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The gradient structure of a flow: I
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Abstract. Each flow dominates a unique gradient flow (the gradient part) which in
turn dominates any other gradient flow dominated by the original flow. The set of
points carried to rest points of the gradient part (the chain recurrent set) is character-
ized in terms of a recurrence relation. Filtrations of the given flow correspond to
those of the gradient part.

0. Introduction
The basic object of study here is the collection of flows on a compact metric space
which will be called the state space. This collection of flows is itself a complete
metric space when endowed with the compact-open topology. From a general point
of view the aim is to study mathematical entities which are constructed in terms of
the state space and the space of flows, and in particular ones which pay attention
to the topologies.

In the background it is assumed that the flow provides an imperfect model of
some other object being studied (for example, an electrical network) and that the
entities constructed relate to properties of this object (as, for example, the stable
equilibria correspond to observed states of the network). However, such a point of
view will not be allowed to hamper the development here.

An example of such an entity is the function which assigns to each flow its
collection of closed invariant sets. This pays attention to the topology in that it is
an upper semicontinuous function on the space of flows [5], Another function,
defined on the product of the state space and the space of flows, assigns to each
pair the w-limit set of the state with respect to the flow. This function does not pay
attention to the topology in an easily describable way; however, a possible replace-
ment is described below which is upper semicontinuous in both variables (§3.4).

A somewhat different example is provided by the nitrations of the flow. A
nitration can be defined to be a finite decreasing sequence of closed subsets of the
state space, each of which is carried properly interior to itself by the flow. In a
natural way, a sheaf over the space of flows can be constructed whose stalks consist
of algebraic structures (graphs, cohomology algebras and homomorphisms) defined
in terms of the filtrations. The dependence on the topologies is manifest in the sheaf
structure (see [3], [4], [6] and [7]).

It is this last entity, the sheaf of gradient structures on the space of flows, which
is of primary interest here. The first step is to relate the existence of filtrations to

t The author was on leave from the University of Wisconsin at the time this paper was written.
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12 C. Conley

the recurrence properties of orbits, and this is carried out in part I. In part II the
sheaf is constructed and some problems are discussed in which the algebraic aspects
play a role.

These problems generally concern a one- or two-parameter family of flows for
which it is of interest to distinguish parameter values where the stalk of the sheaf
changes in some way. Such a change corresponds in these problems to the existence
of an orbit of special interest such as a homoclinic or heteroclinic orbit. In turn,
this orbit corresponds to a progressive wave solution of a partial differential equation.

This first part is divided into five sections, in the first of which is listed the notation.
The second section contains a treatment of attractors designed to fit the remainder
of the work. In the third section the relevant notion of recurrence is introduced.
The main points are the definition of a generalized w-limit and recurrent set in
terms of (e, f,/)-chains, and the characterization of the former as the smallest
quasi-attractor containing the usual w-limit set. In the fourth section the 'gradient
part' of a flow is described. Flows could be classified in terms of their gradient
parts; some of the significance of such a classification is seen in the statement that
all recurrent flows fall into the same (the trivial) class, and all flows which are
'<u-similar' (4.3A) under the domination relation have similar gradient parts. This
implies in particular that the algebraic structures associated to the filtrations are the
same (thus invariants of the similarity class), as will be shown in the second part.
In the final section Morse decompositions are defined and related to the existence
of filtrations.

1. Notation

1.1. X denotes a compact metric space with metric p. The metric on XxX is
denoted by p also.

For y c X, Cl Y, dY, Comp Y, Int Y and Ext Y denote respectively the closure,
boundary, complement, interior and the interior of the complement of Y.

If A, Bcz X, A\B = AnComp B.

1.2. Flows on X are denoted by / = / : X x R^X. For Y^X and J ^ R, YJ =
/ ( Y x / ) , / being known from the context.

To each flow / there corresponds the backward flow / * defined by f*(x, t) =
f(x,-t). Note/**=/

1.3. A set y is invariant under / i f Y • R = Y. If Y is invariant, then Cl Y, dY,
Comp V, Int Y and Ext Y are also, and all are invariant under / * as well. Also
f\ Y will denote the restriction f\ Y x R -* Y.

A rest point of/ is a point which is an invariant set. C(/) denotes the set of rest
points (C stands for 'critical'; in the usual gradient case critical points correspond
to rest points).

1.4. For YcX, w(y,/) = n , E R Cl{y- (OK Then <a{YJ) is a closed invariant set
and is connected if Y is. For y={x}, <o(x,f) is the usual w-limit set of x. The
corresponding a-limit set will always be denoted by w(x,/*).

1.5. The set {y\(o(y,f)n Y^0} could then be denoted a(Y,f). However, to avoid
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confusion, a( Y,f) will be used. This set is obviously invariant, but is not necessarily
closed even when Y is.

Observe that generally a(Y,n Y2,f)^ a(Yuf)na(Y2f) and a(V,u Y2,f) =
a (y , , / ) ua (y 2 , / ) .

1.6. For *3> c X x X, §>* = {(x, y)\(y, x) e &}. Note &** = ®.

2. Attractors and quasi-attractors

Definition 2.1 A. A set A is called an attractor for/ if A admits a (closed) neighbour-
hood TV such that A = o>(TV,/).

If A is an attractor, a (A,f) is called the domain of influence of A.
If A is an attractor for/*, A is called a repeller for/ and a (A,/*) is again called

the domain of influence.

Definition 2.1 B. An attractor neighbourhood means a closed subset N of X such
that for x e a TV, w(x,/*) c Ext TV.

LEMMA 2.2A. If TV is an attractor neighbourhood, then the set A = {x | x • R c TV} J5
an attractor and TV<= d(A,f).

Proof. A is closed since it is the maximal invariant set in the closed set TV. Let
A'= (o{N,f). Then A' is a closed invariant set containing A. For ye A' and any f,
there exists t' < / such that y • t' e TV. Thus w(y,/*) n TV ^ 0 . It follows that y • /? n
dN = 0 . Since y-RnN = 0,y-R^N. Thus A = A'. TV is a neighbourhood of A
since AndN = 0 . Thus A is an attractor. For xeN, co(x, t)a a>(N,f) = A; thus
7Vca(A,/). D

Remark If TV is any closed subset of X such that x e dTV implies io(x,f) n Ext TV ^ 0 ,
then A ^ i y l y J?<= TV} is an attractor. However, it is not generally true that
7Vc=a(A,/).

THEOREM 2.2B. If A is an attractor, then A is a closed invariant set, a(A,f) is an
open invariant set and A* = Comp a(A,f) is a repeller.

Also a(A,f) = X\A* and a{A*,f*) = X\A while A** = A.

Proof. That A is closed and invariant and that a(A,f) and A* are invariant is clear.
Let A = a)(N,f) where TV is a neighbourhood of A. Then TVca = a(A,/) ,

so the latter is a neighbourhood of A. Now da is a closed invariant set and thus
contains the w-limit set of each of its points. Furthermore, danA = 0. Thus
dan a = 0 and a is open. Observe also that if x 6 a, then x • R meets TV so that
<o(x,/)c=w(/V,/) = A.

Now A* = Comp a is a closed invariant set. Let U be any open neighbourhood
of A with Cll/cTV and let N* = CompU. Then for xedN* = dU<= a(A,f),
o(x,f)c AcExt N*. Thus TV* is an attractor neighbourhood for /* . The set
{x | x •/? <= TV*} is disjoint from a (A,/) but must contain all points in A* =
Comp d(A,f). Thus A* is an attractor for/*.

For xea(A,f)\A, w(x,/*)<=Ext TV<= Int TV*; thus a>(x,/*)<=A* and x€
a(A*,/*). If follows that d(A*,f*) = X\A and the theorem is proved. D
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14 C. Conley

COROLLARY 2.2C. Any closed neighbourhood N of A which is contained in a(A,f)
is an attractor neighbourhood.

Proof. If x € dN, then <o(x,f*) <= A* <= Ext TV. •

Remark. </> and X are both attractors and repellers with neighbourhoods $ and X
respectively.

THEOREM 2.2D. //"A, and A2 are attractors, then A = A, n A2 a«d A = A, u A2 are
attractors. Also A* = AfuAf, A* = A*nA$, a{A,f) = d(Auf)na{A2,f) and

Proof. Let AT, and N2 be attractor neighbourhoods for A, and A2. Then JV, n Af2 is
obviously an attractor neighbourhood and A, n A2 is the corresponding attractor.

Since a(Ap,f) = {y\a>(y,f)<^ Ap} for j8 = l, 2 (in contrast to the general
definition), it is clear that a(AlnA2,f) = a(Auf)na(A2,f). If follows that
A* = Comp a(A,/) is given by A* u A*. Applying the above argument with A*, A*
and/* replacing Au A2 a n d / the theorem follows. •

Definition 2.3A. An invariant set of A which is the intersection of attractors will be
called a quasi-attractor. A quasi-repeller of/ means a quasi-attractor of/*.

Remark Attractors are isolated invariant sets ([2], [5]). Thus quasi-attractors are
quasi-isolated invariant sets ([5]). The only sets which are both attractors and
repellers are X and <j>; however, it is possible to have non-trivial sets which are
both quasi-attractors and quasi-repellers.

Remark. For any subset K<= X, there is a unique smallest quasi-attractor containing
Y.

THEOREM 2.3B. Let A be a closed invariant set off. Then A is a quasi-attractor if
and only if any neighbourhood of A contains an attractor neighbourhood, while A is
an attractor if and only if every small enough closed neighbourhood of A is an attractor
neighbourhood.

Proof. This follows immediately from 2.2C and 2.3A. •

THEOREM 2.4A. Any closed-open subset of an attractor is an attractor. Any component
of a quasi-attractor is a quasi-attractor.

Proof. A component of a quasi-attractor must be the intersection of components of
attractors and thus of closed-open subsets of attractors. Thus the second statement
follows from the first.

If A'<=/4 is a closed-open subset of the attractor A, then there is a closed
neighbourhood N of A' such that Na a(A,f) and NnA = A'. Thus N is an
attractor neighbourhood (xedN implies «(x, /*)c^*cExtJV) and so A' =
{x | x • R <= N} is an attractor. •

2.4B. It is not generally true that a component of an attractor is an attractor; however:

LEMMA. Let x be a point in an attractor A such that any neighbourhood of x meets
at least two components of A. Then no neighbourhood ofx with closure in a(A,f) is
connected.
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In particular, X is not locally connected at x.

Proof. Let Y be a connected set with Cl Yc d(A,f). Then <o(Y,f) is a connected
set in A and meets each component of A that Y does. Thus Y meets only one
component of A and so cannot be a neighbourhood of x. •

THEOREM 2.4C. IfX is locally connected, each attractor has finitely many components
and each component is an attractor.

Proof. This is from 2.4A and 2.4B. •

Remark It is not true that attractors in a locally connected space have to be locally
connected.

THEOREM 2.4D. Suppose A is an attractor for f and that A<= A is an attractor for
/ = / | A Then A is an attractor for f.

Consequently if A is a quasi-attractor for f=f\ A, where A is a quasi-attractor for
f, then A is a quasi-attractor for f.

Proof. Choose a closed neighbourhood N of A relative to X such that JV<= a(A,f)
and JVnAc d{A,f). For example, let N be the closed e/2 neighbourhood of A,
where e =min{p(A, X\d(A,f); p(A,A\d(A,f)}. Then for xedN, either
xed(A,f)\A or xeAnd{f,A). In the first case w(x,/*)c Ext a(A,f)a Ext N,
while in the second case «(*,/*)<= An Ext a(A,f) <=• Ext N. Thus N is an attractor
neighbourhood (in X) and the theorem follows. •

THEOREM 2.4E. Suppose X' is any closed invariant set of f and that A is an attractor
(quasi-attractor) forf; then A' = AnX' is an attractor (quasi-attractor) forf = / | X'.

Proof. Let N be an attractor neighbourhood of A. Then JV n X' is an attractor
neighbourhood of A'. •

3. The chain recurrent set and il-limit sets

3.1. (e, t,f)-chains

Definition 3.1 A. Given (x,y)eXxX and e, t>0, an (e, f,/)-chain from x to y
means a collection (x = x , , . . . , xn+i = y; tx,...,tn) such that for 1 < i < n, ff > f and
p(xr t{, x1+1)>e.

LEMMA 3.IB. If there are (e, f,/)-chains from x to y and from y to z, there is an
(e, t,f)-chain from x to z.

Proof. The two given chains are put together in the obvious way. •

3.2. The partial order 9>(f)

Definition 3.2A. 9>(f) = {(x, y)\ for any e, t>0, there exists an (e, f,/)-chain from
x to y}.

THEOREM 3.2B. ^ ( / ) is a transitive relation.

Proof. From 3.1 B. •
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16 C. Conley

L E M M A 3.2C. / / (x, y) e 0>(f), then for any I, (x -t,y)e 9(f).

Proof. Given e, t>0, construct an (e, f+ |f|,/)-chain from x to y. On replacing
x, = x by x, = x • t and f, by f, = t, - t{> t), there results an (e, f,/)-chain from x • t
toy. U

THEOREM 3.2D. 9>(f)* = 9>(f*) (cf. § 1.6).

Proof. Suppose (x, y) e Sf(f) and that e, t> 0 are given. Choose e'< e such that for
p(y,z)<e', p(y(-t), z- ( - * ) ) < e. Then if (x = x, , x2,..., xn+l =y; tu...,tn) is

an (e', It, /)-chain from x to y, it is easily verified that (y = xn+1; xn- (tn-t),
xn_, • <„_„ . . . , x, • tu x; t, tn -1, <„_„ ...,ti) is an (e, f,/*)-chain from y to x. (An
initial orbit segment has been attached to y; otherwise the chain just goes backward
over the given one.) •

THEOREM 3.2E. 9>{f) is closed in XxX.

Proof. Suppose (x,y) is a limit point of ^ ( / ) and let e, f >0 be given. Using 3.2C,
(x- t,y) is also a limit point of 0>(/). Choose (*', y') e 9*(/) such that p((x',y'),
(x • t, y)) < e/2. Choose an (e/2, t,/)-chain from x' to y'. On replacing xn+1 = y' by
xn+1 =y, an (e, f,/)-chain from x' to y is obtained. Also (x = x,, x2

 = x'; f, = r) is
an (e, /,/)-chain from x to x'. By 3.IB x and y are connected by an (e, /,/)-chain
and the theorem follows. •

THEOREM 3.2F. / / (x, y) e ®{f), then Cl(x • R) x C\(y • R) c ®{f).

Proof. Apply 3.2C, 3.2D, 3.2C, 3.2D and 3.2E. •

THEOREM 3.2G. Ifxew(y,f*), then (x,y)eP(f).
Ifye<o(x,f), then (x,y)eSf(f) and (x,z)e9>(f) if and only if (y, z)e 9{f).

Proof. Suppose xew{y,f*) and let e, t>0 be given. Choose t'>t such that

p(x- t,y(-t'))<e. Then (x = x,, x2 = y (-f), x} = y; t, = t, t2=t') is an (e, t,f)-
chain from x to y.

Suppose yew(x,f). Given (e,t)>0, choose t'>t so that p(x- t',y)<e. Then
(x, y; /') is the required chain from x to y.

If (y, z)e&(f), 3.2B implies (x, z) is. If (x,z)eSP(f) and e, f>0 are given,
choose t so that p(x • F, >> • t) < e, By 3.2F (x • t, z) e 9{f). Also (y, x • t; t) is an
(e, r,/)-chain from j to x- t. Thus there is an (e, r,/)-chain from >> to 2 and the
theorem follows. •

3.3. The chain recurrent set and an equivalence relation

Definition 3.3 A. Let R(f) = {x | (x, x) € 9>{f)}; R(f) will be called the chain recurrent
set.

Let 2 ( / )=0>( / )n <?(/)*.

THEOREM 3.3B. R(f) is a closed invariant set off containing the non-wandering set

(f) (f)
%(f) = £ ( / * ) c R(f) x R(f) is closed in R(f) x R(f) {hence in XxX) and is an

equivalence relation.
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Proof. R(f) is closed and invariant by 3.2E and 3.2F and equals R(f*) by 3.2D.
g( / )= g(/*) by 3.2D and is closed by 3.2E. If (x,y)e%(f), then both x and y
are in R(f). If xeR(f), then (x,x)e0>(/) so in £(/) . £( / ) is symmetric by
definition and transitive since &(f) is. Thus £( / ) is an equivalence relation on
R(f). If x is a non-wandering point and e, t>0, then an (e, f,/)-chain from JC to
x is easily constructed. •

THEOREM 3.3C. The equivalence classes of %(f) are unions of components of R(f)
and each meets at most one component of X non-trivially.

Proof. Let R' be a component of R and suppose x, yeR'. Then, since R' is closed,
given (e,t)>0, there is a finite sequence (x = xu... ,xn+i=y) in R such that
p(x,, xI+1)<e/2. Since (x,, x,)e 0*(/), there is an (e/2, r,/)-chain from x, to x,.
Replacing the last point of this chain by x1+1, one has an (e, f,/)-chain from x, to
X;+1. If follows that such a chain exists from x to y. Since x and y were arbitrary
points of R', all points of R' are equivalent.

If (x,y)e $ ( / ) , then the (e, f,/)-chains from x to y show that x and y are
'e-connected' in X for any e. Thus x and y lie in the same component of X. •

Remark. This does not imply x and y are in the same component of R{f) since the
chains may not be contained in R(f). However, see 3.6D.

3.4. Cl-limit sets

Definition. 3.4A For C c X , (l(C,f) = {y\there exists x e C with (x,y)e&(f)}.

Note ft(C,/) = Ux6

THEOREM 3.4B. If C is closed, il(C,f) is a closed invariant set.
If{Cn}T « a sequence of closed subsets of X and C = lim sup {Cn}f, then il(C,f) =>

Proof. Cl(C,f) is invariant by 3.2F and the rest follows from 3.2E. •

LEMMA 3.4C. If C is closed, n(C,/)=>w(C,/).

Proof. Suppose y e a>(C,f) = O,eR C\{C- (t,oo)}. Then given «>0, there exists
xneC such that p(xn- n,y)<\/n. Let x e C be a limit point of {xn}f. Given e,
t>0, choose e' between 0 and e so that p(x', x )<e ' implies p(x' • t, x-t)<e.
Choose n so that n>2t, \/n< e and p(xn, x)<e ' . Then (x = x,, x2 = xn • t, x3 = y;
t\ = t,t2=n-t) is an (e, f,/)-chain from x to y. Thus (x,y)e 9{f) and ye f i (CJ ) .

•
THEOREM 3.4D. //Cis dosed, then Q.(C,f) = n(w(C,/),/).

iVoo/ By 3.2G n(x,/) = ft(a>(x,/),/). Thus n (C, / )=rUc ft(w(x,/),/). Since
w(x,/)cw(C,/) whenever xeC, ft(c,/)cfi(w(C,/),/). But by 3.4C and 3.2B
il(C,f)=>il(io(C,f),f) and the theorem follows. •

THEOREM 3.4E.

(1) yeQ(x,f) ifandonlyifxea(y,f*).
(2) If(x,y)e%(f), then n(x,f) = il(y,f).
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18 C. Conley

(3) ft(x,/) n il(x,f*) is non-empty if and only ifx e R(f); in this case it is precisely
the equivalence class of x.

(4) ForxeR(f), «(*;/) u W(x,/*)cft(x,/)nft(x,/*).
(5) In any case ft(x, f) contains any component ofR(f) which it meets non-trivially.

Proof. The first statement comes from 3.2D; the second and third from 3.2B and
the definitions. The fourth comes from 3.2G and the last from 3.3C. •

3.5. The (e, t)-approximation of the il-limit set

Definition 3.5A. ft'(C, e, t,f) = {y\there is an (e, f,/)-chain from x to y for some
x€ C}. Note that if C <= C, then ft'(C, s, t,f) c ft'(C, e, t,f).

LEMMA 3.5B. ft'(C, e, t,f) is open and contains ft(C,/).

Proof. Given an (e, <,/)-chain from x to y, let e' = p(xn- tn,y). For z such that
p{z, y) < e - e', an (e, t, /)-chain from x to z is obtained on replacing xn+1 =y by
xn+1 = z. It follows that ft'(C, e, *,/) is open. •

LEMMA 3.5C. The closure of ft'(C, e, t,f) is an attractor neighbourhood and contains
an e-neighbourhood of the corresponding attractor.

Proof. If yeft' = ft'(C, e, t,f) and p(z,y t)<e, then (y,z; t) is an (e, / , / ) - chain
from y to z and so zeft'. For yedft' choose a neighbourhood U of w(y,/*) such
t h a t for zeU, p(z- t, w(y,f*))<e. T h e n e a c h zeU is c o n n e c t e d to w(y,f*) a n d
thence to y by an (e, r,/)-chain. Since yedQ,', y is not in the open set il'. Thus
U nCl' = 0 and o>(>»,/*)<= Ext ft' so that Clft' is an attractor neighbourhood.

If ft' => Y, then the first sentence of the proof implies that an e-neighbour-
hood of V- f is in ft'. For A the attractor in Clft', A = A- t; thus the lemma is
proved. •

Definition 3.5D. ft(C, e, t,f) = {x\x- Reft ' (C, e, t,f)}.

THEOREM. ft = ft(C, e, t,f) is an attractor containing ft(C,/). a(f t , / ) contains an
e-neighbourhood of ft; in particular, at most a finite number of the sets ft(C, e, t,f)
are distinct.
Proof. Except for the assertion concerning the number of distinct sets, this is a
rewording of 3.5B and 3.5C. To see the last, observe that the Hausdorff distance
between any two such sets is at least e. The result then follows from the fact that
the space of closed subsets of X with the Hausdorff metric is compact. •

L E M M A 3.5E. Given an attractor A and a neighbourhood U ^ A, there exist e, t>0

such that for e<£ and t > t, ft'(A, e, t,f) <= U. Then with U <= a(A,f), ft(A, e, t,f) =

A.

Proof. Choose a neighbourhood N of A such that N c U and A = <o(N,f). Then
there exists t such that N = C\{N- [t, oo)}c int N. Let e = p(dN, N). Given xeN,
e<e and t> t, let (x = xu ..., xn+l =y; tu ..., tn) be an (e, f,/)-chain from x to
y. If x, e N, then x, • t,e N so x1+, e N. Since x, e TV, it follows that xn+1 = y € TV and
the result follows. •
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3.6. Characterization of 0,-limit sets

THEOREM 3.6A. il( C, f) is precisely equal to the smallest quasi-attractor off containing
u>(C,f). In particular, ifw(C,f) is connected, then so is Q(C,/).

Proof. From the definitions Q(C,/) = r\r>oft'(C, e, t,f). Thus ft(C,/) contains
the quasi-attractor r \ , > 0 £ i (C , e, t,f). On the other hand, since il(C,f) is a closed
invariant set in il'(C, e, t,f), it must be contained in ft(C, E, t,f). Thus it is equal
to the intersection of the latter and so is a quasi-attractor. By 3.4D it contains
a>(C,f) and by 3.5E it is contained in any attractor containing <a(C,f). Since
components of quasi-attractors are quasi-attractors (2.4A), the connectedness of
u)(C,f) implies that of il(C,f). O

COROLLARY 3.6B. Comp R(f)= u{a(A,f)\A\A is an attractor of/}.

Proof. If A is an attractor and x e a(A,f)\A, then a>(x,f) <= A and by 3.6A ft(x,/) <=
A, so that x £ O(x,/) and x e Comp R{f). If x £ £l(x, / ) , then there is some attractor
A containing ft(x, / ) but not x. Then since <o(x, f) <=• il(x, f) a A, x e d(A, / ) . •

THEOREM 3.6C. Let A be a quasi-attractor off and let] =f\ A. Then Cl(x,f) = ft(x, / )
for any xe A.

Let A* be a quasi-repeller off and let / = / | A*. Then ft(x, f) = A*n Cl(x,f) for
any x e A*.

Proof. In the first case 2.4D implies fl(x,f) is not only a quasi-attractor of/ but
also of/ Since it contains (o(x,f) and is contained in (l(x,f), it must be equal to
il(x,f) by 3.6A.

In the second case 2.4E implies that A* n il(x,f) is a quasi-attractor of/ contain-
ing (o(x,f) hence fl(x,/) (by 3.6A). Let A* be any repeller of/ dual to an attractor
containing O(x, / ) . By 2.4D A* is also a repeller for/ Then its dual attractor (with
respect to / ) must contain il(x,f) hence f l (x, / )n A*. Thus any attractor of /
containing Cl(x,f) also contains Cl(x,f)nA* and so Q,(x,f) = il(x,f)nA*. D

THEOREM 3.6D. The equivalence classes ofR(f) are precisely the components ofR(f).
Iff=f\R(f), then 0>(/) = 0>(/); thus (e, t,f)-chains connecting points ofR(f)

can be chosen to lie in R{f).

Proof. Let £(x) = O(x,/)nfi(x,/*) be the equivalence class of x. Le t /= / | f l (x , / )
and l e t / = / | E(x). By the first sentence of 3.6C O(x, / ) = il(x,f) (note x e O(x,/)).
By 2.4E £(x)=n(x,/*)nft(jc, /) is a quasi-repeller of/. Thus by 3.6C (second
sentence) ft(x,/) = E(x)nil(x, f) = £(x).

By 3.6A E(x) is connected and so is a component of R(f) (using 3.3C). In a
similar way E(x) is equal to O(x,/*). Since/ chains are also / chains, all points
of E(x) are equivalent under / and, since equivalence classes of £ ( / ) are contained
in components of /?(/) , it follows that E(x) is an equivalence class of £ ( / ) . •
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4. The gradient part off

4.1. Functions which decrease on orbits

Definition 4.1A. Given a flow/ on X, define:

®'(/) = {g: X -* K I g is continuous and for x e X and f > 0, g(x • t) < g(x)}.

/?'(/) = {x e X | for g e ®'(/) there exists f > 0 such that g(x • t) = g(x)}.

S ( / ) = {ge®'(/)|if * * * ( / ) and t>0, then g(x- f)<g(x)}.

4.IB. These definitions are obtained from Auslander [1], who was interested in a
more general situation. The set /?'(/) is called the generalized recurrent set by
Auslander and he justifies the name by characterizing the points of R'(f) in terms
of orbit prolongations. Our lemma 4.IE below is of the same type as his result
(though easier as well as more suited to the present purpose). Lemmas 4.1C and
4.ID are also proved by him in his more general setting.

LEMMA 4.1C. /?'(/) is a closed invariant set.

Proof. R'(f) is the intersection of the closed sets C(g, t) defined for ge 2)'(f) and
<>0 by C(g, t) = {x\g(x- t)-g(x) = 0}. Thus R'(f) is closed. For x^R'(f) there
exists g e Sd'(f) such that for t > 0, g(x • t) < g(x). Given t e R, let g be defined by
g(x) = g(x-(-f)). Then ge2>'and for/>0,g((x- t)-t) = g(x- *)<g(x) = g(x- t).
Thus xgR'(f) implies x • t^R(f) for all t e R and so Comp /?'(/) and R'(f) are
invariant. •

LEMMA 4.1D. 3>'(f) is a complete metric space (under the sup norm metric or
equivalently the compact-open topology) and 3>{f) contains a dense set of second
Baire category in 3)'(f). In particular, 2(f) ^ 0 .

Proof. 3>'(f) is a closed subset of the space of continuous functions on X with the
sup norm metric. Thus 3>'(f) is a complete metric space.

If /?'(/) = X, then £>'(/) = ®(/) and the lemma is true.
If not, let m be a fixed positive integer. For x e Comp R'(f) choose a function

ge2'(f) such that g(x- l /m)<g(x). Since g is continuous, there is a compact
neighbourhood C(x) of x such that g\ C(x) > g\ C(x) • \/m (pointwise).

Thus there is obtained a cover of Comp R'{f) from which a countable sub-cover
{Cn}f can be chosen.

Now for each positive integer n, let <j>(n,m) be the set {ge 3)'(f)\g\Cn>
g\ Cn • l/m}. Since Cn is compact, <f>(n, m) is open in 2>'(f); it is non-empty by the
construction of the Cn. Forge 3)\f) and e>0, ge <f>(n, m) implies g + eg e </>(n, m).
Thus 4>(n, m) is also dense in 3)'(f) so O"= 1 <f>(n, m) is a dense set of second Baire
category with the property that for g in this set and x e Comp R'(f), g(x • l/m) <

Let 0(m) = {g|xeComp R'(f) implies g(x- l/m)<g(x)}. Then <j){m) contains
a dense set of second Baire category as does f~\Z=\ <f>(m)- ^ u t t n e last set is just
3>(f) so the theorem is proved. •
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LEMMA 4.1E. £'(/)<=/?(/).

Proof. Suppose xg /?(/). By 3.6B there is an attractor A such that xe d(A,f)\A.
Let A* be the dual repeller.

Let p : X -»[0,1] be any continuous function such that p \ A* = 1, p \ A = 0. Define
p(x) = sup{p(y) \y e x • [0, oo)}. Clearly p decreases on orbits so is in 3)'(f) provided
it is continuous.

For x € d(A,f)\A, let p(x) = 8. Let C <= d(A,f) be a compact neighbourhood of
x such that p\C> 8/2. Choose a neighbourhood u of A such that g\u< 8/2. Choose
f>0such that Cl{C-(*,oo)}<= u. Then for x'eC, p(x') = sup{p(>')|>'ex'[0,oo]} =
sup{p(y)\y ex' • [0, t]}. Since p is continuous and x'[0, t]->x- [0, f] as x'-»x, p is
continuous at x.

Thus p is continuous at all points of d(A,f)\A. It is obviously continuous at
points of A* and also at points of A, since the positive half-orbit from points near
A stays near A. Thus p:X^R is continuous and so in 3>'{f).

Clearly p decreases at some point of every orbit in d(A,f)\A. Thus this set, and
in particular x, is contained in Comp /?'(/)• Thus Comp /?(/)<= Comp /?'(/) and
the lemma follows. •

Remark 4.1 F. It is not generally true that R'(f) = R(f). For example, let X denote
the unit square in the plane and let / be the flow generated by the vector field x = 0,
y = -xy(l -x) ( l -y). Then R'(f) is the boundary of the square (rest points are
clearly in R\f) while the function g(x, y) = y decreases on all other orbits) while
R(f) = X (there are no non-trivial attractors).

4.2. Gradient flows

Definition 4.2A. A flow/will be called a gradient flow if R(f) is totally disconnected.

Note. Then /?(/) consists of rest points and has point-like components. The example
of 4.IF is 'gradient' in the sense that there exists a function which decreases on
non-constant orbits, but it admits no nitrations. The point of view here is that the
filtration is the notion of importance.

THEOREM 4.2B. Iffis gradient-like, R'(f) = R(f) and in particular, for g e 2(f), g
is strictly decreasing on all non-constant orbits. (This is meant to justify the name
'gradient flow\)

Proof. Since R{f) consists of rest points and all rest points are in R'{f), R'(f) =>
R(f). The reverse inclusion follows from 4.1E. The remainder is from the definitions.

•
4.3. Domination
Definition 4.3A. Let / and / ' be flows on X and X' respectively and let h be a
continuous map from X onto X'. If for each xeX, h(x- [0, <»)) = h(x) • [0, oo),
then/ will be said to dominate/' with map h. In symbols, f>f'(h). I f / > / ' and
f>f, then / and / ' will be called 'co-similar'.

LEMMA 4.3B. The relation > between flows on compact metric spaces is reflexive and
transitive.
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Suppose f>f'(h). Then ifYis a closed invariant set off, h(Y) is a closed invariant
set off. If Y is a closed invariant set off, then h~\Y) is a closed invariant set off.

LEMMA 4.3C. Iff>f'(h), then for any Y^X, h(w(Y,f)) = a>(h(Y),f).

Proof. Since X and X' are compact and Hausdorff, for any YcX, h(C\(Y)) =
Cl (h(Y)).

From the definition (4.3A), for teR, h(Y- [t,oo)) = h(Y) • [t,oo) (the • is used
both for / and / ' ) .

Thus fc(Cl(C-[r,oo)) = Cl(A(C)-[!,oo)) a n d n , 6 R *(C1(C•[«,«)) =

*>{h{C),f).
Since the sets Cl (C- [t, oo)) are compact and decrease as t increases, and since

X' is Hausdorff, n , e R MCI (C- [t,oo))) = h{C\t&R Cl (C- [t,oo))) = h(a>(c,f)).
Thus the theorem is proved. •

LEMMA 4.3D. Suppose f>f(h).

If A' and A'* form an attractor-repeller pair for f', then h~l(A') and h'l(A'*) form
an attractor-repeller pair for f and h{a{h~x(A'),f)) = a(A',f).

If A and A* form an attractor-repeller pair for f and h(A) n h(A*) = 0 , then h(A)
and h(A*) form an attractor-repeller pair for f and h(a(A,f)) = d(h(A),f).

Proof. Observe that two closed invariant sets A and A* off form an attractor-repeller
pair if and only if they are disjoint and xeComp (AuA*) implies w(x,/*)cA*
and W(JC,/)C A.

If A' and A'* are an attractor-repeller pair for/', then h~\A') and h~\A'*) are
closed disjoint invariant sets. Also xeComp(h~i{A')u h~\A'*)) implies h{x)e
Comp(A'uA'*) and an application of 4.3C shows h~\A') and h~x(A'*) form an
attractor-repeller pair for /

If A and A* form an attractor-repeller pair for f, and h(A) and h(A*) are
disjoint, then C again implies that h(A) and h(A*) form an attractor-repeller pair
for/ •

THEOREM 4.3E. If f>f(h), then for all xeX, h(il(x,f))^n(h(x),f) and

Proof. Since Cl{h{x),f) is the intersection of attractors containing w(h(x),f) =
h((o(x,f)), and since the inverse image of an attractor is an attractor,
h~\n(h(x),f)) obviously contains fi(x,/). The result for R(f) follows from that
for O-limit sets. D

THEOREM 4.3F. / / / ' is a gradient flow andf>f{h), then h(R{f)) = R(f').

Proof. If x'eR(f), then x' is a rest point of/'. It follows that if h(x) = x', then
h(w(x,f)) = x'. Since w(x,f) <= /?(/), h(R(f)) => R(f') and by 4.3E the theorem is
proved. •

4.4. The gradient part off

Definitions and remarks 4.4A. Let f ( / ) = &(/)u{(x, x) |xeX}. Then ? ( / ) is an
equivalence relation on X, each equivalence class being either a point of Comp R(f)
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or a component of /?(/) . Also £ ( / ) is closed in XxX so that the equivalence
classes are closed sets comprising an upper semicontinuous decomposition of X.

Let X be the set of equivalence classes of £ ( / ) and let IT : X -> X send each point
to its equivalence class. Define a set u c X to be open if TT~'(M) is open; then the
open sets form a topology on X such that X is a compact metric space.

LEMMA 4.4B. n(R(f)) is a totally disconnected subset of X.

Proof. Let Uc X be an open set such that dU n /?(/) = 0 . Suppose x e 77-~'(7r( U))
and let y 6 U be such that ir(y) = ir(x). Then either x = y or x and y lie in the same
component of/?(/). In either case (using dlln/?(/) = 0 in the second) x e I/. Thus
v~l(v(U)) = U and is in particular open. Given two points of TT(/?( / )) , there
correspond two components of R(f). Choose disjoint open sets of X with boundaries
in Comp /?(/) and such that each contains one of the components. Then the images
of these two open sets are disjoint and open in X and have boundaries in X \ T T ( / ? ( / ) ) .

Also each contains one of the given points in TT(R( / ) ) . Thus TT(/?( / ) ) is totally
disconnected. •

Definition 4.4.C. For x e X, define fix, t) = ir(ir~\x) • t).
.A >t

LEMMA. For all x and t, the set fix,t) consists of precisely one point. Also x e fix, t)
if and only if xe TT(/?(/)) .

Proof. If xiir(R(f)), then ir~\x) so ir~'(x) • t consists of precisely one point
which is not in /?(/) Then 7r(7r~'(x^ • t) consists of one point which is not equal
to x. If xe TT(/?(/)) , then n~l{x) is invariant under / so that TT~1{X) • t = ir~lix)
and fix, t) = {x}. U

Definition 4.4D. Define/: XxR^X by fix, t) e/(x, t). f will be called the gradient
part of/

THEOREM. / is a gradient flow on X with / > / ( 7 r ) . If f is any other gradient flow
dominated by f then f dominates f.

In particular, the rest point set offis in one-one correspondence with the components

ofRif).
Proof. It follows from the definition that the diagram

XxR-^X

XxR-Ux

commutes so that, if / is a flow, it is dominated by / Again from the definition,
fix, tx +12) = / ( / ( x , r,), t2) and fix, 0) = x for all x, f, and t2.

Ifxn-»xand tn-* t, then lim sup {ir*'(xn)}c ^"'(xJsothatlimsupfTr'^x,,) • tn}<=
{w~\x) • t}. Thus lim sup {^(^"'(Xn) • fn)} = limsup{xn ' ' n } c tritr'^ix) • t) = x- t
and, since the latter is a point, xn • tn -* x • t. Thus / is continuous and so a flow.
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Now suppose A and A* form an attractor-repeller pair for/ Since no component
of R(f) can meet both A and A*, n(A) n n(A*) = 0 (4.4A). Thusir(A) and ir{A*)
form an attractor-repeller pair for / and v(a(A,f)) = a(7r{A),f) (4.3D). In par-
ticular, v(CompR(f)) = ir({J{a(A,f)\A\A is an attractor of /}) =
U{a(-(A),/)_\7r(A)}cCompi?(/). Also by 4.3E 7r(R(f))<=R(f); thus
TT(K(/)) = /?( /) .

From 4.4C (the lemma) TT(/?(/)) is precisely the rest point set of/; since this
set is totally disconnected by 4.4B, / is a gradient flow. Also 4.4C implies there is
a one-one correspondence between R(f) and the components of R(f).

If/ is another gradient flow and f>f(h), then each component of R(f) must
be mapped to a single point of R(f) (by 4.3E and the fact that R(f) consists of
rest points). Thus a map h:X->Jt can be defined by h(x) = h(ir~\x)). It is then
easily seen that h is continuous and that f>f(h). •

THEOREM 4.4E. Iffandf are w-similar, then so are their gradient parts.

Proof. Suppose f>f'(h) and f>f(h') and let / and / ' denote the gradient parts
with domination maps TT and IT'. Then since / > / ' ( T T ' ° h), f>f'. Similarly

5. Morse decompositions and filiations

Definition 5.1. If s is the intersection of a quasi-attractor and a quasi-repeller, then
s will be called a quasi-Morse set.

If s is the intersection of an attractor and a repeller, 5 will be called a Morse set.

Note. A quasi-Morse set is the intersection of Morse sets.

LEMMA 5.2. s is a quasi-Morse set if and only if s = il(s,f) nil(s,f*).

Proof. For any closed set C, fl( C,f) is a quasi-attractor and fi( C,/*) a quasi-repeller;
thus ft(C,/)nft(C,/*) is a Morse set.

Suppose s = /4n A*, where A is a quasi-attractor and A* is a quasi-repeller.
Since s is invariant, <o(s,f) = s so that s c £l(s,f) <= A and 5 <= fl(s,f*) c A*. Thus
s = a(s , / )ni l (s , /*) . •

LEMMA 5.3. If s and s are quasi-Morse sets and s n R(f) = sn /?(/), then s = s.

Proof. First observe that for any flow/on a compact metric space Y, fl(R(f),f) = Y.
Namely Cl(R(f),f) is a quasi-attractor; if the complement in Y were non-empty,
it would contain a closed invariant set and any such meets R(f) non-trivially.

Now if xeR(f\s), then x is in R(f) so in snR(f) and so in s. Thus (l(s,/)=>
ft(K(/|s),/)=>fl(/?(/|s),/|s) = s. Similarly fl(s,/*) = s and then s=>.s. With the
roles of s and 5 interchanged, s=> s and the result follows. •

LEMMA 5.4. s is a Morse set if and only if s = il(s,f)nfl(s,f*) and snR(f) is
closed and open in R(f).

Proof. Suppose s = An A*, where A is an attractor and A* is a repeller. By 5.3
s = H(s,f)n£l(s,f*). Also AnA*nR(f) = d(A,f)na(A*,f*)nR(f) since
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d(A,f)\A and a(A*,f*)\A* are disjoint from R(f). Thus snR(f) is closed and
open in R(f).

Suppose then that snR(f) is closed and open in R(f) and that s = £l(s,f)n
ft(*>/*)- Let M be an open set containing s with unR(f) = snR(f). Since
Comp (u) n fl(s,/*) c Comp fl(s,/), for x in the first set there exists an attractor
A(x) containing ft(s,/) but not x. Since Comp (w)nft(s,/*) is compact, there is
a finite collection A , , . . . , An of attractors containing ft(s,/) whose complements
cover Comp (w)nft(s,/*).Then A = Ax n- • • nAn is an attractor containing ft (s, /)
and disjoint from Comp (u)nil(s,f*).

Similarly there can be found a repeller A* containing £l(s,f*) which is disjoint
from Comp (u)nA. Then A n A* = s is a Morse set contained in u and containing
s. Also snR(f) = unR(f)^snR(f)=>snR(f) so snR(f) = sr\R(f). By 5.3
s = s and the result follows. •

Definition 5.5. A Morse decomposition of X with respect to / means a (finite)
ordered collection of Morse sets { s , , . . . , sn) such that

(a) R(f) = U"lR(f)nsi,
(b) for i<j, a(s,,f) nsj = 0 and ft(s,,/*) n s, = 0.

Definition. A filtration of X with respect to / is a finite increasing sequence
$ = Ao,.., An = X of attractors of/

THEOREM 5.6. There is a one-one correspondence between filtrations and Morse
decompositions such that to the filtration {tf> = Ao,..., An = X} there corresponds the
Morse decomposition slt..., sn with s, = At n Af_u i = 1, . . . ,« .

Then to the Morse decomposition {st,..., sn} there corresponds the filtration
Ai =ft(s,u • • - u s ; , / ) , i = 1 , . . . , n, and Ao= 4>-

Proof. Let {<j> = Ao,..., An = X} be a filtration. The sets s, = A, n Af_! are obviously
disjoint Morse sets and satisfy ft(s,,/) n s, = ft(5,,/*)nst = <j> whenever i<j. Sup-
pose xeR(f). Then for some i,xeAt and xiA^x. Since x^A, . , and xeR(f),
xfSa(i4,-_,,/). Thus xeAf.,, hence s, = A, n/*?_,. Thus U %r*R(f) = R(f) and
{$,•,...,«„} is a Morse decomposition.

Now let {*,,..., sn} be a Morse decomposition and let A, = ft(s! u • • • u Sj,f)
for i = 1 , . . . , M and Ao= <̂>. Then A o , . . . , An is obviously an increasing sequence
of quasi-attractors.

Suppose j > i. Then since ft(sk,/) nsj = <j> for fc = 1 , . . . , i, it follows that A, =
ft(s,,..., 5,,/) = Uic=i ft(*k,/) is disjoint from s,. Thus Af n R(f) = U l ^ •st'^
i?(/) and is a closed and open subset of R(f). Since A, is a quasi-attractor, there
must then be an attractor A, containing A, such that A, n / ? ( / ) = A, n / ? ( / ) ; 5.3
then implies Af = A, and is therefore an attractor. Thus {<£ = A o , . . . , An = X} is a
filtration.

Since A, contains s , , . . . , s, and is disjoint from s I + I , . . . , sn, A-, n A*_! is a Morse
set containing s, and disjoint from s, for jV i. This implies At n Af^ n R(f) =
5,n/?(/) and so by 5.3 Si = AinAf^i and the one-one correspondence is
established. •
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