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We consider the Gierer–Meinhardt system with precursor inhomogeneity and two small

diffusivities in an interval⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

At = ε2A′′ − μ(x)A+ A2

H
, x ∈ (−1, 1), t > 0,

τHt = DH ′′ −H + A2, x ∈ (−1, 1), t > 0,

A′(−1) = A′(1) = H ′(−1) = H ′(1) = 0,

where 0 < ε�
√
D � 1,

τ � 0 and τ is independent of ε.

A spike cluster is the combination of several spikes which all approach the same point in the

singular limit. We rigorously prove the existence of a steady-state spike cluster consisting of N

spikes near a non-degenerate local minimum point t0 of the smooth positive inhomogeneity

μ(x), i.e. we assume that μ′(t0) = 0, μ′′(t0) > 0 and we have μ(t0) > 0. Here, N is an arbitrary

positive integer. Further, we show that this solution is linearly stable. We explicitly compute all

eigenvalues, both large (of order O(1)) and small (of order o(1)). The main features of studying

the Gierer–Meinhardt system in this setting are as follows: (i) it is biologically relevant since

it models a hierarchical process (pattern formation of small-scale structures induced by a

pre-existing large-scale inhomogeneity); (ii) it contains three different spatial scales two of

which are small: the O(1) scale of the precursor inhomogeneity μ(x), the O(
√
D) scale of the

inhibitor diffusivity and the O(ε) scale of the activator diffusivity; (iii) the expressions can be

made explicit and often have a particularly simple form.

Key words: 35B35; 35J75; 35K57; 35K58; 92C15

1 Introduction

In his pioneering work [31] in 1952, Turing studied how pattern formation could start

from an unpatterned state. He explained the onset of pattern formation by the presence
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of spatially varying instabilities combined with the absence of spatially homogeneous

instabilities. This approach is now commonly called Turing diffusion-driven instability.

Since then many reaction–diffusion systems in biological modelling have been proposed

and the occurrence of pattern formation has been investigated based on the approach

of Turing instability [31]. One of the most widely used class of biological pattern-

formation models consists of the activator-inhibitor type models which are based on

real-world interactions such as those encountered in experiments and observations on

seashells, animal skin patterns, embryological development, cell signalling pathways and

many more. Amongst these, one of the most popular models is the Gierer–Meinhardt

system [11,16,18], which in one dimension with a precursor-inhomogeneity and two small

diffusivities can be stated as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
At = ε2ΔA− μ(x)A+ A2

H
, x ∈ (−1, 1), t > 0,

τHt = DΔH −H + A2, x ∈ (−1, 1), t > 0,

A′(−1) = A′(1) = H ′(−1) = H ′(1) = 0,

(1.1)

where 0 < ε�
√
D � 1,

τ � 0 and τ is independent of ε.

In the standard Gierer–Meinhardt system without precursor, it is assumed that μ(x) ≡ 1.

Precursor gradients in reaction–diffusion systems have been investigated in earlier work.

The original Gierer–Meinhardt system [11, 16, 18] has been introduced with precursor

gradients. These precursors were proposed to model the localization of the head structure

in the coelenterate Hydra. Gradients have also been used in the Brusselator model to

restrict pattern formation to some fraction of the spatial domain [14]. In that example,

the gradient carries the system in and out of the pattern-forming part of the parameter

range (across the Turing bifurcation), thus effectively confining the domain where peak

formation can occur.

In this paper, we study the Gierer–Meinhardt system with precursor and prove the

existence and stability of a cluster, which consists of N spikes approaching the same

limiting point.

More precisely, we prove the existence of a steady-state spike cluster consisting of

N spikes near a non-degenerate local minimum point t0 of the positive inhomogeneity

μ(x) ∈ C3(Ω), i.e. we assume that μ′(t0) = 0, μ′′(t0) > 0 and we have μ(t0) > 0. Further,

we show that this solution is linearly stable.

We explicitly compute all eigenvalues, both large (of order O(1)) and small (of order

o(1)). The main features of studying the Gierer–Meinhardt system in this setting are as

follows:

(i) It is biologically relevant since it models a hierarchical process (pattern formation of

small-scale structures induced by a pre-existing inhomogeneity).

(ii) It is important to note that this system contains three different spatial scales two of

which are small (i.e. o(1)):
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(a) The O(1) scale of the precursor μ(x).

(b) The O(
√
D) scale of the inhibitor diffusivity.

(c) The O(ε) scale of the activator diffusivity.

Consequently, there are the two small quantities
√
D and ε√

D
which play an

important role throughout the paper.

(iii) The expressions can be made explicit and often have a particularly simple form.

Let us now summarize the analytical approach employed in our paper. The existence

proof is based on Liapunov–Schmidt reduction. The stability of the cluster is shown

by first separating the eigenvalues into two cases: Large eigenvalues which tend to a

non-zero limit and small eigenvalues which tend to zero in the limit D → 0 and ε√
D
→ 0.

Large eigenvalues are then explored by deriving suitable non-local eigenvalue problems

(NLEPs) based on a compactness argument of Dancer [6]. Small eigenvalues are calculated

explicitly by using asymptotic analysis with rigorous error estimates.

We shall establish the existence and stability of positive N-peaked steady-state spike

clusters to (gm1). The steady-state problem for positive solutions of (1.1) is the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε2A′′ − μ(x)A+ A2

H
= 0, x ∈ (−1, 1),

DH ′′ −H + A2 = 0, x ∈ (−1, 1),

A(x) > 0, H(x) > 0, x ∈ (−1, 1),

A′(−1) = A′(1) = H ′(−1) = H ′(1) = 0.

(1.2)

To have a non-trivial spike cluster, we assume throughout the paper that

N � 2. (1.3)

Before stating our main results, let us review some previous results on pattern formation

for the Gierer–Meinhardt system (1.1) , in particular concerning spiky patterns.

(1) I. Takagi [30] proved the existence of N-spike steady-state solutions of (1.1) in an

interval for homogeneous coefficients (i.e. μ(x) = 1) in the regime ε � 1 and D � 1,

where N is an arbitrary positive integer. For these solutions, the spikes are identical

copies of each other and their maxima are located at

tj = −1 +
2j − 1

N
, j = 1, . . . , N,

The proof in [30] is based on symmetry and the implicit function theorem.

(2) In [15] (using matched asymptotic expansions) and [43] (based on rigorous proofs),

the following stability result has been shown: For the N-spike steady-state solution

derived in item 1 and 0 � τ < τ0(N), where τ0(N) > 0 is independent of ε, there are

numbers D1 > D2 > · · · > DN > · · · (which have been computed explicitly) such that

the N-spike steady state is stable for for D < DN and unstable for D > DN .
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(3) In [15] (using matched asymptotic expansions) and [33] (based on rigorous analysis),

the following existence and stability results have been shown: For a certain parameter

range of D, the Gierer–Meinhardt system (1.1) with μ(x) = 1 has asymmetric N-spike

steady-state solutions, which consist of exact copies of precisely two different spikes

with distinct amplitudes. They can be considered as bifurcating solutions from those

in item 1 such that the amplitudes start to differ at the bifurcation point (saddle-node

bifuraction). The stability of these asymmetric N-peaked solutions has been studied

in [33].

(4) In [45], the existence and stability of N-peaked steady states for the Gierer–Meinhardt

system with precursor inhomogeneity has been shown. These spikes have different

amplitudes. In particular, the results imply that precursor inhomogeneities can induce

instabilities. Single-spike solutions for the Gierer–Meinhardt system with precursor

including spike motion have been studied in [32].

(5) In [42], the existence of symmetric and asymmetric multiple spike clusters in an

interval has been shown.

Compared to each of the items listed above, the setting and results in our pa-

per have marked differences. We now consider two small parameters, D and ε√
D

which results in new types of behaviour. The leading-order asymptotic expression of

the large and small eigenvalues depend on the index of the eigenvalue quadratic-

ally, whereas in items 1 and 2, this relation is oscillatory (involving trigonometric

functions).

In our study, the spikes in leading order have equal amplitudes and uniform spacing,

although there is precursor inhomogeneity in the system, in contrast to item 3. The

amplitudes, positions and eigenvalues in our study can be characterized explicitly and

have a simpler form than in item 4. We can also prove the stability of clusters not merely

their existence as in item 5. In particular, we show here that the clusters may be stable,

whereas in item 5 they are expected to be unstable.

In the shadow system case (D = ∞), the existence of single- or N-peaked solutions

has been established in [12, 13, 21, 22] and other papers. It is interesting to remark that

symmetric and asymmetric patterns can also be obtained for the Gierer–Meinhardt system

on the real line, see [7,8]. We refer to [23] for the singular limit eigenvalue problem (SLEP)

approch for the existence and stability of multi-layered solutions for reaction–diffusion

systems. For two-dimensional domains, the existence and stability of multi-peaked steady

states has been proved in [38–40] and results similar to items 1 and 2 have been derived.

Hopf bifurcation has been established in [6,34,35,40]. The repulsive dynamics of multiple

spikes has been studied in [9].

Another study with three different spatial scales, two of which are small, considers a

consumer chain model allowing for a novel type of spiky clustered pattern which is stable

for certain parameters [46].

The model in our paper shows some similarity to variational models for material

microstructure [1,20,48]. In both models, the solutions have two small scales. However, in

our case, we have two parameters to control each of them independently, whereas in the

microstructure case they are expressions of different orders depending on the same small

parameter and so they are related to one another.
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Results on the existence and stability of multi-spike steady states have been reviewed

and put in a general context in [47].

We plan to continue the investigation of stable clusters in future research. In particular,

we are interested in two-dimensional patterns. Whereas in one space dimension the spikes

in the cluster are aligned, in two dimensions we expect a rather rich geometric picture of

possible spike locations.

This paper has the following structure: In Section 2, we state our main results on

existence and stability. Then, we show some numerical simulations to illustrate the main

results. We also study the dynamics of pattern formation, even outside the regime covered

by the results. Next, we present four highlights of the results and their proofs. Finally,

we sketch the main steps of the proofs. In Section 3, we introduce some preliminaries.

In Sections 4–7, we prove the existence of steady-state spike clusters: In Section 4, we

introduce suitable approximate solutions, in Section 5, we compute their error, in Section

6, we use the Liapunov–Schmidt method to reduce the existence of solutions of (1.2) to a

finite-dimensional problem, in Section 7, we solve this finite-dimensional reduced problem.

In Sections 8, 9 and Appendix B, we prove the stability of these steady-state spike clusters:

In Section 8, we study the large eigenvalues of the linearized operator and show that

it has diagonal form. We give a complete description of their asymptotic behaviour

which is stated in Lemma 15. In Section 9, we characterize the small eigenvalues of the

linearized operator and show that they all have negative real part. This includes deriving

the eigenvalues of a matrix which is needed to compute the small eigenvalues explicitly.

We give a complete description of their asymptotic behaviour in leading order which can

be found in Lemma 16. Our approach here is to interpret the main matrix as the finite-

difference approximation of a suitable ordinary differential equation, compute the solution

of this approximation explicitly and get the eigenvectors by taking its values at uniformly

spaced points. In Section 10, we conclude with a discussion of our results with respect

to the bridging of length scales and the hierarchy of multi-stage biological processes. In

Appendix A, we state a few results on NLEPs which are needed throughout the paper. In

Appendix B, we perform the technical analysis needed to derive the small eigenvalues.

2 Main results on existence and stability

In this section, we state our main results on existence and stability of solutions and present

four highlights of our approach and sketch the proofs of the main results.

We first need to introduce some essential notation. Let L2(−1, 1) and H2(−1, 1) denote

Lebesgue and Sobolev space, respectively. Let the function w be the unique solution

(ground state) of the problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩
w′′ − w + w2 = 0, y ∈ �,

w > 0, w(0) = maxy∈� w(y),

w(y) → 0 as |y| → ∞.

(2.1)

Then, w(y) can explicitly be written as

w(y) =
3

2
cosh−2

(y
2

)
. (2.2)
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Elementary calculations give

∫
�
w2(z) dz = 6,

∫
�
w3(z) dz = 7.2,

∫
�

(
w′)2 (z) dz = 1.2. (2.3)

Let

Ω = (−1, 1).

Let t0 ∈ (−1, 1) and set

μ0 = μ(t0). (2.4)

Let ξ̂0 satisfy

ξ̂0 ∼ 1

(μ0)3/2
, (2.5)

compare (4.30).

We set

ξε :=
2
√
D

ε
∫

� w
2(z) dz

. (2.6)

Our first result is about the existence of an N-spike cluster solution near a non-degenerate

local minimum point of the precursor.

Theorem 1 (Existence of an N-spike cluster) Let N be a positive integer and t0 ∈ (−1, 1).

We assume that μ ∈ C3(−1, 1) and

μ′(t0) = 0, μ′′(t0) > 0. (2.7)

Then, for ε�
√
D � 1, problem (1.2) has an N-spike cluster solution which concentrates

at t0. In particular, it satisfies

Aε(x) ∼
N∑
k=1

ξεξ̂
0μ0w

(√
μ0
x− tεk
ε

)
, (2.8)

Hε(t
ε
k) ∼ ξεξ̂

0, k = 1, . . . , N, (2.9)

tεk → t0, k = 1, . . . , N, (2.10)

where μ0 has been defined in (2.4), ξ̂0 has been introduced in (2.5) and ξε has been defined

in (2.6).

Next, we state our second result which concerns the stability of the N-spike cluster

steady states given in Theorem 1.

Theorem 2 (Stability of an N-spike cluster) For ε �
√
D � 1, let (Aε,Hε) be an N-spike

cluster steady state given in Theorem 1. Then, there exists τ0 > 0 independent of ε and
√
D

such that the N-spike cluster steady state (Aε,Hε) is linearly stable for all 0 � τ < τ0.
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Figure 1. Clustered spiky steady states of (1.1) for ε2 = 0.00001, D = 0.001, μ(x) = 6 +

400x2 and μ(x) = 6 + 200x2, respectively. Shown are a six-spike cluster and an eight-spike cluster. In

both cases, the activator a is displayed in the left graph and the inhibitor h in the right graph.

Now by performing some numerical simulations, we study patterns for the Gierer–

Meinhardt system with precursor gradient given in (1.1) systematically in various situ-

ations.

Throughout all these simulations, we choose τ = 0.1, ε2 = 0.00001 and take varying

values for D ranging between a few times ε2 and 1.

Further, we vary the strength of the precursor gradient and observe two distinct types of

behaviour: For strong precursor gradient, the spikes assemble as a cluster near the global

minimum point of the precursor, for weak precursor gradient, the spikes are distributed

over the whole interval.

We will observe a rather rich dynamical behaviour which by far exceeds the immediate

vicinity of the spike cluster which will be analysed in detail in this paper.

First, we show the results of computations of spike cluster steady states of (1.1). These

have been obtained as long-time limits of (1.1) and are numerically stable.

In Figure 1, we note that the amplitudes of the different spikes of a cluster in the

activator component are very close to each other.

On the other hand, the inhibitor values differ substantially at different spike locations

and are highest near the centre of the cluster. This stands in contrast to the precursor

μ(x) which attains its global minimum at the centre of the cluster. The combination of

these two effects leads to almost equal spike amplitudes.

Both the activator and inhibitor peaks have almost equal distance.

Now, we show the initial condition which has been used in all simulations of clusters

and multiple spikes.

Next, we display the dynamics of getting a cluster from the initial condition given in

Figure 2.

In Figure 3, for t = 0, we start with very fine oscillations of the activator a. Then,

for t = 0.70, we reach a pattern which is very close to zero except in the centre of the

interval where fine oscillations still prevail. Starting from t = 0.80, we see eight spikes

which generally increase in amplitude and whose positions are mainly fixed. Looking

more closely, we can also see that the amplitudes show some oscillatory behaviour, first

overshooting the final amplitude of around 0.57 and then oscillating around the final

amplitude and approaching it.

Next, we consider a different regime of a weaker precursor gradient (all other parameters

remain unchanged from before). We observe spikes which are distributed over the whole

interval.
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Figure 2. Initial condition of cluster and multiple spikes, activator and inhibitor are shown. We

choose a large number of oscillations for the activator in order to get as many spikes as possible.
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Figure 3. Dynamics of a spike cluster for t = 0, 0.05, 0.10, 0.20, 0.30, 0.50, 0.70, 0.80, 1.0, 5.0,

10, 50, 100, 500, 1, 000, 5, 000 and D = 0.001. The activator is shown. The initial oscillations are

transformed into a spike cluster located at the global minimum point of the precursor inhomogeneity

μ(x) = 6 + 200x2.
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Figure 4. Multi-spike pattern consisting of 22 spikes distributed over the whole domain for

D = 0.001 and precursor inhomogeneity μ(x) = 1 + x2. Activator and inhibitor are shown.

Now, we display the dynamics of getting a multiple spike pattern from the initial

condition given in Figure 2.

In Figure 5, we start with very fine oscillations of the activator a. Immediately, the

amplitudes of the oscillations change driven by the precursor gradient, but their period

remains mainly unchanged. Then, spikes start to form, first at the boundary, then further

and further inside the interval. Finally, the spikes in the centre of the domain form almost

simultaneously and there is also some oscillatory behaviour between their amplitudes.

It takes longest for the amplitudes of the two spikes in the centre to increase to their

steady-state value. The positions of the spikes are mainly unchanged but the increase

in amplitude for the two central spikes is coupled with them slowly moving apart and

pushing the remaining spikes away from the centre.

In Figure 6, we show how the number of multiple spikes depends on the diffusion

constants.

Finally, in Figure 7, we show the behaviour as the two small diffusion constants ε2 and

D come close to each other.

Remark 3 For the stability, we assume that 0 � τ < τ0 for some τ0 > 0. Stability in the

case where τ is large has been investigated in [35] for single spikes and those results on

Hopf bifurcation are expected to carry over to the case of an N-spike cluster considered

here. We remark that stability in the case of large τ for the shadow system has been studied

in [6, 34]. It turns out that this Hopf bifurcation leads to oscillations of the amplitudes.

The Hopf bifurcation at τ = τ0, where τ0 is of order 1, still arises even in the regime

0 � ε �
√
D � 1 considered in this paper. For the spike cluster, τ0 is independent of N

which can be shown by the analysis in Sections 8 and 9.

Remark 4 It is an interesting question to consider the maximum number of stable spikes in

the regime 0 � ε �
√
D � 1 studied in this paper. We expect that there are stable multi-

spike solutions if N < c√
D

(in leading order of D). In the regime N ∼ c√
D
, the spikes will be

distributed over the whole interval and at N ∼ c√
D
, we expect an overcrowding instability.

This threshold would be an extension of the corresponding result for D = 1 (see [43]). The

cluster solutions studied in this paper are only possible if N < c√
D log 1

D

(in leading order

of D) due to the distance between spikes. We have presented some numerical simulations of
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Figure 5. Dynamics of multiple spikes distributed over whole domain for t = 0, 3, 5, 10, 20, 25,

30, 35, 40, 50, 100, 500, 1, 000, 5, 000. Further, we have D = 0.001 and precursor inhomogeneity

μ(x) = 1 + x2. The activator is shown.

both situations: A spike cluster as well as multiple spikes distributed over the whole domain.

(For the cluster, see Figure 1, for multiple spikes see Figures 4 and 6. Their dynamics are

shown in Figures 3 and 5, respectively.)

Remark 5 If ε√
D
∼ 1, the spike solutions will change into other types of patterns, e.g. spatial

oscillations, which could again be stable. It is also possible that the patterns will vanish. We

have presented some numerical examples to illustrate this behaviour (see Figure 7).

Remark 6 Previous studies of the precursor case can be found amongst others in [2,27,28].

We also refer to results for the dynamics of pulses in heterogeneous media [24, 49]. This

clustered spike pattern and multiple spikes distributed over the whole interval are more

regular than multiple spike patterns observed for the Gierer–Meinhardt system with precursor
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Figure 6. Multiple spikes are displayed for D = 0.001, 0.01, 0.1 and precursor inhomogeneity

μ(x) = 1+x2. The activator is shown. We get 22, 6 and 2 spikes, respectively. The number of spikes

decreases with increasing D which can be understood by an overcrowding instability.
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Figure 7. A combination of oscillations and pattern-free state is displayed for D = 0.0001, 0.00005,

0.00003, 0.00002. Here, D approaches ε2 = 0.00001. The activator is shown. For decreasing D, the

oscillations disappear, starting in the centre of the domain, which can be explained by the limited

range of Turing instability.

and order 1 inhibitor diffusivity studied in [45]. In that case, multiple spike patterns have

irregular distances and amplitudes since the precursor interacts with the geometry of the

domain (represented by the Green’s function) globally. On the other hand, for the regime

covered in this paper, the precursor acts globally but the Green’s function acts only locally

between neighbouring spikes.

The proofs of both Theorems 1 and 2 will follow the approach in [47], where we

reviewed and discussed many results on the existence and stability of multi-spike steady

states. Before providing a sketch of the proofs of Theorems 1 and 2, we first state four

highlights of the results and proofs in an informal manner. For each of these, we also

indicate the novelty in comparison to previous work.

Highlight 1: For the proof in Theorem 1, we use Liapunov–Schmidt reduction to derive

a reduced problem which will determine the positions of the spikes. This reduced problem

in leading order is given by

W0(t) ∼ c1
∑

k,|k−s|=1

e−|ts−tk|/
√
D

(
− ts − tk

|ts − tk|

)
+ c2

√
Dμ′′(t0)(ts − t0), s = 1, . . . , N, (2.11)

where c1, c2 > 0 are constants which are independent of the small parameters and

t = (t1, . . . , tN) are the positions of the spikes (compare (7.4)). We need to solve W0(t) = 0,
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which implies

ts − ts−1 ∼
√
D log

1

D
, s = 2, . . . , N,

(compare (7.6)). The distance between neighbouring spikes in the cluster is small (con-

verging to zero) and in leading order, it is the same between any pair of neighbours.

Further note that the distance is determined by the large diffusion constant D. In previous

work for D = O(1), the spikes either have distance of order 1 or, in the case of clusters,

they have small distance which is determined by the small diffusion constant ε. Thus,

the spacing between neighbouring spikes follows a new asymptotic rule not encountered

before.

The deeper reason for this behaviour is that the spike cluster we consider in this paper

is formed by balancing the interactions of the inhibitor between neighbouring spikes and

the inhomogeneity. On the other hand, in [42] and other previous work on spike clusters,

they are established by balancing the interactions of the activator between neighbouring

spikes and the inhomogeneity.

Highlight 2: The large eigenvalues with λε → λ0 
= 0 and their corresponding eigen-

functions

φε,i(y) → φi(y), y =
x− ti

ε
, i = 1, . . . , N,

where φε,i(y) is the restriction of the re-scaled eigenfunction of the activator Aε near ti, in

the limit max
(

ε√
D
, D
)
→ 0 solve the NLEP

Δyφi − φi + 2wφi −
2
∫

� wφi dy∫
� w

2 dy
w2 = λ0φi, i = 1, . . . , N,

(see (8.6)). This NLEP has diagonal form. Thus, with respect to large eigenvalues each

spike only interacts with itself and not with the other spikes. It follows that the spike cluster

is stable with the respect to large eigenvalues. In previous work for the case D = O(1),

the stability problem of large eigenvalues for multiple spikes leads to a vectorial NLEP.

It has to be studied by considering the spectrum of the matrix involved. Depending on

the parameters, the multiple spikes can be stable or unstable. In the case of clusters for

D = O(1), the stability has not been considered rigorously but we expect that the solution

is unstable.

Highlight 3: The small eigenvalues λε → 0 in leading order are given by the eigenvalues

of the matrix

−ε2c3M(t0),

where c3 > 0 is independent of the small parameters, t0 = (t0, . . . , t0) and

M(t0)Ni,j=1 ∼ μ′′(t0)

[
log

1

D

[
−(i− 1)(N + 1 − i)δi,j−1 − i(N − i)δi,j+1

+[(i− 1)(N + 1 − i) + i(N − i)]δi,j
]
+ 4δi,j

]

with δN,0 = δ1,N+1 = 0 (compare 9.13). The tridiagonal matrix M(t0) derived here indicates

that with respect to small eigenvalues each spike only interacts with its nearest neighbour
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and not with the other spikes. This is different from the case D = O(1): For multiple

spikes, the matrix typically has strictly positive entries only (although it could have zero

eigenvalues in the presence of symmetries), for clusters, a similar tridiagonal matrix which

depends on ε has been studied to show the existence of spike clusters, see [42].

Highlight 4: We determine all the eigenvalues of the matrix M(t0) (see Highlight 3)

explicitly by a method based on exactly finding a finite-difference approximation to a

suitable ordinary differential equation.

These eigenvalues are given by

λn,ε ∼ −ε2 log
1

D
c3μ

′′(t0)n(n+ 1), n = 1, . . . , N − 1.

Further, there is an eigenvalue of smaller size given by

λ0,ε ∼ −ε24c3μ′′(t0)

(compare Lemma 16). This implies that the spike cluster is stable with respect to small

eigenvalues. This result seems to be new in the literature. Therefore, we provided this

proof.

Finally, we give a sketch of the proofs of Theorem 1 (existence) and Theorem 2

(stability).

We begin by stating the main steps in the proof of Theorem 1:

(1) The existence problem (4.20) is reduced to a non-local one-dimensional problem

Sε[Â] = ε2Â′′ − μ(x)Â+
Â2

T [Â]
= 0,

where

T [Â] =

∫
�
GD(·; z)Â2(z) dz

is an integral operator solving (4.21).

(2) The ansatz for a spike cluster is

Â(x) =

N∑
k=1

ξ̂kw̃k(x)

(see (2.8)) with ξ̂k determined by the amplitude identity

ξ̂k = T [Â](tk) for k = 1, . . . , N.

(3) The amplitude identity is crucial to show that Sε[Â] is small in an appropriate norm.

Therefore, Â is intuitively almost a solution.

(4) Using the estimate on Sε[Â], one can perform Liapunov–Schmidt reduction resulting

in a small

φε ⊥ span{w̃′
k, k = 1, . . . , N} ⊂ H2(Ω)
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such that

Sε[Â+ φε] ∈ C = span{w̃′
k, k = 1, . . . , N} ⊂ L2(Ω).

(5) We find a solution close to Â if Sε[Â + φε] ⊥ C is satisfied. Solving the finite-

dimensional problem Sε[Â + φε] ⊥ C amounts to equating N L2-inner products to

zero. This leads to a system of equations to leading order given by (2.11) in the spike

points (t1, . . . , tN), which can be shown to have a solution.

The main steps in the proof of Theorem 2 can be stated as follows:

The eigenvalue problem is derived by linearizing the Gierer–Meinhardt system (1.1)

around the clustered steady state Aε derived in Theorem 1. It is stated in (8.1) and for

τ = 0, we have

L̃ε,tεφε = ε2Δφε − μ(x)φε +
2Aεφε
T [Aε]

− A2
ε

(T [Aε])2
(T ′[Aε]φε) = λεφε,

where λε is some complex number and φε ∈ H2(Ω) satisfying Neumann boundary condi-

tions. Further, for φ ∈ L2(Ω),

T ′[Aε]φ = 2ξε

∫
�
GD(·; z)Aε(z)φ(z) dz

is an integral operator solving (8.3).

Then, we consider the eigenvalues in three cases separately as follows:

(1) We first study large eigenvalues λε = O(1).

(i) Using (8.1) and the decay of the spikes, it is shown that in leading order an

eigenfunction satisfies

φε ∼
N∑
j=i

φε,j

(
x− tj

ε

)
.

This means that the eigenfunction can be decomposed into parts which are

located near each of the spikes.

(ii) Taking the limit max(D, ε√
D
) → 0, we derive φε,j → φj , where φj satisfies the

NLEP

φ′′
ε,j − φj + 2wφj − 2

∫
� wφj dy∫
� w

2 dy
w2 =

α

μ0
φε,j , j = 1, . . . , N.

This means that we get an NLEP which has diagonal form.

(iii) By a result in [43], it follows that the spike cluster is stable with respect to large

eigenvalues.

(2) Next, we study small eigenvalues λε = o(1).
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(i) The ansatz for an eigenfunction is

φε =

N∑
j=1

aεjεw̃
′
ε,j(x) + φ⊥(x),

where φ⊥ ⊥ w̃′
ε,j in L2-sense for j = 1, . . . , N.

(ii) Then, we show that φ⊥ = o(1). Note that εw̃′
ε,j is of exact order 1 and so it

dominates the eigenfunction.

(iii) Taking the spatial derivative of the steady-state problem (4.20), we get an identity

for w̃′
ε,j (up to small error terms) which we subtract from the eigenvalue problem.

(iv) We expand the terms in (8.1) around the spikes using the expansion of the Green’s

function GD and the inhomogeneity μ(x), both around the spike points, collecting

the leading terms and giving rigorous estimates for the remainder.

(v) We multiply the eigenvalue problem (8.1) on both sides by εw̃′
ε,k, k = 1, . . . , N.

Using the results in (iv), we derive the matrix M(t0) stated in (9.13) which

determines the stability properties caused by small eigenvalues.

(vi) We determine the eigenvalues and eigenvectors of the matrix M(t0) explicitly

by considering it as the finite-difference approximation of a suitable ordinary

differential equation, compute the solution of this approximation explicitly and

get the eigenvectors by taking its values at uniformly spaced points. See Lemma

13 and its proof.

It follows that the eigenvalue problem is stable with respect to small eigenvalues.

(3) Finally, we show that there are no eigenvalues λε with |λε| → ∞, if we assume

that Re(λε) > −c for some fixed c > 0. (If the latest condition is not satisfied the

eigenfunction will be uniformly bounded in time and so does not cause any instability.)

(i) We multiply (8.1) on both sides by φε. This leads to a quadratic form in φε.

(ii) By explicit estimates, we show that |λε| � C for some C > 0. See Remark 14.

3 Preliminaries: scaling property, Green’s function and eigenvalue problems

In this section, we will provide some preliminaries which will be needed later for the

existence and stability proofs.

Let w be the ground state solution given in (2.1). By a simple scaling argument, the

function

wa(y) = aw(
√
a y) (3.1)

is the unique solution of the problem⎧⎨
⎩
w′′
a − awa + w2

a = 0, y ∈ �,

wa > 0, wa(0) = maxy∈� wa(y), wa(y) → 0 as |y| → ∞.
(3.2)
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We compute

∫
�
w2
a(y) dy = a3/2

∫
�
w2(z) dz,

∫
�
w3
a(y) dy = a5/2

∫
�
w3(z)dz,

∫
�
(w′

a)
2(y) dy = a5/2

∫
�
(w′)2(z) dz. (3.3)

For z ∈ (−1, 1), let GD(x, z) be the Green’s function defined by

⎧⎨
⎩
DG′′

D(x, z) − GD(x, z) + δz(x) = 0, x ∈ (−1, 1),

G′
D(−1, z) = G′

D(1, z) = 0,
(3.4)

where G′
D(x, z) = ∂

∂x
GD(x, z) (and the left-hand and right-hand limits are considered for

x = z). We calculate

GD(x, z) =

⎧⎨
⎩

θ
sinh(2θ)

cosh[θ(1 + x)] cosh[θ(1 − z)], −1 < x < z,

θ
sinh(2θ)

cosh[θ(1 − x)] cosh[θ(1 + z)], z < x < 1,
(3.5)

where

θ = D−1/2.

We set

KD(|x− z|) =
1

2
√
D
e
− 1√

D
|x−z|

(3.6)

to be the singular part of GD(x, z). Let the regular part HD of GD be defined by

HD = KD − GD . Note that HD(x, z) belongs to the space C∞((−1, 1) × (−1, 1)).

By (3.5), we have

GD(t0, t0) = KD(0)
(
1 + O

(
e−2(d0−η0)/

√
D
))

, (3.7)

where d0 = 1 − |t0| and η0 > 0 is an arbitrary but fixed constant.

For ξ̂0, we estimate

ξ̂0 =
1

2
√
DGD(t0, t0)(μ0)3/2

=
1

(μ0)3/2
+ O

(
e−2(d0−η0)/

√
D
)

(3.8)

by (3.6), (3.7).

Let us denote ∂
∂ti

as ∇ti . When i 
= j, we can define ∇tiG(ti, tj) in the classical way

because the function is smooth. When i = j, then KD(|ti−tj |) = KD(0) = 1

2
√
D

is a constant

independent of ti and we define

∇tiGD(ti, ti) := − ∂

∂x

∣∣∣∣
x=ti

H(x, ti).
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Similarly, we define

∇ti∇tjGD(ti, tj) =

⎧⎨
⎩

− ∂
∂x
|x=ti ∂

∂y
|y=tiHD(x, y) if i = j,

∇ti∇tjGD(ti, tj) if i 
= j.
(3.9)

For convenience and clarity, we introduce a re-scaled version of the Green’s function

which has a finite limit as D → 0. Thus, we set

ĜD(x, z) = 2
√
DGD(x, z), (3.10)

K̂D(x, z) = 2
√
DKD(|x− z|), (3.11)

ĤD(x, z) = 2
√
DHD(x, z). (3.12)

Throughout the paper, let C, c denote generic constants which may change from line

to line.

4 Existence proof I: approximate solutions

Let t0 ∈ (−1, 1) be a non-degenerate local minimum point of the precursor inhomogeneity,

i.e. we assume that (2.7) is satisfied. In this section, we construct an approximation to a

spike cluster solution to (1.2) which concentrates at t0.

The approximate cluster consists of the spikes μiw
(√
μi
x−ti
ε

)
which are centred at the

points ti and have the scaling factors

μi = μ(ti), where i = 1, . . . , N. (4.1)

Let Ωη denote the set of all t = (t1, t2, . . . , tN) ∈ ΩN with −1 < t1 < t2 · · · < tN < 1

satisfying (4.2) and (4.3), where∣∣∣∣ ts − ts−1√
D

− log
1

D
+ log log

1

D
+ log

(
5μ′′(t0)

16μ0

)
+ log[(s− 1)(N + 1 − s)]

]∣∣∣∣ � η (4.2)

for s = 2, . . . , N, ∣∣∣∣∣ 1N
N∑
k=1

tk − t0

∣∣∣∣∣ � η log
1

D
(4.3)

and η > 0 is a constant which is small enough and will be chosen in Section 7 (see

equation (7.9)). The reason for assuming (4.2) and (4.3) will become clear in Section 7

when we solve the reduced problem.

We further denote

t0 = (t0, t0, . . . , t0) (4.4)

and set

Ω0 = {t0}. (4.5)
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To simplify our notation, for t ∈ Ωη and k = 1, . . . , N, we set

wk(x) = μkw

(
√
μk
x− ti

ε

)
(4.6)

and

w̃k(x) = μkw

(
√
μk
x− tk

ε

)
· χ
(∣∣∣∣x− tk

δε

∣∣∣∣
)
, (4.7)

where χ is a smooth cut-off function which satisfies the conditions

χ(x) = 1 for |x| < 1

2
, χ(x) = 0 for |x| > 3

4
, χ ∈ C∞

0 (�) (4.8)

and

ε� δε �
20√
μ0
ε log

1

ε
. (4.9)

Using (4.2), we have |ti − t0| = O
(√

D log 1
D

)
for i = 1, . . . , N. This implies

|μ(ti) − μ(t0)| = O

(
D

(
log

1

D

)2
)
, (4.10)

μ′(ti) = μ′′(t0)(ti − t0) + O

(
D

(
log

1

D

)2
)

= O

(√
D log

1

D

)
, (4.11)

μ′′(ti) = μ′′(t0) + O

(√
D log

1

D

)
= O(1), μ′′(t0) = O(1). (4.12)

μ′′′(ti) = O(1), μ′′′(t0) = O(1). (4.13)

Further, we compute, using (3.5),

ĜD(ti, ti) = K̂D(0)
(
1 + O(e−2(d0−η0)/

√
D)
)

= 1 + O(e−2(d0−η0)/
√
D), (4.14)

where d0 = min(1 − t0, t0 + 1), η0 > 0 is an arbitrary but fixed constant (compare (3.7)).

We have

ĜD(ti, ts) = O

(
D log

1

D

)
, K̂D(ti, ts) = O

(
D log

1

D

)
for |i− s| = 1, (4.15)

ĜD(ti, ts) = O

((
D log

1

D

)2
)
, K̂D(ti, ts) = O

((
D log

1

D

)2
)

for |i− s| = 2. (4.16)

Generally, we have

ĜD(ti, ts) = O

((
D log

1

D

)|i−s|)
, K̂D(ti, ts) = O

((
D log

1

D

)|i−s|)
for |i−s| � 1. (4.17)
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For the derivatives, we estimate

∂k

∂tki
ĜD(ti, ts) = O

((
D log

1

D

)|i−s|
D−k/2

)
for |i− s| � 1, k = 1, 2, . . . (4.18)

∂k

∂tki
K̂D(ti, ts) = O

((
D log

1

D

)|i−s|
D−k/2

)
for |i− s| � 1, k = 1, 2, . . . (4.19)

and analogous results hold for the mixed derivatives.

By rescaling Â = ξεA, Ĥ = ξεH with ξε defined in (2.6), it follows that (1.2) is equivalent

to the following system for the re-scaled functions Â, Ĥ:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε2Â′′ − μ(x)Â+ Â2

Ĥ
= 0, x ∈ (−1, 1),

DĤ ′′ − Ĥ + ξεÂ
2 = 0, x ∈ (−1, 1),

Â(x) > 0, Ĥ(x) > 0 in (−1, 1),

Â′(−1) = Â′(1) = Ĥ ′(−1) = Ĥ ′(1) = 0.

(4.20)

From now on, we shall work with (4.20) and drop the hats. Next, we rewrite (4.20) as

a single equation with a non-local term.

For a function A ∈ H2(−1, 1), we define T [A] to be the solution of

{
D(T [A])′′ − T [A] + ξεA

2 = 0, −1 < x < 1,

(T [A])′(−1) = (T [A])′(1) = 0.
(4.21)

It is easy to see that the solution T [A] is unique and positive. Then, (4.20) becomes

Sε[A] := ε2A′′ − μ(x)A+
A2

T [A]
= 0, A > 0, A′(−1) = A′(1) = 0. (4.22)

For t ∈ Ωη , we define an approximate solution to (4.22) by the ansatz

A(x) = wε,t(x) =

N∑
k=1

ξ̂kw̃k(x), x ∈ Ω, (4.23)

where t ∈ Ωη , w̃k has been defined in (4.7) and ξ̂k satisfies the amplitude identity

ξ̂s = T [A](ts). (4.24)

Intuitively, this ansatz is close to a solution of (4.22) since by the choice of w̃k , the

first equation is approximately satisfied and due to (4.24) the second equation holds

approximately.

Next, we are now going to determine the amplitudes ξ̂k to leading order so that (4.24)

will be satisfied.
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From (4.21), we have

T [wε,t](ts) = ξε

∫ 1

−1

GD(ts, z)w
2
ε,t(z) dz

= ξε

∫ 1

−1

GD(ts, z)

⎡
⎣ N∑
k=1

ξ̂2
k w̃

2
k (z) +

∑
k �=l

ξ̂kξ̂l w̃k(z)w̃l(z)

⎤
⎦ dz. (4.25)

We have

ξε

∫
Ω

GD(ts, x)w̃
2
k (x) dx = ξε

∫
Ω

GD(ts, x)

(
μkw

(
√
μk
x− tk

ε

))2

dx (1 + O(ε10)).

For k 
= s, we compute

ξε

∫
Ω

GD(ts, x)w̃
2
k (x) dx = ξεε(μk)

3/2GD(ts, tk)

[∫
�
w2(y) dy + O

(
ε√
D

)]

= (μk)
3/2ĜD(ts, tk)

[
1 + O

(
ε√
D

)]

= (μ0)3/2ĜD(ts, tk)

[
1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]

= (μ0)3/2O

(
D log

1

D

)[
1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]

= O

(
D log

1

D

)
, (4.26)

using (2.6), (3.10), (4.10) and (4.17). For k = s, we have

ξε

∫
Ω

GD(ts, x)w̃
2
s (x) dx = ξε

∫
Ω

[
1

2
√
D
e−|ts−x|/

√
D −HD(ts, x)

]
w̃2
s (x) dx

= ξεε(μs)
3/2GD(ts, ts)

[∫
�
w2(y) dy + O

(
ε√
D

)]

= (μs)
3/2ĜD(ts, ts) + O

(
ε√
D

)

= (μ0)3/2ĜD(ts, ts) + O

(
ε√
D

+ D

(
log

1

D

)2
)
, (4.27)

using (2.6), (3.10) and (4.10). Next, for k 
= l, we have

ξε

∫
Ω

ĜD(ts, z)w̃k(z)w̃l(z) dz = 0 (4.28)

by (4.7). Combining (4.26)–(4.28), we have

T [wε,t](ts) = ξ̂2
s (μ

0)3/2

[
1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]

(4.29)
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using (3.6), (3.7), (3.10). Then, (4.29) has a unique solution which satisfies

ξ̂s =
1

(μ0)3/2

[
1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]

. (4.30)

This concludes the construction of the approximate solution.

In the section, we will compute its error.

5 Existence proof II – error of approximate solution

In this section, we compute the error terms caused by the approximate solutions in Section

4. We begin by considering the spatial dependence of the inhibitor near the spikes which is

given by the difference T [wε,t](xs)−T [wε,t](ts) for x = (x1, . . . , xN) ∈ Ωη and t ∈ Ωη , where

the non-local operator T [A] has been defined in (4.21) and the approximate solution has

been introduced in (4.23).

To simplify our notation, we let

Hε,t(xs) = T [wε,t](xs). (5.1)

Let xs = ts + εy. We calculate

Hε,t(ts + εy) −Hε,t(ts)

= ξε

∫
Ω

[GD(ts + εy, x) − GD(ts, x)]

⎛
⎝ N∑

k=1

ξ̂2
k w̃

2
k (x) +

∑
k �=l

ξ̂kξ̂l w̃k(x)w̃l(x)

⎞
⎠ dx,

= J1, (5.2)

where ξε has been introduced in (2.6) and J1 is defined by the latest equality. For J1, we

have

J1 = ξε

∫
Ω

[GD(ts + εy, x) − GD(ts, x)]

⎛
⎝ N∑

k=1

ξ̂2
k w̃

2
k (x) +

∑
k �=l

ξ̂kξ̂l w̃k(x)w̃l(x)

⎞
⎠ dx

= ξε

N∑
k=1

ξ̂2
k

∫
Ω

[GD(ts + εy, x) − GD(ts, x)] w̃
2
k dx. (5.3)

by (4.7). We further compute

ξε

∫
Ω

[GD(ts + εy, x) − GD(ts, x)] w̃
2
k dx

= ξε

∫
Ω

[
1

2
√
D

(
e−|ts+εy−x|/

√
D − e−|ts−x|/

√
D
)
− (HD(ts + εy, x) −HD(ts, x))

]
w̃2
k dx

= ξε
1

2
√
D

∫
Ω

(
e−|ts+εy−x|/

√
D − e−|ts−x|/

√
D
)
w̃2
k dx

(
1 + O

(
e−2(d0−η0)/

√
D
))

. (5.4)
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using (4.14). Let x = tk + εz̃. For k = s, we have

ξε
1

2
√
D

∫
Ω

(
e−|ts+εy−x|/

√
D − e−|ts−x|/

√
D
)
w̃2
s (x) dx

= ξε
ε

2
√
D

∫
�

(
e−ε|y−z̃|/

√
D − e−ε|z̃|/

√
D
)
w2
μs

(z̃) dz̃
(
1 + O(ε10)

)
= ξε

ε

2
√
D

[
ε√
D

∫
�

(
|z̃| − |y − z̃|

)
w2
μs

(z̃) dz̃ + O

(
ε2

D
y2

)] (
1 + O(ε10)

)

= ξε
ε

2
√
D

[
ε√
D

∫
�

(
|z̃| − |y − z̃|

)
w2
μ0 (z̃) dz̃ + O

(
ε2

D
y2

)](
1 + O

(
D

(
log

1

D

)2

+ ε10

))

=
1∫

� w
2(ỹ) dỹ

[
ε√
D
T0(y) + O

(
ε2

D
y2

)](
1 + O

(
D

(
log

1

D

)2

+ ε10

))
, (5.5)

where wμs has been defined in (3.1) and

T0(y) =

∫
�

(
|z̃| − |y − z̃|

)
w2
μ0 dz̃ (5.6)

is an even function, using (2.6) and (4.10). For k 
= s, we have

ξε
1

2
√
D

∫
Ω

(
e−|ts+εy−x|/

√
D − e−|ts−x|/

√
D
)
w̃2
k (x) dx

= ξε
ε

2
√
D

∫
�

(
e−|ts−tk+ε(y−z̃)|/

√
D − e−|ts−tk−εz̃|/

√
D
)
w2
μk

(z̃) dz̃
(
1 + O(ε10)

)
= ξε

ε

2
√
D

(μk)
3/2

[
e−|ts−tk|/

√
D

(
− ts − tk

|ts − tk|

)
εy√
D

+ O

(
D log

1

D

ε2

D
y2

)]

×
∫

�
w2(z̃) dz̃

(
1 + O(ε10)

)
= (μ0)3/2

[
e−|ts−tk|/

√
D

(
− ts − tk

|ts − tk|

)
εy√
D

+ O

(
ε2 log

1

D
y2

)]

×
(

1 + O

(
D

(
log

1

D

)2

+ ε10

))
, (5.7)

using (4.10) and (2.6). Combining (5.5) and (5.7), we have

Hε,t(ts + εy) −Hε,t(ts)

=

(
ξ̂2
s

1∫
� w

2(ỹ) dỹ ε√
D

∫
�

(
|z̃| − |y − z̃|

)
w2
μs

(z̃) dz̃ + O
(
ε2

D
y2
)

+
∑
k �=s

ξ̂2
k (μk)

3/2e−|ts−tk|/
√
D

(
− ts − tk

|ts − tk|

)
εy√
D

+ O

(
ε2 log

1

D
y2

)⎞⎠

×
(

1 + O

(
D

(
log

1

D

)2

+ ε10

))
. (5.8)
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Remark 7

(i) The second line in (5.8) is an even function in the inner variable y which will drop out

in many subsequent computations due to symmetry.

(ii) The third line in (5.8) is an odd function in the inner variable y. For t ∈ Ωη , we have

e−|ts−tk|/
√
D = O

(
D log

1

D

)
, |k − s| = 1,

e−|ts−tk|/
√
D = O

((
D log

1

D

)2
)
, |k − s| � 2.

Thus, the third line in (5.8) is of exact order O
(
ε
√
D log 1

D
y
)
.

Next, we compute and estimate the error terms of the Gierer–Meinhardt system (4.20) for

the approximate solution wε,t. We recall that a steady state for (4.20) is given by Sε[A] = 0,

where

Sε[A] := ε2A′′ − μ(x)A+
A2

T [A]
(5.9)

and T [A] is defined by (4.21), combined with Neumann boundary conditions A′(−1) =

A′(1) = 0. We now compute the error term

Sε[wε,t] = Sε

[
N∑
s=1

ξ̂sw̃s

]

= ε2Δ

(
N∑
s=1

ξ̂sw̃s

)
− μ(x)

N∑
s=1

ξ̂sw̃s +

(∑N
s=1 ξ̂sw̃s

)2

Hε,t

=

[ N∑
s=1

⎛
⎜⎝ε2Δ(ξ̂sw̃s) − μsξ̂sw̃s +

(
ξ̂sw̃s

)2

Hε,t(ts)

⎞
⎟⎠−

N∑
s=1

(μ(x) − μ(ts))ξ̂sw̃s

−
N∑
s=1

(
ξ̂sw̃s

)2

(Hε,t(ts))2
[Hε,t(x) −Hε,t(ts)]

(
1 + O

(
ε√
D
|y|
))](

1 + O
(
e−2(d0−η0)/

√
D
))

.

Using the amplitude identity ξ̂k = T [A](tk) and the equation (3.2) of the spike profile for

a = μs, we have

Sε[wε,t] =

[
−

N∑
s=1

(
μ′(ts)εy

)
ξ̂swμs

−
N∑
s=1

ξ̂2
s w

2
μs

1∫
� w

2(ỹ) dỹ

ε√
D

∫
�

(
|z̃| − |y − z̃|

)
w2
μs

(z̃) dz̃
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+

N∑
s=1

w2
μs

∑
k �=s

ξ̂2
k (μk)

3/2e−|ts−tk|/
√
D

(
− ts − tk

|ts − tk|

)
εy√
D

]

×
(

1 + O

(
D

(
log

1

D

)2

+ ε10

))
.

Using μ′(t0) = 0, we get

Sε[wε,t] =

[
−

N∑
s=1

(
μ′′(t0)(ts − t0)εy

)
ξ̂swμs

(
1 + O(ε|y|) + O

(√
D log

1

D

))

−
N∑
s=1

ξ̂2
s w

2
μs

1∫
� w

2(ỹ) dỹ

ε√
D

∫
�

(
|z̃| − |y − z̃|

)
w2
μs

(z̃) dz̃

+

N∑
s=1

w2
μs

∑
k �=s

ξ̂2
k (μk)

3/2e−|ts−tk|/
√
D

(
− ts − tk

|ts − tk|

)
εy√
D

(
1 + O

(
ε√
D
|y|
))]

×
(

1 + O

(
D

(
log

1

D

)2

+ ε10

))
. (5.10)

Now, we readily have the estimate

‖Sε[wε,t]‖L2(− 1
ε
, 1
ε )

= O

(
ε√
D

)
. (5.11)

Remark 8 The estimates derived in this section will be needed to conclude the existence

proof using Liapunov–Schmidt reduction in Section 6. In particular, they will imply an explicit

formula for the positions of the spikes in Section 7.

6 Existence proof III – Liapunov–Schmidt reduction

In this section, we study the linear operator defined by

L̃ε,t := S ′
ε[A]φ = ε2Δφ− μ(x)φ+

2Aφ

T [A]
− A2

(T [A])2
(T ′[A]φ),

L̃ε,t : H2(Ω) → L2(Ω),

where A = wε,t and T ′[A] has been defined in (8.3).

We will prove results on its invertibility after suitable projections. This will have

important implications on the existence of solutions of the non-linear problem including

bounds in suitable norms. The proof uses the method of Liapunov–Schmidt reduction

which was also considered in [10, 12, 13, 25, 26, 37] and other works.
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We define the approximate kernel and co-kernel of the operator L̃ε,t, respectively, as

follows:

Kε,t := span

{
dw̃i

dx

∣∣∣∣ i = 1, . . . , N

}
⊂ H2(Ω), (6.1)

Cε,t := span

{
dw̃i

dx

∣∣∣∣ i = 1, . . . , N

}
⊂ L2(Ω). (6.2)

Recall that the vectorial linear operator L has been introduced in (A 2) as follows:

LΦ := ΔΦ− Φ+ 2wΦ− 2

∫
� wΦ∫
� w

2
w2, (6.3)

where

Φ =

⎛
⎜⎜⎜⎝
φ1

φ2

...

φN

⎞
⎟⎟⎟⎠ ∈ (H2(�))N.

By Lemma 21, we know that

L : (X0 ⊕ · · · ⊕X0)
⊥ ∩ (H2(�))N → (X0 ⊕ · · · ⊕X0)

⊥ ∩ (L2(�))N

with X0 = span{ dw
dy
} is invertible and possesses a bounded inverse.

We also introduce the orthogonal projection π⊥
ε,t : L2(Ω) → C⊥

ε,t and study the operator

Lε,t := π⊥
ε,t ◦ L̃ε,t, where orthogonality has been defined in L2(Ω) sense. We will show

that Lε,t : K⊥
ε,t → C⊥

ε,t is invertible with a bounded inverse provided max( ε√
D
, D) is small

enough. In proving this, we will use the fact that this system is the limit of the operator

Lε,t as max( ε√
D
, D) → 0. This statement is contained in the following proposition.

Proposition 9 There exist positive constants δ̄, λ such that for max
(

ε√
D
, D
)

∈ (0, δ̄) and

all t ∈ Ωη , we have

‖Lε,tφε‖L2(Ωε) � λ‖φε‖H2(Ωε). (6.4)

Further, the map

Lε,t = πε,t ◦ L̃ε,t : K⊥
ε,t → C⊥

ε,t

is surjective.

Proof Suppose (6.4) is false. Then, there exist sequences {εk}, {Dk}, {tk}, {φk} such that

max( εk√
Dk
, Dk) → 0, tk ∈ Ωη , φk = φεk ∈ K⊥

εk ,tk
, k = 1, 2, . . . and

‖Lεk,tkφk‖L2(Ωεk )
→ 0 as k → ∞, (6.5)

‖φk‖H2(Ωεk )
= 1, k = 1, 2, . . . . (6.6)
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We define φε,i, i = 1, 2, . . . , N and φε,N+1 as follows:

φε,i(x) = φε(x)χ

(
x− ti

δε

)
, x ∈ Ω, (6.7)

φε,N+1(x) = φε(x) −
N∑
i=1

φε,i(x), x ∈ Ω.

At first (after rescaling), the functions φε,i are only defined on Ωε. However, by a standard

result, they can be extended to � such that their norm in H2(�) is bounded by a constant

independent of ε, D and t for max( ε√
D
, D) small enough. In the following, we will study

this extension. For simplicity of notation, we keep the same notation for the extension.

Since for i = 1, 2, . . . , N, each sequence {φki } := {φεk,i} (k = 1, 2, . . .) is bounded in H2
loc(�)

it has a weak limit in H2
loc(�), and therefore also a strong limit in L2

loc(�) and L∞
loc(�).

Call these limits φi. Then, passing to the limit in the equation (6.5) in each of the sets

Ωj = {x ∈ Ω : x = tj + εy, |y| � δε
2ε
} (we refer to Appendix A of [40] for further details),

φ =

⎛
⎜⎜⎜⎜⎜⎝

φ1

φ2

...

φN

⎞
⎟⎟⎟⎟⎟⎠ solves the system Lφ = 0. By Lemma 20, φ ∈ Ker(L) = X0 ⊕ · · · ⊕X0. Since

φεk ∈ K⊥
εk ,tk

by taking k → ∞, we get φ ∈ Ker(L)⊥. Therefore, φ = 0.

By elliptic estimates, we have ‖φεk,i‖H2(�) → 0 as k → ∞ for i = 1, 2, . . . , N.

Furthermore, φεk,N+1 → φN+1 in H2(�), where ΦN+1 satisfies

ΔφN+1 − φN+1 = 0 in �.

Therefore, we conclude φN+1 = 0 and ‖φkN+1‖H2(�) → 0 as k → ∞. This contradicts

‖φk‖H2(Ωεk )
= 1.

To complete the proof of Proposition 9, we just need to show that the conjugate

operator to Lε,t (denoted by L∗
ε,t) is injective from K⊥

ε,t to C⊥
ε,t .

The proof for L∗
ε,t follows along the same lines as for Lε,t and is omitted.

�

Now, we are in the position to solve the equation

π⊥
ε,t ◦ Sε[wε,t + φ] = 0. (6.8)

Since Lε,t|K⊥
ε,t

is invertible (call the inverse L−1
ε,t ), we can rewrite this as

φ = −(L−1
ε,t ◦ π⊥

ε,t ◦ Sε[wε,t]) − (L−1
ε,t ◦ π⊥

ε,t ◦ Nε,t[φ]) ≡ Mε,t[φ], (6.9)

where

Nε,t[φ] = Sε[wε,t + φ] − Sε[wε,t] − S ′
ε[wε,t]φ (6.10)

and the operator Mε,t is defined by (6.9) for φ ∈ H2(Ωε). We are going to show that the
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operator Mε,t is a contraction on

Bε,δ ≡ {φ ∈ H2(Ωε) : ‖φ‖H2(Ωε) < δ}

for suitably chosen δ if max
(

ε√
D
, D
)

is small enough. By (5.11) and Proposition 9, we

have

‖Mε,t[φ]‖H2(Ωε) � λ−1
(
‖π⊥

ε,t ◦ Nε,t[φ]‖L2(Ωε) +
∥∥π⊥

ε,t ◦ Sε[wε,t]
∥∥
L2(Ωε)

)

� λ−1C (c(δ)δ) ‖φ‖H2(Ωε)+O

(
ε√
D

)
,

where λ > 0 is independent of δ > 0, ε > 0, D > 0 and c(δ) → 0 as δ → 0. Similarly, we

show that

‖Mε,t[φ] −Mε,t[φ
′]‖H2(Ωε) � λ−1C(c(δ)δ)‖φ− φ′‖H2(Ωε),

where c(δ) → 0 as δ → 0. If we choose

δ = 2λ−1
∥∥π⊥

ε,t ◦ Sε[wε,t]
∥∥
L2(Ωε)

,

then for max
(

ε√
D
, D
)

small enough, the operator Mε,t is a contraction on Bε,δ . The

existence of a fixed point φε,t now follows from the standard contraction mapping

principle and φε,t is a solution of (6.9).

We have thus proved

Lemma 10 There exists δ > 0 such that for every pair of ε, t with 0 < ε < δ and t ∈ Ωη ,

there exists a unique φε,t ∈ K⊥
ε,t satisfying Sε[wε,t + φε,t] ∈ Cε,t. Furthermore, we have the

estimate

‖φε,t‖H2(Ωε) � C

(
ε√
D

)
. (6.11)

Following the same decomposition into leading even and odd terms as discussed in

Remark 7 (see also (5.10)) and applying the linear operator Lε,t to both of them, we get

φε,t = φε,t,1 + φε,t,2, (6.12)

where φε,t,1 is an even function in the inner variable y which can be estimated as

‖φε,t,1‖H2(Ωε) = O

(
ε√
D

)

and φε,t,2 is an odd function in the inner variable y which can be estimated as

‖φε,t,2‖H2(Ωε) = O

(
ε
√
D log

1

D

)
.

Note that the even term is bigger than the odd term but it will drop in many subsequent

calculations.
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7 Existence proof IV: reduced problem

In this section, we solve the reduced problem. This completes the proof of our main

existence result given by Theorem 1.

By Lemma 10, for every t ∈ Ωη , there exists a unique solution φε,t ∈ K⊥
ε,t such that

Sε[wε,t + φε,t] ∈ Cε,t. (7.1)

We need to determine tε = (tε1, t
ε
2, . . . , t

ε
N) ∈ Ωη such that

Sε[wε,tε + φε,tε ] ⊥ Cε,tε , (7.2)

which implies Sε[wε,tε + φε,tε ] = 0.

To this end, let

Wε,s(t) :=
1

ε
√
D log 1

D

∫
Ω

Sε[wε,t + φε,t]
dw̃s

dx
dx,

Wε(t) := (Wε,1(t), . . . ,Wε,N(t)) : Ωη → �N.

Then, the map Wε(t) is continuous in t ∈ Ωη and it remains to find a zero of the vector

field Wε(t).

We compute

1

ε
√
D log 1

D

∫
Ω

Sε[wε,t + φε,t]
dw̃s

dx
dx

=
1

ε
√
D log 1

D

∫
Ω

[
Sε[wε,t] + S ′

ε[wε,t](φε,t) + O(‖φε,t‖2
H2(Ω))

]
dw̃s

dx
dx.

We first compute the main term given by

1

ε
√
D log 1

D

∫
Ω

Sε[wε,t]
dw̃s

dx
dx = cs. (7.3)

Let x = ts + εy. By (5.10), we can decompose Sε[wε,t] into odd and even functions. In

leading order, only the odd components of Sε[wε,t] matter and we have

1

ε
√
D log 1

D

∫
Ω

Sε[wε,t]
dw̃s

dx
dx = cs,1 + cs,2,

where

cs,1 = − 1

D log 1
D

∫
Ω

x− ts

ε
w̃2
s

dws

dx
dx
∑
k �=s

(μk)
3/2ξ̂2

k e
−|ts−tk|/

√
D

(
− ts − tk

|ts − tk|

)

+O

(
ε√
D

+ e−2(d0−η0)/
√
D

)
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=
1

D log 1
D

1

3

∫
�
w3
μs
dy
∑
k �=s

(μk)
3/2ξ̂2

k e
−|ts−tk|/

√
D

(
− ts − tk

|ts − tk|

)

+O

(
ε√
D

+ e−2(d0−η0)/
√
D

)

=
2.4

D log 1
D

(μs)
5/2
∑
k �=s

(μk)
3/2ξ̂2

k e
−|ts−tk|/

√
D

(
− ts − tk

|ts − tk|

)

+O

(
ε√
D

+ e−2(d0−η0)/
√
D

)

=
2.4

D log 1
D

(μ0)4(ξ̂0)2
∑
k �=s

e−|ts−tk|/
√
D

(
− ts − tk

|ts − tk|

)
+ O

(
ε√
D

+
√
D log

1

D

)

and

cs,2 = − 1

ε
√
D log 1

D

μ′′(t0)(ts − t0)ξ̂sε

∫
Ω

x− ts

ε
w̃s
dw̃s

dx
dx+ O

(
ε√
D

+
√
D log

1

D

)

= − 1√
D log 1

D

μ′′(t0)(ts − t0)ξ̂s

∫
�
ywμs

dwμs
dy

dy + O

(
ε√
D

+
√
D log

1

D

)

=
1√

D log 1
D

(μs)
3/2μ′′(t0)(ts − t0)

1

2
ξ̂s

∫
�
w2 dy + O

(
ε√
D

+
√
D log

1

D

)

=
3√

D log 1
D

(μ0)3/2ξ̂0μ′′(t0)(ts − t0) + O

(
ε√
D

+
√
D log

1

D

)
.

In summary, we have

cs =
2.4

D log 1
D

(μ0)4
∑
k �=s

(ξ̂0)2e−|ts−tk|/
√
D

(
− ts − tk

|ts − tk|

)

+ 3
√
D(μ0)3/2ξ̂0μ′′(t0)(ts − t0) + O

(
ε√
D

+
√
D log

1

D

)
, s = 1, . . . , N. (7.4)

Next, we estimate

1

ε
√
D log 1

D

∫
Ω

S ′
ε[wε,t](φε,t)

dw̃s

dx
dx

=
1

ε
√
D log 1

D

∫
Ω

[
ε2φ′′

ε,t − μ(x)φε,t +
2wε,t
T [wε,t]

φε,t −
w2
ε,t

(T [wε,t])2
(T ′[wε,t]φε,t)

]
dw̃s

dx
dx

=
1

ε
√
D log 1

D

∫
Ω

[
ε2φ′′

ε,t − μsφε,t +
2wε,t
T [wε,t]

φε,t −
w2
ε,t

(T [wε,t])2
(T ′[wε,t]φε,t)

]
dw̃s

dx
dx

+
1

ε
√
D log 1

D

∫
Ω

−(μ(x) − μ(ts))φε,t
dw̃s

dx
dx.
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Integration by parts and and using the derivative of (3.2) gives

1

ε
√
D log 1

D

∫
Ω

S ′
ε[wε,t](φε,t)

dw̃s

dx
dx

=
1

ε
√
D log 1

D

∫
Ω

[ [
1

T [wε,t]
− 1

ξ̂s

]
2ξ̂sw̃sφε,t −

(ξ̂sw̃s)
2

(T [wε,t])2
(T ′[wε,t]φε,t)

]
dw̃s

dx
dx

+
1

ε
√
D log 1

D

∫
Ω

−(μ(x) − μ(ts))φε,t
dw̃s

dx
dx

= O

(
ε√
D

)
.

This implies

Wε,s(t) =
2.4

D log 1
D

(μ0)4
∑
k �=s

(ξ̂0)2e−|ts−tk|/
√
D

(
− ts − tk

|ts − tk|

)

+ 3
√
D(μ0)3/2ξ̂0μ′′(t0)(ts − t0) + O

(
ε√
D

+
√
D log

1

D

)
, s = 1, . . . , N, (7.5)

which follows from (6.11) and (6.12). Now, for given small ε > 0, we have to determine

tε ∈ Ωη such that Wε,s(t
ε) = 0 for s = 1, . . . , N.

We first consider the limiting case which only takes into account the leading terms and

set

W0(t) = 2.4
1

D log 1
D

(μ0)4(ξ̂0)2
∑

k,|k−s|=1

e−|ts−tk|/
√
D

(
− ts − tk

|ts − tk|

)

+ 3
√
D(μ0)3/2ξ̂0μ′′(t0)(ts − t0).

We compute W0(t
∗) = 0, where t∗ satisfies

t∗s − t∗s−1√
D

= log
1

D
− log log

1

D

− log

(
5μ′′(t0)

16μ0

)
− log[(s− 1)(N + 1 − s)] + O

(
log log 1

D

log 1
D

)
, (7.6)

1

N

N∑
k=1

t∗k = t0. (7.7)

By (7.6) and (7.7), we have t∗ ∈ Ωη if D is small enough.

We need to find tε ∈ Ωη such that Wε(t
ε) = 0.

Setting e = (1, 1 . . . , 1)T , we have

c√
D log 1

D

� ‖DW0(t
∗)e‖ �

C√
D log 1

D
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and
c√
D
‖v‖ � ‖DW0(t

∗)v‖ �
C√
D
‖v‖ if v · e = 0.

For t ∈ Ωε, we expand

Wε(t) = Wε(t) −W0(t) +W0(t) −W0(t
∗) +W0(t

∗)

= O

(
ε√
D

)
by (7.4)

+DW0(t
∗) · (t − t∗) + R0(t − t∗)

+W0(t
∗),

where R0(τ) = D2W0(t
∗)(τ, τ)+O(|τ|3). Decomposing τ = v+αe, where v ·e = 0, we estimate

|R0(τ)| �
c4

D
|v|2 +

c5√
D log 1

D

α|v| + c6√
D log 1

D

α2.

Noting that for t∗ + τ ∈ Ωη , we have |v| � η
√
D and α � η

√
D log 1

D
, we get

|R0(τ)| � η2

(
c4 + c5

√
D + c6

√
D log

1

D

)
.

This implies

|(DW0(t
∗))−1R0(τ)v| � c7η

2
√
D

and

|(DW0(t
∗))−1R0(τ)αe| � c7η

2
√
D log

1

D
.

Setting τ = t − t∗, we have to determine τ such that

−(DW0(t
∗))−1[Wε(t

∗ + τ) −W0(t
∗ + τ) + R0(τ)] = τ

and so τ must be a fixed point of the mapping

τ→Mε,D(τ) := −(DW0(t
∗))−1[Wε(t

∗ + τ) −W0(t
∗ + τ) + R0(τ)], B1 → B1,

where B1 = Ωη − t∗ (pointwise). We estimate

‖Mε,D(τ)‖ = ‖ − (DW0(t
∗))−1[Wε(t

∗ + τ) −W0(t
∗ + τ) + R0(τ)]‖

� C

(
ε√
D

·
√
D log

1

D
+ η2

√
D log

1

D

)√
D log

1

D
.

Using projections, we have

‖Mε,D(τ) · v‖ � C

(
ε√
D

+ η2

)√
D if v · e = 0

and

‖Mε,D(τ) · (αe)‖ � C

(
ε√
D

+ η2

)√
D log

1

D
.
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We now determine when the mapping Mε,D maps from B1 into B1 for max( ε√
D
, D) small

enough. We need to have

C

(
ε√
D

+ η2

)
� η. (7.8)

Now, (7.8) is satisfied if we choose

η = 2C
ε√
D

(7.9)

and we assume

Cη2 = 4C3 ε
2

D
� C

ε√
D
. (7.10)

Note that (7.10) is satisfied if

ε√
D

�
1

4C2

which holds if ε√
D

is small enough since 1
4C2 is a constant which is independent of ε and

D.

By Brouwer’s fixed point theorem, the mapping Mε,D possesses a fixed point τε ∈ B1.

Then, tε = t∗ + τε ∈ Ωη is the desired solution which satisfies Wε(t
ε) = 0.

Thus, we have proved the following proposition.

Proposition 11 For max
(

ε√
D
, D
)

small enough, there exist points tε ∈ Ωη with tε → t0 such

that Wε(t
ε) = 0.

Finally, we complete the proof of Theorem 1.

Proof By Proposition 11, there exists tε → t0 such that Wε(t
ε) = 0. Written differently, we

have Sε[wε,tε + φε,tε] = 0. Let Aε = ξε(wε,tε + φε,tε ), Hε = ξεT [wε,tε + φε,tε ]. By the Maximum

Principle, Aε > 0, Hε > 0. Moreover, (Aε,Hε) satisfies all the properties of Theorem 1.

�

8 Stability proof I: large eigenvalues

In this section, we study the large eigenvalues which satisfy λε → λ0 
= 0 as max( ε√
D
, D)

→ 0.

Then, we need to analyse the eigenvalue problem

L̃ε,tεφε = ε2Δφε − μ(x)φε +
2Aεφε
T [Aε]

− A2
ε

(T [Aε])2
(T ′[Aε]φε) = λεφε, (8.1)

where λε is some complex number, Aε = wε,tε +φε,tε with tε ∈ Ωη determined in the previous

section,

φε ∈ H2
N(Ω) (8.2)
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and for φ ∈ L2(Ω), the function T ′[A]φ is defined as the unique solution of⎧⎨
⎩
DΔ(T ′[A]φ) − (1 + τλε)(T

′[A]φ) + 2ξεAφ = 0, −1 < x < 1,

(T ′[A]φ)′(−1) = (T ′[A]φ)′(1) = 0.
(8.3)

First, we consider the special case τ = 0. Because we study the large eigenvalues, there

exists some small c > 0 such that |λε| � c > 0 for max( ε√
D
, D) small enough. We are

looking for a condition under which Re(λε) � c < 0 for all eigenvalues λε of (8.1), (8.2)

if max( ε√
D
, D) is small enough, where c is independent of ε and D. If Re(λε) � −c, then

λε is a stable large eigenvalue. Therefore, for the rest of this section, we assume that

Re(λε) � −c and study the stability properties of such eigenvalues.

We first derive the limiting problem of (8.1), (8.2) as max( ε√
D
, D) → 0 which will be

given by a system of NLEPs. Let us assume that

‖φε‖H2(Ωε) = 1.

We cut off φε as follows: Introduce

φε,j(y) = φε(y)χ

(∣∣∣∣ εyδε
∣∣∣∣
)
, (8.4)

where y = (x − tj)/ε for x ∈ Ω, the cut-off function χ was introduced in (4.8) and δε
satisfies (4.9).

From (8.1), (8.2), using Re(λε) � −c, ‖φε,tε‖H2(Ωε) = O( ε√
D
) and the exponential decay of

Aε, it follows that the last two terms in (8.1) converge to zero in L∞(Ω \ ∪Nj=1Ωj), where

Ωj =
{
x ∈ Ω : x = tj + εy, |y| � δε

2ε

}
. In particular, their L∞(Ω \ ∪Nj=1Ωj) norm satisfies

an estimate of O( ε√
D
). Then, taking the limit in (8.1), it follows that φε = O( ε√

D
) uniformly

in Ω \ ∪Nj=1Ωj and so

φε =

N∑
j=1

φε,j + O

(
ε√
D

)
in H2(Ωε). (8.5)

Next, by a standard procedure, we extend φε,j to a function defined on � such that

‖φε,j‖H2(�) � C‖φε,j‖H2(Ωε), j = 1, . . . , N.

Since ‖φε‖H2(Ωε) = 1, ‖φε,j‖H2(Ωε) � C . By taking a subsequence, we may also assume that

φε,j → φj as max( ε√
D
, D) → 0 in H1(�) for j = 1, . . . , N.

Taking the limit max( ε√
D
, D) → 0 with λε → λ0 in (8.1), we get

Δyφi − μφi + 2wμiφi

−2 lim
D→0

(
N∑
k=1

ĜD(t0i , t
0
k)

∫
�
ξ̂0
kwμkφk dy

)(
N∑
k=1

ĜD(t0i , t
0
k)

∫
�

(
ξ̂0
kwμk

)2

dy

)−1

wμi
2 = λ0φi.
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Using the transformation φ(y) = φ̃(
√
μ0y), wμ0 (y) = μw(

√
μ0y), where μ0 = μ(t0) =

limmax( ε√
D
,D)→0 μ(ti), then from (3.2), we get

μ0Δyφ̃i − μ0φ̃i + 2μ0wφ̃i

−2μ0 lim
D→0

(
N∑
k=1

ĜD(t0i , t
0
k)

∫
�
ξ̂0
kwφk dy

)(
N∑
k=1

ĜD(t0i , t
0
k)

∫
�

(
ξ̂0
kw
)2

dy

)−1

w2 = λ0φi.

Using the relations

ĜD(t0i , t
0
j ) = δik + O

(
D log

1

D

)
,

ξ̂0
k =

1

(μ0)3/2

[
1 + O

(
D log

1

D

)]
and dropping tilde this implies that

Δyφi − φi + 2wφi −
2
∫

� wφi dy∫
� w

2 dy
w2 =

λ0

μ0
φi, i = 1, . . . , N, (8.6)

where φi ∈ H2(�N).

Then, we have

Theorem 12

Let λε be an eigenvalue of (8.1) and (8.2) such that Re(λε) > −c for some c > 0.

(1) Suppose that (for suitable sequences max( εn√
Dn
, Dn) → 0) we have λεn → λ0 
= 0. Then,

λ0 is an eigenvalue of the problem (NLEP) given in (8.6).

(2) Let λ0 
= 0 with Re(λ0) > 0 be an eigenvalue of the problem (NLEP) given in (8.6).

Then, for max( ε√
D
, D) small enough, there is an eigenvalue λε of (8.1) and (8.2) with

λε → λ0 as max( ε√
D
, D) → 0.

Proof (1) of Theorem 12 follows by asymptotic analysis similar to Section 6.

To prove (2) of Theorem 12, we follow a compactness argument of Dancer [6]. The

main idea of his approach is as follows: Let λ0 
= 0 be an eigenvalue of problem (8.6)

with Re(λ0) > 0.

Then, we can rewrite (8.1) as follows:

φε = −Rε(λε)
[
2Aφε
T [A]

− A2

T [A]
T ′[A]φε

]
, (8.7)

where Rε(λε) is the inverse of −Δ + (μ(x) + λε) in H2(�) (which exists if Re(λε) >

−minx∈� μ(x) or Im(λε) 
= 0) and the non-local operators have been defined in (4.21) and

(8.3), respectively.

The main property is that Rε(λε) is a compact operator if max( ε√
D
, D) is small enough.

The rest of the argument follows in the same way as in [6]. �
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We now study the stability of (8.1), (8.2) for large eigenvalues explicitly and prove

Theorem 2.

By Lemma 22, for any non-zero eigenvalue λ0 in (8.6), we have

Re(λ0) � c0 < 0 for some c0 > 0.

Thus, by Theorem 12 (1), for max
(

ε√
D
, D
)

small enough, all non-zero large eigenvalues

of (8.1), (8.2) have strictly negative real parts. More precisely, all eigenvalues λε of (8.1),

(8.2), for which λε → λ0 
= 0 holds, satisfy Re(λε) � −c < 0.

When studying the case τ > 0, we have to deal with NLEPs as in (A 1), for which the

coefficient γ of the non-local term is a function of τα. Let γ = γ(τα) be a complex function

of τα. Let us suppose that

γ(0) ∈ �, |γ(τα)| � C for Re(α) = αR � 0, τ � 0, (8.8)

where C is a generic constant which is independent of τ and α. In our case, the following

simple example of a function γ(τα) satisfying (8.8) is relevant:

γ(α) =
2√

1 + τα
,

where
√

1 + τα denotes the principal branch of the square root function, compare [35].

Now, we have

Lemma 13 ( [43]) Consider the NLEP

φ′′ − φ+ 2wφ− γ(τα)

∫
� wφdy∫
� w

2 dy
w2 = αφ, (8.9)

where γ(τα) satisfies (8.8). Then, there is a small number τ0 > 0 such that for τ < τ0,

(1) if γ(0) < 1, then there is a positive eigenvalue to (A 1);

(2) if γ(0) > 1, then for any non-zero eigenvalue α of (8.9), we have

Re(α) � −c0 < 0.

Proof Lemma 13 follows from Theorem 19 by a regular perturbation argument. To make

sure that the perturbation argument works, we have to show that if αR � −c (for some

c > 0) and 0 � τ < τ0 (for some τ0 > 0), where α = αR +
√
−1αI , then |α| � C , where C is

a generic constant which is independent of τ. In fact, multiplying (8.9) by the conjugate

φ̄ of φ and integration by parts, we obtain that

∫
�
(|φ′|2 + |φ|2 − 2w|φ|2) dy = −α

∫
�
|φ|2 dy − γ(τα)

∫
� wφdy∫
� w

2 dy

∫
�
w2φ̄ dy. (8.10)
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From the imaginary part of (8.10), we obtain that

|αI | � C1|γ(τα)|,

where C1 is a positive constant (independent of τ). By assumption (8.8), |γ(τα)| � C and

so |αI | � C . Taking the real part of (8.10) and noting that

l.h.s. of (8.10) � C

∫
�
|φ|2 for some C ∈ �,

we obtain that αR � C2, where C2 is a positive constant (independent of τ > 0). Therefore,

|α| is uniformly bounded and hence a regular perturbation argument gives the desired

conclusion.

�

Remark 14 A similar argument as in the previous proof shows that for the original eigen-

value problem (8.1), assuming that λR � −c (for some c > 0), where λε = λε,R +
√
−1λε,I ,

0 � τ < τ0 (for some τ0 > 0), then |λε| � C , where C is a generic constant which is

independent of ε, τ for all 0 < ε < ε0 (ε0 chosen small enough) and 0 < τ < τ0 (τ0 chosen

small enough). This argument is sketched as follows:

We multiply (8.1) by the conjugate φ̄ε of φε and integration by parts, we obtain that

∫
Ωε

(|φ′
ε|2 + |φε|2) dy −

∫
Ωε

2Aε|φε|2
T [Aε]

dy = −λ
∫
Ωε

|φε|2 dy −
∫
Ωε

A2
ε

(T [Aε])2
(T ′[Aε]φε)φ̄ε dy.

(8.11)

From the imaginary part of (8.11), we obtain that

|λε,I | � C3,

where C3 is a positive constant (independent of ε and τ for ε, τ small enough). Taking the

real part of (8.11) and noting that

l.h.s. of (8.11) � C

∫
Ω

|φε|2 for some C ∈ �,

we obtain that λε,R � C4, where C4 is a positive constant (independent of ε, τ > 0). Therefore,

|λε| is uniformly bounded in ε, τ for all 0 < ε < ε0 (ε0 chosen small enough) and 0 < τ < τ0
(τ0 chosen small enough).

Now, Theorem 12 can be extended to the case τ > 0 for eigenvalues such that

Re(τλε) � − 1
2
. Then, by Lemma 13 it follows that for 0 � τ < τ0 all eigenvalues λε of

(8.1), (8.2), for which λε → λ0 
= 0 holds, satisfy Re(λε) � −c < 0.

For τ � 0, the large eigenvalues in the limit are determined explicitly by the following

result from [47]:
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Lemma 15 Let λ =
√
−1λI be an eigenvalue of the problem

Δφ− φ+ 2wφ− 2√
1 + τλ

∫
� wφ∫
� w

2
w2 = λφ, φ ∈ H1(�), (8.12)

where

τ � 0, λ ∈ �, λ = λR + iλI , λR � 0

and we take the principal branch of
√

1 + τλ. Then, λ is a solution of the algebraic equation

√
1 + τλ

2
− 1 = −4F3

⎧⎨
⎩

1, 3, − 1
2
, 2 ;

1

2 + γ, 2 − γ, 5
2

;

⎫⎬
⎭

+
2λ

3
b1

Γ (1 + γ)Γ ( 5
2
)

Γ (γ + 3
2
)

3F2

⎧⎨
⎩

2 + γ, − 3
2

+ γ, 1 + γ ;

1

1 + 2γ, 3
2

+ γ ;

⎫⎬
⎭ , (8.13)

where γ =
√

1 + λ and b1 is given by

b1 =
9

24

(γ − 1)3γ

(γ − 3/2)(γ − 1/2)22γ

π

sin(π(γ − 1))
. (8.14)

Here, for two sequences a1, a2, . . . , aA and b1, b2, . . . , bB , we let the series

1 +
a1a2 · · · aA
b1b2 · · · bB

z

1!
+

(a1 + 1)(a2 + 1) · · · (aA + 1)

(b1 + 1)(b2 + 1) · · · (bB + 1)

z2

2!
+ · · · (8.15)

=: AFB

⎧⎨
⎩
a1, a2, . . . , aA ;

z

b1, b2, . . . , bB ;

⎫⎬
⎭

be the generalized Gauss function or generalized hypergeometric function.

In conclusion, we have finished the study of the large eigenvalues (of order O(1)) and

derived results on their stability properties.

It remains to study the small eigenvalues (of order o(1)) which will be done in the next

section.

9 Stability proof II: characterization of small eigenvalues

Now, we study the eigenvalue problem (8.1), (8.2) with respect to small eigenvalues.

Namely, we assume that λε → 0 as max
(

ε√
D
, D
)
→ 0. We will show that that the small

eigenvalues are given by

λε ∼ −2
ε2

ξ̂0
σ
(
M(t0)

)
.

The matrix
(
M(t0)

)
will be defined in (9.8) and given to leading order in (9.12). Before

defining and computing the matrix, we have to make a few preparations.
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Let

w̄ε = wε,tε + φε,tε , H̄ε = T [wε,tε + φε,tε ], (9.1)

where tε = (tε1, . . . , t
ε
N) ∈ Ωη .

After re-scaling, the eigenvalue problem (8.1), (8.2) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ε2Δφε − μ(x)φε + 2

w̄ε

H̄ε

φε −
w̄2
ε

H̄2
ε

ψε = λεφε,

DΔψε − ψε + 2ξεw̄εφε = λετψε,

φ′
ε(−1) = φ′

ε(1) = ψ′
ε(−1) = ψ′

ε(1) = 0.

(9.2)

Here and in the rest of the proof for small eigenvalues, we set τ = 0. Since for small

eigenvalues, we have τλε → 0 the proof and results extended to the case of a fixed constant

τ > 0.

Throughout this section, we denote

μj = μ(tεj), μ′j = μ′(tεj), μ′′j = μ′′(tεj).

By the implicit function theorem, there exists a (locally) unique solution ξ̂(t) =

(ξ̂1(t), . . . , ξ̂N(t)) of the equation

N∑
j=1

ĜD(ti, tj)ξ̂
2
j μ

3/2
j = ξ̂i, i = 1, . . . , N. (9.3)

Moreover, ξ̂(t) is C1 for t ∈ Ωη . Note that we do not want to consider the solution ξ̂(t) = 0

since it does not correspond to a strictly positive solution.

We have the estimates

ξ̂(tε) = O(1), ξ̂i(t
ε) − ξ̂j(t

ε) = O

(
D

(
log

1

D

)2
)
.

As a preparation, we first compute the derivatives of ξ̂(t).

Now from (9.3), we calculate

∇tj ξ̂i = 2

N∑
l=1

ĜD(ti, tl)ξ̂lμ
3/2
l ∇tj ξ̂l +

∂

∂tj
(ĜD(ti, tj))ξ̂

2
j μ

3/2
j

+
3

2
ĜD(ti, tj)ξ̂

2
j μ

1/2
j μ′j for i 
= j,

∇ti ξ̂i = 2

N∑
l=1

ĜD(ti, tl)ξ̂lμ
3/2
l ∇ti ξ̂l +

N∑
l=1

∂

∂ti
(ĜD(ti, tl))ξ̂

2
l μ

3/2
l
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+
3

2
ĜD(ti, ti)ξ̂

2
i μ

1/2
i μ′i

= 2

N∑
l=1

ĜD(ti, tl)ξ̂lμ
3/2
l ∇ti ξ̂l + ∇ti ĜD(ti, ti)ξ̂

2
i μ

3/2
i − 5

4
ξ̂i
μ′(ti)

μ(ti)

+
3

2
ĜD(ti, ti)ξ̂

2
i μ

1/2
i μ′i + Fi(t)

= 2ĜD(ti, ti)ξ̂iμ
3/2
i ∇ti ξ̂i −

5

4
ξ̂i
μ′(ti)

μ(ti)
+ Fi(t) + O

(√
D log

1

D

)
, i = 1, . . . , N. (9.4)

Here, F(t) is the vector field

F(t) = (F1(t), . . . , FN(t)),

where

Fi(t) =
5

4
ξ̂i
μ′(ti)

μi
+

N∑
l=1

∇ti ĜD(ti, tl)ξ̂
2
l μ

3/2
l , i = 1, . . . , N. (9.5)

We compute

Fi(t) =
5

4
ξ̂i
μ′(ti)

μi
+
∑

l,|l−i|=1

∇ti K̂D(ti, tl)ξ̂
2
l μ

3/2
l + O

(
D3/2

(
log

1

D

)2
)
, i = 1, . . . , N, (9.6)

by (3.7), (4.17).

Thus, (9.4) implies that

∇tξ̂(t) = O

(√
D log

1

D

)
. (9.7)

Set

(M(t))i,j =

(
∂Fi(t)

∂tj

)
. (9.8)

Comparing with (7.5) and Proposition 11, we have F(tε) = O
(

ε√
D

+
√
D log 1

D

)
at tε =

(tε1, . . . , t
ε
N). In addition, if M(tε)) is positive definite, then we will show that all small

eigenvalues have negative real part when 0 � τ < τ0 for some τ0 > 0.

Next, we compute M(t) using (9.4).

For i = j, we have

N∑
l=1

∇2
ti
ĜD(ti, tl)ξ̂

2
l μ

3/2
l

=

N∑
l=1

∇2
ti
K̂D(ti, tl)ξ̂

2
l μ

3/2
l

(
1 + O(e−2(d0−η0)

√
D)
)

=
[
∇2
ti
K̂D(ti, ti−1)ξ̂

2
i−1μ

3/2
i−1 + ∇2

ti
K̂D(ti, ti+1)ξ̂

2
i+1μ

3/2
i+1

](
1 + O

(
D log

1

D

))

=
[
∇2
ti
K̂D(ti, ti−1)(ξ̂

0)2(μ0)3/2 + ∇2
ti
K̂D(ti, ti+1)(ξ̂

0)2(μ0)3/2
] [

1 + O

(
D

(
log

1

D

)2
)]

.

(9.9)
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For |i− j| = 1, we compute in case j = i− 1

N∑
l=1

∇ti−1
(∇ti ĜD(ti, tl))ξ̂

2
l μ

3/2
l

=

N∑
l=1

∇ti−1
(∇ti K̂D(ti, tl))ξ̂

2
l μ

3/2
l

[
1 + O(e−2(d0−η0)

√
D)
]

= ∇ti−1
(∇ti K̂D(ti, ti−1))ξ̂

2
i−1μ

3/2
i−1

[
1 + O

(
D log

1

D

)]

= ∇ti−1
(∇ti K̂D(ti, ti−1))(ξ̂

0)2(μ0)3/2

[
1 + O

(
D

(
log

1

D

)2
)]

= −∇2
ti
K̂D(ti, ti−1)(ξ̂

0)2(μ0)3/2

[
1 + O

(
D

(
log

1

D

)2
)]

(9.10)

and a similar result holds for j = i+ 1. For |i− j| � 2, we have

N∑
l=1

∇tj

(
∇ti ĜD(ti, tl)

)
ξ̂2
l μ

3/2
l = O

(
D

(
log

1

D

)2
)
. (9.11)

This implies

M(tε) = (mij(t
ε))Ni,j=1 = (mij(t

0))Ni,j=1

[
1 + O

(
D

(
log

1

D

)2
)]

, (9.12)

where

mij(t) = (ξ̂0)2(μ0)3/2
[
∇2
ti
[K̂D(ti, ti−1) + K̂D(ti, ti+1)]δi,j

−∇2
ti
K̂D(ti, ti−1)δi,j+1 −∇2

ti
K̂D(ti, ti+1)δi,j−1

]
+

5

4
ξ̂i
μ′′i
μi
δi,j

+ 2

N∑
j=1

∇ti K̂D(ti, ti−1)ξ̂i−1∇tj ξ̂i−1μ
3/2
i−1 + 2

N∑
j=1

∇ti K̂D(ti, ti+1)ξ̂i+1∇tj ξ̂i+1μ
3/2
i+1

+
3

2
∇ti K̂D(ti, ti−1)ξ̂

2
i−1μ

1/2
i−1μ

′
i−1δi,j+1 +

3

2
∇ti K̂D(ti, ti+1)ξ̂

2
i+1μ

1/2
i+1μ

′
i+1δi,j−1

+
5

4

[
∇ti ξ̂i

μ′i
μi

− ξ̂i
(μ′i)

2

μ2
i

]
δi,j .

Therefore, using (7.6), (7.7) and the estimate (9.7), we have

mij(t
ε) =

5

16
(ξ̂0)2(μ0)1/2μ′′(tεi ) log

1

D
× [−(i− 1)(N + 1 − i)δj,i−1 − i(N − i)δj,i+1 + [(i− 1)(N + 1 − i) + i(N − i)]δi,j]
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+
5

4
ξ̂0(μ0)−1μ′′(tεi )δi,j + O

(
D

(
log

1

D

)2
)

=
5

16
(ξ̂0)2(μ0)1/2μ′′(t0)

×[log
1

D
[−(i− 1)(N + 1 − i)δi,j−1 − i(N − i)δi,j+1 + [(i− 1)(N + 1 − i)

+i(N − i)]δi,j] + 4δi,j]

+O

(√
D log

1

D

)
. (9.13)

The matrix M(tε) will be the leading-order contribution to the small eigenvalues (compare

Lemma 23 and the comments following it). Thus, we study the spectrum of the symmetric

N ×N-matrix A defined by

as,s = (s− 1)(N − s+ 1) + s(N − s), s = 1, . . . , N, (9.14)

as,s+1 = as+1,s = −s(N − s), s = 1, . . . , N − 1,

as,t = 0, |s− t| > 1.

We will show

Lemma 16 The eigenvalues of the matrix A are given by

λn = n(n+ 1), n = 0, 1, . . . , N − 1. (9.15)

The corresponding eigenvectors are computed recursively from (9.17).

The matrix A has eigenvalue λ1 = 0 with eigenvector v1 = e. To compute the other

eigenvalues and eigenvectors of A, we remark that this problem is equivalent to finding a

suitable finite-difference approximation ũ of the differential equation

h2x(1 − x)u′′ + λu = 0, u′(0) = u′(1) = 0 (9.16)

in the interval (0, 1) for uniform step-size h = 1
N

.

More precisely, we identify

vik = ũ(xk−1/2) with xk =
k

N
and xk−1/2 =

k − 1/2

N
for k = 1, . . . , N,

where in (9.16) we replace x(1 − x)u′′(x) by

1

h2
[xk−1(1 − xk−1)ũ(xk−3/2) + xk(1 − xk)ũ(xk+1/2)

− [xk(1 − xk) + xk−1(1 − xk−1)]ũ(xk−1/2)]

= (k − 1)(N − k + 1)ũ(tk−3/2) + k(N − k)ũ(tk+1/2)

− [(k − 1)(N − k + 1) + k(N − k)]ũ(tk−1/2).
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To determine the eigenvectors vi, we have to solve this finite-difference problem exactly.

We assume that the solutions are given by polynomials of degree n (which will be shown

later and n will be specified). Using Taylor expansion around x = xk−1/2 and the identities

xk−1(1 − xk−1) − xk(1 − xk) = −h(1 − 2xk−1/2)

and

xk−1(1 − xk−1) + xk(1 − xk) = 2xk−1/2(1 − xk−1/2) −
h2

2
,

the finite-difference problem is equivalent to

(
2x(1 − x) − h2

4

) [n/2]∑
l=1

h2l−2

(2l)!
ũ(2l)(x)

+ (1 − 2x)

[n/2]∑
l=1

h2l−2

(2l − 1)!
ũ(2l−1)(x) + λnũ(x) = 0, n = 0, . . . , N − 1.

Substituting the ansatz

ũ(x) =

n∑
k=0

akx
k

into this equation, considering the coefficient of the power xk, k = 0, . . . , n, implies that

(λn − k(k + 1))ak + (k + 1)2ak+1

+

[n/2]+1∑
l=2

2
h2l−2

(2l)!

(k + 2l − 1)!

(k − 1)!

[
k + l

k
ak+2l−1 − ak+2l−2

]

−
[n/2]∑
l=1

h2l

2(2l)!

(k + 2l)!

k!
ak+2l = 0, (9.17)

where for k = 0, we put (0 − 1)! = 1 in the second line of (9.17).

For k = n, n = 0, 1, . . . , N − 1, this gives

(λn − n(n+ 1))an + (n+ 1)2an+1 = 0.

Thus, if λn = n(n + 1), we have an+1 = 0 and the solution ũ(x) is indeed a poly-

nomial with degree n. After choosing the leading coefficient an 
= 0 arbitrarily, from

(9.17), we compute an−1, an−2, . . . , a0 recursively in a unique way. Then, we set

vn = (ũ(t1−1/2), ũ(t2−1/2), . . . , ũ(tN−1/2)).

There are two cases. Case 1. n < N: Then, vn 
= 0 since otherwise we would have

ũ ≡ 0, in contradiction to the fact that we have chosen ũ to be a non-trivial eigenfunction

with an 
= 0. Thus, (λn, vn) is an eigenpair for A. The eigenvectors vn, n = 1, . . . , N are

linearly independent. From Case 1, we get N eigenpairs with eigenvalues λn = n(n + 1)

for n = 0, . . . , N − 1.

Case 2. n � N: Then, vn = 0 although ũ� 0. The resulting eigenfunctions for A are

trivial and so in this case there are no new eigenpairs.
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Thus, we have found N eigenpairs with linearly independent eigenvectors.

Remark 17 The eigenvector v0 with eigenvalue λ0 = 0 corresponds to a rigid translation of

all N spikes.

The leading eigenpair for mutual movement of spikes is (λ1, v1).

The eigenvector for λ1 = 2 can be computed as follows:

ũ(x) = 1 − 2x, 0 < x < 1,

v1,k = ũ(tk−1/2), k = 1, . . . , N,

v1,k = 1 − 2(k − 1/2)

N
=
N − 2k + 1

N
.

The components of v1,k are linearly increasing and have odd symmetry around the centre of

the spike cluster which corresponds to k = N+1
2

or x = 1
2
.

Remark 18 The stability of the small eigenvalues follows from the results in [29] but the

eigenvalues have not been determined explicitly.

The technical analysis for the small eigenvalues has been postponed to Appendix B.

10 Conclusion

We end this paper with a discussion of our results. We have considered a particular

biological reaction–diffusion system with two small diffusivities, the Gierer–Meinhardt

system with precursor. We have proved the existence and stability of cluster solutions

which have three different length scales: a scale of order O(1) coming from the precursor

inhomogeneity and two small scales which are of the same size as the square roots of the

small diffusivities. In particular, the cluster solution can be stable for a suitable choice of

parameter values.

Such systems and their solutions play an important role in biological modelling to

account for the bridging of length scales, e.g. between genetic, nuclear, intra-cellular,

cellular and tissue levels. Our solutions incorporate and combine multiple scales in a

robust and stable manner. A particular example of biological multi-scale patterns concerns

the pattern formation of head (more precisely, hypostome), tentacles and foot in hydra.

Meinhardt’s model [17] correctly describes the following experimental observation: With

tentacle-specific antibodies, Bode et al. [3] have shown that after head removal tentacle

activation first reappears at the very tip of the gastric column. Then, this activation

becomes shifted away from the tip to a new location, where the tentacles eventually

appear. There are different lengthscales involved for this tentacle pattern: diameter of the

gastric column, distance between tentacles and diameter of tentacles.

Let us describe the relation of this paper to [17] in more detail. The model in [17] can

be explained in simplified form as follows: It consists of three activator–inhibitor systems,

accounting for the formation of head, foot and tentacles, respectively. These subsystems

are coupled by a joint source density. Further, there is direct interaction between the
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tentacle and head components to account for suppression of tentacle peaks at the site of

head peaks. Altogether, the model is a seven-component reaction–diffusion system.

The main link to the results in this paper is to understand tentacle activation near a

maximum of the source density. For this effect, the foot components can be neglected

and so we are dealing with a five component system only. It is observed experimentally

in [3] and computed numerically in [17] that near a sufficiently high local maximum

of the source density tentacle peaks appear. Two different cases are studied: (i) if there

is already a peak of head activator at this position, the tentacle peaks will appear at

ring-shaped positions with the head activator peak in the centre of the ring, or (ii) if there

is no previous head activator peak at this position, a tentacle activator peak will form,

followed by a head activator peak which causes the tentacle peak to split into multiple

peaks which are finally displaced to positions in ring-shaped positions with the activator

peak in its centre.

For this effect to happen, it is assumed that the source density changes very slowly in time

and acts on a rather long length scale. This corresponds to the precursor inhomogeneity

in our model which is independent of time and has an O(1) length scale. The way the

source density enters into the model is set up differently than in our paper resulting in a

local maximum in [17] having a similar effect to a local minimum in our paper.

We try to model some of these phenomena in a “minimal model” which consists of

only two components corresponding to the two tentacle components in [17] coupled to a

time-independent source density acting on an O(1) length scale.

The cluster pattern of spikes located in a sub-interval studied in our paper resembles

the ring of tentacle peaks reduced to one dimension. (Work on the two-dimensional case

is currently in progress.)

It is interesting to note that our paper is successful in modelling isolated tentacles

(without head formation) observed in some experimental situations as discussed in [17].

Comparing the two models in this paper and [17] leads to immediate possible extensions

of the spike cluster analysis to models which are biologically more realistic by taking into

account the following phenomena: (i) the effect of the head activator–inhibitor system

could be added to show that the head activator peak pushes out the tentacle activator

peaks; (ii) the tentacle activator peaks split easily due to saturation non-linearities in the

tentacle subsystem (whereas in this paper, we do not consider the effect of saturation);

(iii) add the foot activator–inhibitor system; (iv) replace the precursor inhomogeneity by

a time-dependent source density which interacts with the other subsystems dynamically,

e.g. it is enhanced by head activator, suppressed by foot activator, diffuses and possibly

has its own predetermined inhomogeneity.

There are links of the model in [17] to other fields in biology such as the periodic

spacing of secondary structures around a primary organizing region which is observed in

the arrangement of leaves and flower elements in plants around the primary meristem [5].

The molecular basis underlying the model in [17] has recently been confirmed exper-

imentally: After treatment of hydra with Alsterpaullone (which stabilizes β-catenin and

thus increases the source density), it has been found that tentacle formation occurs over

the whole body column [4]. Numerical computations have confirmed this behaviour [19].

This is in agreement with the pattern of multiple spikes covering the whole interval

computed in our paper (see Figures 4–6).
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Systems of the type considered in this paper are a key to understanding the hierarchy of

multi-stage biological processes such as in signalling pathways, where typically first large-

scale structures appear which induce patterns on successively smaller scales. The precursor

can represent previous information from an earlier stage of development leading to the

formation of fine structure at the present time. The multi-spike cluster in this paper is a

typical small-scale pattern which is established near a pre-existing large-scale precursor

inhomogeneity.

Acknowledgements

This research is supported by NSERC of Canada. MW would like to thank the De-

partment of Mathematics at UBC for its kind hospitality. MW would like to thank

the Isaac Newton Institute for Mathematical Sciences for its kind hospitality during the

programme “Coupling Geometric PDEs with Physics for Cell Morphology, Motility and

Pattern Formation” supported by EPSRC Grant Number EP/K032208/1.

References

[1] Alberti, G. & Müller, S. (2001) A new approach to variational problems with multiple

scales. Commun. Pure Appl. Math. 54(7), 761–825.

[2] Benson, D. L., Maini, P. K. & Sherratt, J. A. (1998) Unravelling the turing bifurcation using

spatially varying diffusion coefficients. J. Math. Biol. 37(5), 381–417.

[3] Bode, P. M., Awad, T. A., Koizumi, O., Nakashima, Y., Grimmelikhuijzen, C. J. P. & Bode,

H. R. (1988) Development of the two-part pattern during regeneration of the head in hydra.

Development 102, 223–235.

[4] Broun, M., Gee, L., Reinhardt, B. & Bode, H. R. (2005) Formation of the head organizer in

hydra involves the canonical Wnt pathway. Development 132, 2907–2916.

[5] Coen, E. S. & Meyerowitz, E. M. (1991) The war of the whorls: Genetic interactions

controlling flower development. Nature 353(6339), 31–37.

[6] Dancer, E. N. (2001) On stability and Hopf bifurcations for chemotaxis systems. Methods

Appl. Anal. 8(2), 245–256.

[7] Doelman, A., Gardner, R. A. & Kaper, T. J. (2001) Large stable pulse solutions in reaction-

diffusion equations. Indiana Univ. Math. J. 49(1), 443–507.

[8] Doelman, A., Kaper, T. J. & van der Ploeg, H. (2001) Spatially periodic and aperiodic multi-

pulse patterns in the one-dimensional Gierer-Meinhardt equation. Methods Appl. Anal. 8(3),

387–414.

[9] Ei, S.-I. & Wei, J. (2002) Dynamics of metastable localized patterns and its application to the

interaction of spike solutions for the Gierer-Meinhardt systems in two spatial dimensions.

Japan J. Ind. Appl. Math. 19(2), 181–226.

[10] Floer, A. & Weinstein, A. (1986) Nonspreading wave packets for the cubic Schrödinger

equation with a bounded potential, J. Funct. Anal. 69(3), 397–408.

[11] Gierer, A. & Meinhardt, H. (1972) A theory of biological pattern formation, Kybernetik

(Berlin) 12(1), 30–39.

[12] Gui, C. & Wei, J. (1999) Multiple interior peak solutions for some singular perturbation

problems. J. Differ. Equ. 158(1), 1–27.

[13] Gui, C., Wei, J. & Winter, M. (2000) Multiple boundary peak solutions for some singularly

perturbed Neumann problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(1), 47–82.
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Appendix A: Preliminary results on non-local eigenvalue problems

In this appendix, we collect some previous results on NLEPs which will be used throughout

the paper.

We first recall the following result:

Theorem 19 Consider the NLEP

φ′′ − φ+ 2wφ− γ

∫
� wφdy∫
� w

2 dy
w2 = αφ. (A 1)

(1) (Appendix E of [15].) If γ < 1, then there is a positive eigenvalue to (A 1).

(2) (Theorem 1.4 of [36].) If γ > 1, then for any non-zero eigenvalue α of (A 1), we have

Re(α) � −c < 0.

(3) If γ 
= 1 and α = 0, then

φ = c0w
′

for some constant c0.

Next, we consider the following system of NLEPs:

LΦ := Φ′′ − Φ+ 2wΦ− 2

∫
� wΦdy∫
� w

2 dy
w2, (A 2)
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where

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1

φ2

...

φN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ (H2(�))N.

Set

L0u := u′′ − u+ 2wu, (A 3)

where u ∈ H2(�).

Then, the conjugate operator of L under the scalar product in L2(�) is given by

L∗Ψ = Ψ ′′ −Ψ + 2wΨ − 2

∫
� w

2Ψ dy∫
� w

2 dy
w, (A 4)

where

Ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

...

ψN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ (H2(�))N.

Then, we have the following result.

Lemma 20 ( [43]) We have

Ker(L) = X0 ⊕X0 ⊕ · · · ⊕X0, (A 5)

where

X0 = span {w′(y)}
and

Ker(L∗) = X0 ⊕X0 ⊕ · · · ⊕X0. (A 6)

Proof The system (A 2) is in diagonal form. Suppose

LΦ = 0.

For l = 1, 2, . . . , N, the lth equation of system (A 2) is given by

Φ′′
l − Φl + 2wΦl − 2

∫
� wΦl dy∫
� w

2 dy
w2 = 0. (A 7)

By Theorem 19 (3) with γ = 2, we have

Φl ∈ X0, l = 1, . . . , N (A 8)

and (A 5) follows.

https://doi.org/10.1017/S0956792516000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000450


624 J. Wei and M. Winter

To prove (A 6), we proceed in a similar way for L∗. The lth equation of (A 4) is given

as follows:

Ψ ′′
l −Ψl + 2wΨl − 2

∫
� w

2Ψl dy∫
� w

2 dy
w = 0. (A 9)

Multiplying (A 9) by w and integrating, we obtain∫
�
w2Ψl dy = 0.

Thus, all the non-local terms vanish and we have

L0Ψl = 0, l = 1, . . . , N. (A 10)

By Theorem 19 (3) with γ = 0, this implies

Ψl ∈ X0, l = 1, . . . , N.

�

As a consequence of Lemma 20, we have

Lemma 21 ( [43]) The operator

L : (H2(�))N → (L2(�))N, LΦ = Φ′′ − Φ+ 2wΦ− 2

∫
� wΦdy∫
� w

2 dy
w2,

is invertible if it is restricted as follows:

L : (X0 ⊕ · · · ⊕X0)
⊥ ∩ (H2(�))N → (X0 ⊕ · · · ⊕X0)

⊥ ∩ (L2(�))N.

Moreover, L−1 is bounded.

Proof This result follows from the Fredholm Alternative and Lemma 20.

�

Finally, we study the eigenvalue problem for L:

LΦ = αΦ. (A 11)

We have

Lemma 22 For any non-zero eigenvalue α of (A 11), we have Re(α) � −c < 0.

Proof Let (Φ, α) satisfy the system (A 11). Suppose Re(α) � 0 and α 
= 0. Then, the lth

equation of (A 11) becomes

Φ′′
l − Φl + 2wΦl − 2

∫
� wΦl∫
� w

2
w2 = αΦl.
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By Theorem 19 (2), we conclude that

Re(α) � −c < 0.

�

Throughout the paper, let C, c denote generic constants which may change from line

to line.

Appendix B: Stability proof III – technical analysis of small eigenvalues

In this section, we perform a technical analysis of the small eigenvalues and conclude the

proof of Theorem 2.

First, let us define

w̃ε,j(x) = χ

(
x− tεj

δε

)
w̄ε(x), j = 1, . . . , N, (B 1)

where χ(x) is given in (4.8) and δε satisfies (4.9). We define similar to Section 6

Knew
ε,tε := span {εw̃′

ε,j : j = 1, . . . , N} ⊂ H2(Ωε),

Cnewε,tε := span {εw̃′
ε,j : j = 1, . . . , N} ⊂ L2(Ωε).

Then, it is easy to see that

w̄ε(x) =

N∑
j=1

w̃ε,j(x) + O(ε10). (B 2)

Note that w̃ε,j satisfies

ε2Δw̃ε,j − μ(x)w̃ε,j +
(w̃ε,j)

2

H̄ε

+ O(ε10) = 0.

Further, we have w̃ε,j(x) = ξ̂jwj

(
x−tεj
ε

)
+ O

(
ε√
D

+ D
(
log 1

D

)2)
in H2(Ωε), where wj has

been defined in(4.6).

Thus, w̃′
ε,j :=

dw̃ε,j
dx

satisfies

ε2Δw̃′
ε,j − μ(x)w̃′

ε,j +
2w̃ε,j

H̄ε

w̃′
ε,j −

w̃2
ε,j

(H̄ε)2
H̄ ′
ε − μ′(x)w̃ε,j + O(ε9) = 0. (B 3)

Let us now decompose

φε = ε

N∑
j=1

aεjw̃
′
ε,j + φ⊥

ε , (B 4)

where aεj are complex numbers and φ⊥
ε ⊥ Knew

ε,tε . Note that the scaling factor ε has been

introduced to ensure that φε = O(1) in H2(Ωε).

Suppose that ‖φε‖H2(Ωε) = 1. Then, |aεj | � C .
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The decomposition of φε given in (B 4) implies

ψε = ε

N∑
j=1

aεjψε,j + ψ⊥
ε , (B 5)

where ψε,j satisfies

DΔψε,j − ψε,j + 2ξεw̄εw̃
′
ε,j = 0, ψ′

ε,j(−1) = ψ′
ε,j(1) = 0 (B 6)

and ψ⊥
ε is given by

DΔψ⊥
ε − ψ⊥

ε + 2ξεw̄εφ
⊥
ε = 0, (ψ⊥

ε )′(−1) = (ψ⊥
ε )′(1) = 0. (B 7)

Substituting the decompositions of φε and ψε into (9.2) we have, using (B 3),

ε

N∑
j=1

aεj

(
(w̃ε,j)

2

H̄2
ε

H̄ ′
ε −

(w̄ε)
2

H̄2
ε

ψε,j

)
+ ε

N∑
j=1

aεjμ
′(x)w̃ε,j

+ ε2Δφ⊥
ε − μ(x)φ⊥

ε + 2
w̄ε

H̄ε

φ⊥
ε − w̄2

ε

H̄2
ε

ψ⊥
ε − λεφ

⊥
ε + O(ε9)

= λε

⎛
⎝ε N∑

j=1

aεjw̃
′
ε,j

⎞
⎠ . (B 8)

We first compute

I1 := ε

N∑
j=1

aεj

(
(w̃ε,j)

2

H̄2
ε

H̄ ′
ε −

(w̄ε)
2

H̄2
ε

ψε,j

)

= ε

N∑
j=1

aεj
(w̃ε,j)

2

H̄2
ε

[−ψε,j + H̄ ′
ε] − ε

N∑
j=1

aεjψε,j
∑
k �=j

(w̃ε,k)
2

H̄2
ε

+ O(ε9)

= ε

N∑
j=1

aεj
(w̃ε,j)

2

H̄2
ε

[
−ψε,j + H̄ ′

ε

]
− ε

N∑
j=1

∑
k �=j

aεkψε,k
(w̃ε,j)

2

H̄2
ε

+ O(ε9).

We estimate I1 as follows

I1 = −ε
N∑
j=1

N∑
k=1

aεk
(w̃ε,j)

2

H̄2
ε

[
ψε,k − H̄ ′

εδjk
]
+ O(ε9)

= −ε
N∑
j=1

∑
|k−j|=1

aεk
(w̃ε,j)

2

H̄2
ε

ψε,k + O(ε9) + O

(
εD3/2

(
log

1

D

)2
)
. (B 9)

Let us also put

L̃εφ
⊥
ε := ε2Δφ⊥

ε − μ(x)φ⊥
ε +

2w̄ε

H̄ε

φ⊥
ε − w̄2

ε

H̄2
ε

ψ⊥
ε (B 10)
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and

aε := (aε1, . . . , a
ε
N)T . (B 11)

Multiplying both sides of (B 8) by w̃′
ε,l and integrating over (−1, 1), we obtain, using (3.3),

r.h.s. = ελε

N∑
j=1

aεj

∫ 1

−1

w̃′
ε,j w̃

′
ε,l dx

= λεa
ε
l ξ̂

2
l

∫
�
(w′

l (y))
2 dy

(
1 + O

(
ε√
D

+ D

(
log

1

D

)2
))

(B 12)

= λεa
ε
l ξ̂

2
l μ

5/2
l

∫
�
(w′(z))2 dz

(
1 + O

(
ε√
D

+ D

(
log

1

D

)2
))

(B 13)

and, using (B 9),

l.h.s. = −ε
N∑
k=1

aεk

∫ 1

−1

w̃2
ε,l

H̄2
ε

[
ψε,k − H̄ ′

εδlk
]
w̃′
ε,l dx

+ε

N∑
j=1

aεj

∫ 1

−1

μ′w̃ε,j w̃
′
ε,l dx

+

∫ 1

−1

w̃2
ε,l

H̄2
ε

(H̄ ′
εφ

⊥
ε ) dx

−
∫ 1

−1

w̃2
ε,l

H̄2
ε

(ψ⊥
ε w̃

′
ε,l) dx+

∫ 1

−1

μ′φ⊥
ε w̃ε,l dx

= (J1,l + J2,l + J3,l + J4,l + J5,l),

where Ji,l , i = 1, 2, 3, 4, 5 are defined by the latest equality.

The following is the key lemma.

Lemma 23 We have

J1,l = −ε2
(

1

3

∫
�
w3 dy

)
ξ̂lμ

5/2
l

[
−∇2

tεl
K̂D(tεl , t

ε
l−1)ξ̂

2
l−1μ

3/2
l−1a

ε
l−1

−∇2
tεl
K̂D(tεl , t

ε
l+1)ξ̂

2
l+1μ

3/2
l+1a

ε
l+1

+[∇2
tεl
K̂D(tεl , t

ε
l+1)ξ̂

2
l+1μ

3/2
l+1 + ∇2

tεl
K̂D(tεl , t

ε
l−1)ξ̂

2
l−1μ

3/2
l−1]a

ε
l

]

+O

(
ε2

(
ε√
D

+ D

(
log

1

D

)2
))

, (B 14)
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J2,l = −ε2
(

5

12

∫
�
w3 dy

)
ξ̂2
l μ

3/2
l μ′′l a

ε
l + O

(
ε2

(
ε√
D

+ D

(
log

1

D

)2
))

, (B 15)

J3,l = O

(
ε2

(
ε√
D

+ D

(
log

1

D

)2
))

, (B 16)

J4,l = O

(
ε2

(
ε√
D

+ D

(
log

1

D

)2
))

, (B 17)

J5,l = O

(
ε2

(
ε√
D

+ D

(
log

1

D

)2
))

, (B 18)

where aεl has been defined in (B 11) and

a0
l = lim

ε→0
aεl , a0 = (a0

1, . . . , a
0
N). (B 19)

Proof We prove Theorem 1 by using Lemma 23. We compute

l.h.s. = J1,l + J2,l + O

(
ε2

(
ε√
D

+ D

(
log

1

D

)2
))

= −ε2
(

1

3

∫
�
w3 dy

)
ξ̂lμ

5/2
l

[
−∇2

tεl
K̂D(tεl , t

ε
l−1)ξ̂

2
l−1μ

3/2
l−1a

ε
l−1

−∇2
tεl
K̂D(tεl , t

ε
l+1)ξ̂

2
l+1μ

3/2
l+1a

ε
l+1

+ [∇2
tεl
K̂D(tεl , t

ε
l+1)ξ̂

2
l+1μ

3/2
l+1 + ∇2

tεl
K̂D(tεl , t

ε
l−1)ξ̂

2
l−1μ

3/2
l−1]a

ε
l

]

− ε2
(

5

12

∫
�
w3 dy

)
ξ̂2
l μ

3/2
l μ′′l a

ε
l + O

(
ε2

(
ε√
D

+ D

(
log

1

D

)2
))

.

Comparing with r.h.s. and recalling the computation of M(t0) at (9.12), we obtain

−2.4ε2ξ̂0(μ0)5/2M(t0)aε

(
1 + O

(
ε√
D

+
√
D log

1

D

))

= λε(μ
0)5/2(ξ̂0)2aε

∫
�
(w′(y))2 dy

(
1 + O

(
ε√
D

+
√
D log

1

D

))
, (B 20)

using (2.3). Equation (B 20) shows that the small eigenvalues λε of (9.2) are given by

λε ∼ −2
ε2

ξ̂0
σ
(
M(t0)

)
,

using (2.3).

Arguing as in Theorem 12, this shows that if all the eigenvalues of M(t0) have positive

real part, then the small eigenvalues are stable. On the other hand, if M(t0) has an
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eigenvalue with negative real part, then there are eigenfunctions and eigenvalues to make

the system unstable.

This proves Theorem 2.

�

Next, we prove Lemma 23.

Proof We first study the asymptotic behaviour of ψε,j .

Lemma 24 We have

(ψε,k − H̄ ′
εδkl)(t

ε
l ) = −∇tεk

K̂D(tεl , t
ε
k)ξ̂

2
kμ

3/2
k [δk,l−1 + δk,l+1] − δkl

∑
m,|m−l|=1

∇tεl
K̂D(tεl , t

ε
m)ξ̂2

mμ
3/2
m

+O

(
√
D log

1

D

(
ε√
D

+

(
D log

1

D

)2
))

. (B 21)

Proof Note that for l 
= k, we have

ψε,k(t
ε
l ) = 2ξε

∫ 1

−1

GD(tεl , z)w̄εw̃
′
ε,k dz

= −∇tεk
ĜD(tεk, t

ε
l )ξ̂

2
kμ

3/2
k + O

(
√
D log

1

D

(
ε√
D

+

(
D log

1

D

)2
))

= −∇tεk
K̂D(tεk, t

ε
l )ξ̂

2
kμ

3/2
k + O

(
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

. (B 22)

Next, we compute (ψε,l − H̄ ′
ε)(x) for x near tεl . We first get

H̄ε(x) = ξε

∫ 1

−1

GD(x, z)w̄2
ε dz

= ξε

∫ +∞

−∞
KD(|z|)w̃2

ε,l(x+ z)dz − ξε

∫ 1

−1

HD(x, z)w̃2
ε,l dz

+ξε
∑
k �=l

∫ 1

−1

GD(x, z)w̃2
ε,k dz + O

(
ε√
D

+ D

(
log

1

D

)2
)
.

Then, we have

H̄ ′
ε(x) = ξε

∫ +∞

−∞
KD(|z|)(2w̃ε,l(x+ z)w̃′

ε,l(x+ z)) dz − ξε

∫ 1

−1

∇xHD(x, z)w̃2
ε,l dz

+ξε
∑
k �=l

∫ 1

−1

∇xGD(x, z)w̃2
ε,k dz + O

(
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

https://doi.org/10.1017/S0956792516000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000450


630 J. Wei and M. Winter

= ∇tεk
K̂D(tεk, t

ε
l )ξ̂

2
kμ

3/2
k +

∑
k,|k−l|=1

∇xK̂D(x, tεk)ξ̂
2
kμ

3/2
k

+O

(
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

. (B 23)

This implies

H̄ ′
ε(x) − ψε,l(x) = −ξε

∫ 1

−1

∇xHD(x, z)w̃2
ε,l dz + ξε

∑
k �=l

∫ 1

−1

∇xGD(x, z)w̃2
ε,k dz

+ 2ξε

∫ 1

−1

HD(x, z)w̃ε,l w̃
′
ε,l dz

+O

(
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

=
∑

k,|k−l|=1

∇xK̂D(x, tεk)ξ̂
2
kμ

3/2
k

+O

(
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

. (B 24)

Therefore, we have,

H̄ ′
ε(t

ε
l ) − ψε,l(t

ε
l ) = −ξε

∫ 1

−1

∇tεl
HD(tεl , z)w̃

2
ε,l dz + ξε

∑
k �=l

∫ 1

−1

∇tεl
GD(tεl , z)w̃

2
ε,k dz

−∇tεl
HD(tεl , t

ε
l )ξ̂

2
l μ

3/2
l + O

(
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

=

N∑
k=1

∇tεl
ĜD(tεl , t

ε
k)ξ̂

2
kμ

3/2
k −∇tεl

HD(tεl , t
ε
l )ξ̂

2
l μ

3/2
l

+O

(
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

=
∑

k,|k−l|=1

∇tεl
K̂D(tεl , t

ε
k)ξ̂

2
kμ

3/2
k

+O

(
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

. (B 25)

Combining (B 22) and (B 25), we have shown (B 21).

�

Similar to the proof of Lemma 24, the following result is derived.
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Lemma 25 We have

ψε,k(t
ε
l + εy) − ψε,k(t

ε
l )

= −εy∇tεl
∇tεk

ĜD(tεl , t
ε
k)ξ̂

2
kμ

3/2
k

[
1 + O

(
ε√
D
y

)
+ O

(
D

(
log

1

D

)2
)]

= −εy∇tεl
∇tεk

K̂D(tεl , t
ε
k)ξ̂

2
kμ

3/2
k [δl,k−1 + δl,k+1]

[
1 + O

(
ε√
D
y

)
+ O

(
D

(
log

1

D

)2
)]

(B 26)

for l 
= k and

(ψε,l − H̄ ′
ε)(t

ε
l + εy) − (ψε,l − H̄ ′

ε)(t
ε
l )

= −εy
N∑
m=1

∇2
tεl
ĜD(tεl , t

ε
m)ξ̂2

mμ
3/2
m

[
1 + O

(
ε√
D
y

)
+ O

(
D

(
log

1

D

)2
)]

= −εy
∑

m,|m−l|=1

∇2
tεl
K̂D(tεl , t

ε
m)ξ̂2

mμ
3/2
m

[
1 + O

(
ε√
D
y

)
+ O

(
D

(
log

1

D

)2
)]

. (B 27)

For J1,l , we compute

J1,l = −ε
N∑
k=1

aεk

∫ 1

−1

w̃2
ε,l

H̄2
ε

[
ψε,k − H̄ ′

εδlk
]
w̃′
ε,l dx

= −ε
N∑
k=1

aεk

∫ 1

−1

w̃2
ε,l

H̄2
ε

[
ψε,k(t

ε
l ) − H̄ ′

ε(t
ε
l )δlk

]
w̃′
ε,l dx

−ε
N∑
k=1

aεk

∫ 1

−1

w̃2
ε,l

H̄2
ε

([
ψε,k(x) − H̄ ′

ε(x)δlk
]
−
[
ψε,k(t

ε
l ) − H̄ ′

ε(t
ε
l )δlk

])
w̃′
ε,l dx.

= J6,l + J7,l .

For J6,l , we use (B 23) and Lemma 24 to obtain

J6,l = −2

3
ε

N∑
k=1

aεk

∫ 1

−1

w̃3
ε,l

H̄3
ε

H̄ ′
ε

[
ψε,k(t

ε
l ) − H̄ ′

ε(t
ε
l )δlk

]
dx

= −2

3
ε2

N∑
k=1

aεk

(∫
�
w3
l dy

)
H̄ ′
ε(t

ε
l )
[
ψε,k(t

ε
l ) − H̄ ′

ε(t
ε
l )δlk

]

×
[
1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]
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= ε2
N∑
k=1

aεk

(
2

3

∫
�
w3 dy

)
μ

5/2
l

×
[
∇tεk

ĜD(tεl , t
ε
k)ξ̂

2
kμ

3/2
k −

N∑
k=1

∇tεl
ĜD(tεl , t

ε
k)ξ̂

2
kμ

3/2
k

]

×

⎡
⎣ N∑
j=1

∇tεl
ĜD(tεl , t

ε
j)ξ̂

2
j μ

3/2
j

⎤
⎦[1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]

= ε2
N∑
k=1

aεk

(
2

3

∫
�
w3 dy

)
μ

5/2
l

×

⎡
⎣∇tεk

K̂D(tεl , t
ε
k)ξ̂

2
kμ

3/2
k [δl,k−1 + δl,k+1] −

∑
k,|k−l|=1

∇tεl
K̂D(tεl , t

ε
k)ξ̂

2
kμ

3/2
k

⎤
⎦

×

⎡
⎣ ∑
j,|j−l|=1

∇tεl
K̂D(tεl , t

ε
j)ξ̂

2
j μ

3/2
j

⎤
⎦+ O

(
ε2D

(
log

1

D

)2
(

ε√
D

+ D

(
log

1

D

)2
))

= ε2
N∑
k=1

aεk

(
2

3

∫
�
w3 dy

)
μ

5/2
l

×

⎡
⎣∇tεk

K̂D(tεl , t
ε
k)ξ̂

2
kμ

3/2
k [δl,k−1 + δl,k+1] −

∑
k,|k−l|=1

∇tεl
K̂D(tεl , t

ε
k)ξ̂

2
kμ

3/2
k

⎤
⎦

×

⎡
⎣ ∑
j,|j−l|=1

∇tεl
K̂D(tεl , t

ε
j)ξ̂

2
j μ

3/2
j

⎤
⎦+ O

(
ε2D

(
log

1

D

)2
(

ε√
D

+ D

(
log

1

D

)2
))

= O

(
ε2D

(
log

1

D

)2
)
.

Similarly, we compute, using Lemma 25, (9.10) and (9.11),

J7,l = ε2ξ̂l

∫
�

(
yw2

l w
′
l (y)
)
dy

N∑
k=1

(
∇tεl

∇tεk
ĜD(tεl , t

ε
k)ξ̂

2
kμ

3/2
k +

N∑
m=1

∇2
tεl
ĜD(tεl , t

ε
m)ξ̂2

mμ
3/2
m δk,l

)
aεk

+O

(
ε2
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

= −ε2ξ̂l
(

1

3

∫
�
w3 dy

)[
μ

5/2
l

∑
k,|k−l|=1

∇tεl
∇tεk

K̂D(tεl , t
ε
k)ξ̂

2
kμ

3/2
k aεk

+

N∑
m,|m−l|=1

∇2
tεl
K̂D(tεl , t

ε
m)ξ̂2

mμ
3/2
m aεl

]
+ O

(
ε2
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

= −ε2ξ̂l
(

1

3

∫
�
w3 dy

)
μ

5/2
l

[
−

∑
k,|k−l|=1

∇2
tεl
K̂D(tεl , t

ε
k)ξ̂

2
kμ

3/2
k aεk
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+

N∑
k,|k−l|=1

∇2
tεl
K̂D(tεl , t

ε
k)ξ̂

2
kμ

3/2
k aεl

]
+ O

(
ε2
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

= − ε2ξ̂l
(

1

3

∫
�
w3 dy

)
μ

5/2
l

∑
k,|k−l|=1

∇2
tεl
K̂D(tεl , t

ε
k)ξ̂

2
kμ

3/2
k (aεl − aεk)

+O

(
ε2
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

= −ε2ξ̂l
(

1

3

∫
�
w3 dy

)
μ

5/2
l

[
−∇2

tεl−1
K̂D(tεl , t

ε
l−1)ξ̂

2
l−1μ

3/2
l−1a

ε
l−1

−∇2
tεl+1
K̂D(tεl , t

ε
l+1)ξ̂

2
l+1μ

3/2
l+1a

ε
l+1

+[∇2
tεl
K̂D(tεl , t

ε
l+1)ξ̂

2
l μ

3/2
l+1 + ∇2

tεl
K̂D(tεl , t

ε
l−1)ξ̂

2
l μ

3/2
l−1]a

ε
l

]

+O

(
ε2
√
D log

1

D

(
ε√
D

+ D

(
log

1

D

)2
))

. (B 28)

Combining (B 28) and (B 28), we obtain (B 14).

For J2,l , integration by parts gives

J2,l = ε

N∑
j=1

aεj

∫ 1

−1

μ′w̃ε,j w̃
′
ε,l dx

= − εa
ε
l

2

∫ 1

−1

μ′′w̃2
ε,l dx

[
1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]

= − ε
2aεl
2
ξ̂2
l μ

3/2
l μ′′l

∫
�
w2 dy

[
1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]

and (B 15) follows.

These are the main terms. The remaining terms are small and we will show that they

are of the order O
(
ε2
(

ε√
D

+ D
(
log 1

D

)2))
.

Similar to the proof of Proposition 9, it follows that L̃ε is invertible from (Knew
ε )⊥ to

(Cnewε )⊥ with uniformly bounded inverse for max
(

ε√
D
, D
)

small enough. By (B 8), (B 9),

Lemma 24 and the fact that L̃ε is uniformly invertible, we deduce that

‖φ⊥
ε ‖H2(Ωε) = O

(
ε
√
D log

1

D

)
. (B 29)

Then, we have by the equation for ψ⊥
ε

ψ⊥
ε (tεj) = 2ξε

∫ 1

−1

GD(tεj , z)w̄εφ
⊥
ε dz = O

(
ε
√
D log

1

D

)
.

https://doi.org/10.1017/S0956792516000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000450


634 J. Wei and M. Winter

Further, we estimate

ψ⊥
ε (tεj + εy) − ψ⊥

ε (tεj) = 2ξε

∫ 1

−1

[GD(tεj + εy, z) − GD(tεj + εy, z)]w̄εφ
⊥
ε dz

= 2εyξε

∫ 1

−1

∇tεj
GD(tεjy, z)w̄εφ

⊥
ε dz

[
1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]

= O

(
ε
√
D log

1

D
ε
√
D log

1

D
y

)
= O

(
ε2D

(
log

1

D

)2

y

)
. (B 30)

These estimates of ψ⊥
ε and φ⊥

ε are important for the rest of the proof.

For J3,l , we have by (B 23), (B 29)

J3,l = H̄ ′
ε(t

ε
l )

∫ 1

−1

w̃2
ε,lφ

⊥
ε dx

[
1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]

= O

(√
D log

1

D
ε‖φ⊥

ε ‖H2(Ωε)

)
= O

(
ε2D

(
log

1

D

)2
)

which proves (B 16).

For J4,l , we decompose

J4,l = J8,l + J9,l ,

where

J8,l = −
∫ 1

−1

w̃2
ε,l

H̄2
ε

(ψ⊥
ε (tεl )w̃

′
ε,l) dx, (B 31)

J9,l = −
∫ 1

−1

w̃2
ε,l

H̄2
ε

(ψ⊥
ε (x) − ψ⊥

ε (tεl ))w̃
′
ε,l dx. (B 32)

For J8,l , we have used (B 23), (B 30)

J8,l = −ψ⊥
ε (tεl )

∫ 1

−1

w̃2
ε,l

H̄2
ε

w̃′
ε,l dx

=
2

3
ψ⊥
ε (tεl )

∫ 1

−1

w̃3
ε,l

H̄3
ε

H̄ ′
ε dx

[
1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]

= −ε2
3
H̄ ′
ε(t

ε
l )ψ

⊥
ε (tεl )μ

5/2
l

(∫
�
w3 dy

)[
1 + O

(
ε√
D

+ D

(
log

1

D

)2
)]

= O

(
ε
√
D log

1

D
ε
√
D log

1

D

)
= O

(
ε2D

(
log

1

D

)2
)
. (B 33)

For J9,l , we have used (B 30)

J9,l = −
∫ 1

−1

w̃2
ε,l

H̄2
ε

(ψ⊥
ε (x) − ψ⊥

ε (tεl ))w̃
′
ε,l dx = O

(
ε2D

(
log

1

D

)2
)
. (B 34)
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Now, (B 17) follows from (B 33), (B 34).

Finally, we estimate using (B 29) and μ′(ti) = O
(√

D log 1
D

)
that

J5,l =

∫ 1

−1

μ′φ⊥
ε w̃ε,l dx = O

(
ε ε
√
D log

1

D

√
D log

1

D

)
= O

(
ε2D

(
log

1

D

)2
)

(B 35)

and (B 18) follows.

�
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