"1. 
The function 

*m(f : ») = ( ft f) V ( m + 1 ) Jm(f :v), k = *(r, ?), 

is independent of a choice of a coordinate system and exactly as in Theorem 4 
is invariant under the holomorphic transformations of M. Concerning the 
nature of PTO(f : v) see the remarks at the end of the previous section. Especial
ly, Pi(f : v) = 52(f : v) is the Bergman metric given by 

(3.7) S2(f : v) = rtJvtvjt TCj = -£-=- log £(f, f). 
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THEOREM 5. Let f G Jé\ C M. Then 
(i) [CM(t : v)]m<-"+» è Rn(£-: v) for each v Ç Cn - {0}. 

(ii) / / a/so (f, v) 6 J / , //few [CM({ : »)]»(»+» < i?m(f : »). 

Proof. Exactly as in Theorem 1. We only have to prove (ii). We have 
I H I 2 ^ A,. But 

I W I _ ( j ! ) 5 C ^ ( f , f ) 2 < ( j ! ) 2 C ^ ( f , f ) 

because T7 is not constant on M. The proof now proceeds as in Theorem 1. 

The remarks following Theorem 1 also apply here. Moreover, for J* Ç ^#1 
and (f, Î)) f j / the Bergman metric is strictly positive by Theorem 5 (ii). 
Therefore, we can define the sectional Riemannian curvature R = RM(Ç '• *>) 
as before where now the T^a re given in (3.7). Here 

M"1 = (2 - R)kS*; k = *(f, f ), 5 = 5(f : »), 

with JU = ju(f : z;) = min {||a||2: a É i ( f : z / ) ) and 

i ( f : ^ ) = ( a e ^ 2 (M) : Ipt = De.^a = 0, j = 1, . . . , n, 
Dttia = 1}. 

Here, ej stands for the unit vector (0, . . . , 0, 1 ,̂ 0, . . . , 0) £ Cn. Exactly as 
in Theorem 2 we have: 

THEOREM 6. L d f ^ i C M and (f, v) £ J / . Then 4C4 < (2 - R)S\ 
C = CM (J" : v), 5 = 5(f : v), and in particular i?(f : u) < 2. 

We conclude this section by remarking that the same results, in view of 
Theorem 4, could be obtained if we introduce the ' Volume element" vM

{a) = 
in2kl~adzi A . . . A dzn A dzi A . . . A dzn, k = k(z, z), a an integer g; 2. One 
then speaks about automorphic forms of weight a instead of holomorphic 
forms. We shall not pursue this topic further. 

4. Plane domains. If Af is a plane domain having non constant bounded 
analytic functions then the Carathéodory metric becomes C(f)|df|. Here 
C(f) = CM(?) = sup {|/'(f)|: / £ Ht(M : A)} is the analytic capacity of M 
at f. There exists a unique T7 G Hç{M : A), called the A hlfor s function, with 
^ '(f) = C(f) > 0. According to Theorem 1, for f 6 J^ , 

/ m \ - 2 
(TO+1) ^ n LI I z^-(m+l) * ( n *i) (4.i) car*""1' ^ u i fell K-^'J^), «el, 

with / ro(f) = det | | i^ |L*=ow and K = £(f, f). Here X „ = d>+*K/Wd?). 
If d/xM acts on M we have a strict inequality in (4.1). This is the case if for 
example K is the Bergman kernel. 

If one assumes that M is bounded by a finite number of analytic curves then 
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C(f) = 2TK(Ç, f) (cf. [1, p. 118] where K(Ç, f) is the Szegô kenrel for M. 
Hence 

(4.2) C(w+1)2 £ ( f t kl) 'det IIC^II^-o, « e l , 

where C# = dj+1cC/(df'df*), C = C(f). Equality holds, at one point f 6 M 
and any m ^ 1, if and only if M is simply connected [2]. 

In the general case one uses a canonical exhaustion process (cf. [9]) to 
show that C(f ) is real analytic and that (4.2) still holds. Especially, for m = 1, 
we have that C2 ^ \ A log C, (A is the Laplacian), or that the curvature of 
C(f )|^f | is always ^ — 4. This last result is due to Suita [9] and is generalized 
in [2]. 
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