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NOTE ON THE MOTION OF FLUID IN A CURVED PIPE

W. R. DEAN and J. M. HURST

1. In the stream-line motion of fluid in a curved pipe the primary
motion along the line of the pipe is accompanied by a secondary motion
in the plane of the cross-section. The secondary motion decreases the rate
of flow produced by a given pressure gradient and causes an outward
movement of the region where the primary motion is greatest. It is
difficult to deduce these consequences from the exact equations of motion,
but it is easy to do so if it is assumed that the actual secondary motion is
replaced by a uniform stream; conditions in the central part of the section
mainly determines the motion and here the secondary motion is approx-
imately a uniform stream. The appropriate velocity of the stream can
be determined from the relation that has been found experimentally
between the rate of flow in a curved pipe and the pressure gradient.

2. I t is assumed that the velocity" components (U, V, W) referred to
cylindrical coordinates (m, <f>, z) are independent of ^ and of the time t.
The equations of motion and of continuity are then

Z_±± (_ _
m ~ pm d<f> ^ \dm2^ m dm

dw i dp (d* i a

'

, dU , U .dW n

and - a — \-~^— = 0-
am VJ oz

The boundary of the pipe is the surface obtained by rotating either a
circle or a rectangle about the z axis. In the first of these cases it is
assumed that the radius a of the circle is small compared with the radius B
of the curve traced out by the centre of the circle, and the corresponding
assumption is made in the second case. The equations can now be
simplified by replacing, for instance, the operator djdm+1/to by djdw,
and by replacing m by the constant It in the term F2/ra in the first
equation and in the pressure term in the second equation. This yields
the approximate equations

TTdU ,wdU V2 1 dP . /d* , d \

dV-LWdV 1 dP .
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and

C^+JF —= --~W—+-^- (3)

(4)

Kg. 1.

Equation (2) shows that the pressure P must be of the form

f(w,z)<f>+g(w,z)

and it is then clear from equations (1) and (3) that /(TO, Z) must be a
constant. Hence

P = -CB<l>+g(m,z), (5)

where the constant 0 is equal to the space-rate of decrease in pressure
along the central line of the pipe. Equation (4) is satisfied if

dW 9T
U ~ dz' W - dm'

from equation (2)

p • \dmdz dz dm) '

and the elimination of P from (1) and (3) gives the equation

(6)

(7)

dm* + dzV * - B dz + \dwdz~ dz dm dz*
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3. In the approximate equations (7) and (8) the coordinates w and z
appear only in the operators d\dm and d/dz; hence any point in the meridian
plane that is selected for reference can be taken as the origin, and X, Y
can be used for the corresponding coordinates, Fig. 1. Non-dimensional
forms of the equations in terms of X, Y can now be obtained by writing

T=v./r, X = ax, Y = ay, V=VQv, (9)

where a and Fo denote a length and a velocity such that

These equations are

and viV = ̂ f ? +
1 Y dy

where v^g + g,,

and the non-dimensional constant K is denned by
*-$&)'. <»>

If the pipe is straight, K = 0; a solution of (11) is then ip = 0, and (10)
becomes

V 1 » » = - 4 , (13)

which is the non-dimensional form of the known equation for the flow of
liquid under pressure in a straight pipe. If the cross-section of the pipe
is a circle of radius a, the appropriate solution of (13) is

« = 1—x%—y2,

and Vo is the velocity of the fluid on the central line of the pipe. This
defines Fo as the velocity on the axis of a circular pipe of radius a due to
a pressure gradient G.

4. It is difficult to make much progress analytically with equations
(10) and (11), but it is possible to deduce some of the effects of curvature
from an approximate treatment. In equation (10) »/r is the reduced stream
function of the secondary motion, that is, of the motion in the plane of the
cross section which is roughly indicated in Fig. 1. The effect of the sec-
ondary motion is to reduce the total rate of flow through the pipe due to
a given pressure gradient. Equation (10) may be regarded as determining
the deflection of a flexible membrane by a normal pressure; it is then clear
that the pressure in the central part of the membrane will normally have
the most important effect on the deflection, and near the centre of the pipe
the secondary motion is roughly in the X direction, the velocity V being

G
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right-handed about Oz. This suggests replacing the actual secondary
motion by a uniform stream in the X direction, i.e., writing

0 = -Iky

where k is constant. The boundary conditions at the surface of the pipe
will not, of course, be satisfied by the assumed secondary motion but the
equation

+ 4+2k

that is derived from (10) by this approximation does, in fact, give in the
two cases considered below a reduced total rate of flow.

5. Suppose first that the cross-section of the pipe is a circle of radius a,
and let x = r cos 6, y = r sin d so that r = 1 is the boundary of the section.

In (14) the substitution
2x , ^

v = -r- -{-ue1"0

leads to the equation

d2 u , d2 u d2 u , 1 du , 1 92 u

The assumption that u is proportional to cos nd gives Bessel's equation of
order n in ikr, and it can be seen that

^kv = x+ekx S xn In(kr) cos nd, (15)

where oc0, a1; ... are constants, is the solution of (14) that is required in
this case.

The boundary condition, v = 0 (r = 1), is satisfied if

cos 6 e~k cose=~'ixn In (k) cos nd,
o

and it is known ([1], p. 36) that

e-k cos 6 = Jo (£) _|_ £ S ( — )" / „ (k) COS »0
1

whence cos 0 e~fc coa e = —Io'(k)+2Il(—)n+1In'(k)cosn0.
I

The boundary condition is accordingly satisfied if

The value of v at the centre of the circle is

2k-U0'(k)II0(k);

this is a decreasing function of k with the correct value 1 when k = 0.
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The total rate of flow through the pipe depends on Fx, the integral of
v taken over the area of the cross-section. From (15),

\= 4- S oi.n P rln (kr) {P" ekr coa e cos ndd6 \ dr.
* o Jo Uo

Since [^ekr c08e cos w0^^ = 2-nl„(jfcr) (w > 0),
Jo

and ( [ l ] , p . 70)

it follows that

(16)

The integral F1 is a decreasing function of k with the correct value \-n
when k = 0.

6. It is now supposed that the cross-section is the rectangle bounded
by the lines X = ±a , Y = ± 6 = ±/to; then a solution of (14) is required
such that v = 0 when

a : = ± l , - j

Let v = 2(P2-y2)+ekx I, (Ancoshlnx+Bnsinhlnx)co8mny, (17)
»=o

where AQ, Alt ..., -Bo, -B1( ... are constants and

Then equation (14) is satisfied, and v = 0 if y = +/?. The remaining
conditions are satisfied if

2-i82) = e*S

= e~k'L(An cosh.ln—Bns,mh.ln)Goamny
o

Since y«_j 8«= * S ( -
P o

these conditions are satisfied if ,

d / ^-n 8 cosh A; „ Ssinhfc
" ~ l ; )8m8ooshZ' j D " ~ l j ^ m 3 s i n h Z ' ^ ;

and this completes the determination of v,
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If k = 0, v can be found from a function T that gives the stress-distri-
bution in the torsion of an elastic cylinder with a rectangular section [2];
*F vanishes on the boundary and satisfies the equation V1

2T = — 2. From
(17) and (18),

v =- 9 f 8 2 _
mT C

8coshmm

if k = 0, and it can be verified that (apart from a constant) this is in
agreement with the formula given for T .

It can be shown from (17) and (18) that

L ln (cosh 2ln—cosh 2k)
vdx = 4(j82—y2)+ -x- S (—

-i P o coshln sumZn
ooamn

and hence that

If * = 0,

- [[vdxdv- 1 6^ 16|?n(oo
- j j vdztty - -3 j l ^

„ 16j8" 32»tanhmTC

7. Fig. 2 shows the effect of secondary motion in reducing the rate of
flow. The upper curve shows the ratio of the rate of flow to the corres-
ponding rate if k = 0 for a pipe of circular section; the lower curve gives

Fig. 2. Reduction in rate of flow

Circular section:
S cjuare section : —
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this ratio if the section is square. The reduction is greater in the latter
case as would be expected, but the difference between the ratios is small
throughout the range of values of le.

It is another consequence of curvature that the region where V, the
velocity-component along the line of the pipe, takes its greatest values is
moved outwards; this effect explains the cutting of a curved stream into
the outer bank. This is shown in Fig. 3, again for pipes of circular and

A \

Pig. 3. Reduced velocity v; y = 0; k = 0, 3, 6.

Circular section:

Square section:

square sections. The pairs of curves show the (reduced) velocity v for
values — 1 ̂ .x ^.1, y = 0, and give the outward movement of the region
of maximum velocity as Jc increases.

Some calculations for rectangular sections with fi > 1 show an increase
in both effects; this would be expected, since the effects should decrease as
/? decreases, and in the limiting case /J->0 curvature does not cause a
secondary motion.

8. By experiment on the stream-line motion of fluid in curved pipes
with circular sections, C. M. White [3] has found the relation between
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non-dimensional factors K and 0* defined by

ira2vm and C*ira2vm are the rates of flow, under the same pressure
gradient C, through the curved pipe and through a straight pipe with the
same section. It follows that

R

Fig. 2 gives the relation, calculated from the assumed secondary
motion, between G* and a variable k; k can therefore be regarded as a
known function of K or G*. If this is done the approximate theory can
be used to estimate the ratio U/V of the velocity-components at the
centre of the pipe. At all points of the section U = 2kv\a, while at the
centre

2I0'(k)V0

klo{k) •
Hence at the centre

/ / J»2 / / 1A\ m. X»2 T ( JA\ A tI it
(-/ ft/ J. fL\tv i V ti/ J.ftlA/1 •'A*'"

T = I0'(k) • aV~0
 = I0'(k) • Co?

or, in terms of K and O*,
U__(a\
V ~\B)

If a/R is fixed, this ratio is a decreasing function of k unless k is
small. From Fig. 2 the values of C* are 1-24, 2-37 and 3-56 for the
values 2, 6 and 10 of k, while from White's results (by interpolation)
the corresponding values of K are 50, 370 and 970; thus i2/(/cC*)
decreases from 0-065 to 0-029 as k increases from 2 to 10. The other
factor Io/Io' is a decreasing function of k and tends to 1 as k -> oo; it is
1-43 if k = 2 and 1-10 if k = 6.

The ratio U/V is the angle that the stream-line passing through the
centre of the circular section makes with the line of the pipe, and it can
be shown theoretically that this angle at first increases with the rate of
flow. The values calculated above suggest that the angle ultimately
decreases, and for this there is some experimental evidence [4]. The
calculations depend, of course, on the assumed form of the secondary
motion, but the decrease in U/V is considerable so that there is a margin
for the error arising from the approximation. It is reasonable on
physical grounds that the central value of U/V, a rough measure of the
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ratio of the secondary to the primary flow, should thus attain a maximum
value.
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