MINIMALITY AND STABILITY OF MINIMAL HYPERSURFACES IN \mathbb{R}^n

Fang Hua Lin

In this paper we show that the hypercone over $S^2 \times S^4$ is strictly area-minimizing in \mathbb{R}^8. We also show the existence of smooth embedded stable hypersurfaces in \mathbb{R}^8 which are not area-minimizing.

1. Introduction

Given a regular minimal hypercone C in \mathbb{R}^{n+2} (that is $C = \partial \times \Sigma$)

Received 4th September 1986. Supported by Alfred P. Sloan Doctoral Dissertation Fellowship (1984-1985). I wish to thank Professor R. Hardt and Professor R. Gulliver for bringing the work of Simoes to my attention.

Copyright Clearance Centre, Inc. Serial–fee code: 0004-9727/87 $2.00 + 0.00$.

209
for some smoothly embedded minimal hypersurface E of S^{n+1}, we say that C is strictly area-minimizing if there exists a constant $\theta > 0$ such that

\[(*) M(C^t) \leq M(T) - \theta \epsilon^{n+1}\]

for $T \in I_{n+1}^2(\mathbb{R}^{n+2})$, where $C^t = C \setminus B_1(0)$, whenever $\epsilon \in (0,1)$,

\[\exists T = \delta C^t \quad \text{and} \quad \text{spt}(T) \cap B_\epsilon(0) = \emptyset.\]

Let E_+, E_- be the two connected components of $\mathbb{R}^{n+2} - C$. Then we say that C is one-sided strictly area minimizing in E_+ (respectively, in E_-) if (\ast) holds for all such T above satisfying, in addition, the condition $\text{spt}(T) \subseteq E_+$ (spt $(T) \subseteq E_-$, respectively).

The aim of this note is to prove the following:

THEOREM. Let $E = S^n\left(\sqrt{m\over n}\right) \times S^{n-m}\left(\sqrt{n-m\over n}\right)$ where $n \geq 2m$ and either $n \geq 6$, $m \geq 2$ or $n \geq 7$, $m \geq 1$. Then $C = O \times E$ is strictly area minimizing in \mathbb{R}^{n+2}. If $E = S^1\left(\sqrt{1\over \delta}\right) \times S^5\left(\sqrt{5\over \delta}\right)$, then $C = O \times E$ is one-sided strictly area minimizing in $E = \{(x,y) \in \mathbb{R}^2 \times \mathbb{R}^6 : |y| \leq \delta^{1\over 2} |x|\}$.

The strictly area minimality of $C(1,\delta) = O \times \Sigma$, $\Sigma = S^1\left(\sqrt{1\over \delta}\right) \times S^5\left(\sqrt{5\over \delta}\right)$, in E implies that $C(1,\delta)$ is stable (see [5]). In fact, it is strictly stable by [7] and [6]. Moreover, we have the following:

COROLLARY. $E = \{(x,y) \in \mathbb{R}^2 \times \mathbb{R}^6 : |y| < \delta^{1\over 2} |x|\}$ is foliated by smoothly embedded minimal hypersurfaces. Each of these hypersurfaces is one-sided area minimizing (hence stable) but not globally area minimizing.

The above corollary solves the open problem [1.6] of [1].

Available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700026484

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 26 May 2019 at 05:10:43, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700026484
2. Proofs

First we recall some results and notation from the recent work of Hardt and Simon [3]. They show that, if C is area-minimizing, then there exist minimal hypersurfaces $S_\pm \subset E_\pm$ which coincide near infinity with

$$\{x \pm V_\pm(x) \nu_\sigma(x) : x \in C\}$$

where V_\pm are functions on C and ν_σ is an orienting unit normal vector field for C. Let γ_\pm denote the characteristic exponents of the O.D.E. obtained by separating variables in the Jacobi field equation for C. By [3], we have the following alternative characterizations of strict minimality:

(i) V_\pm both have the slower decay at infinity. That is

$$\liminf_{|x| \to \infty} |x|^{\gamma_-} V_+(x) > 0$$

in the case that $\gamma_+ > \gamma_-$

$$\liminf_{|x| \to \infty} (\log |x|^{-1}) |x|^{(n-1)/2} V_+(x) > 0$$

in the case that $\gamma_+ = \gamma_- = (n-1)/2$.

(ii) There are a closed, homothetically invariant $K \subset \mathbb{R}^{n+2}$ with H^{n+1}-measure zero and a C^1-vector field X on $\mathbb{R}^{n+2} - K$ such that $X = \nu_C$ on $C \setminus K$ and $|X| \leq 1$, $\pm \div X \geq 0$ on E_\pm, and at least one of these inequalities is strict in at least one point $x_+ \in E_+ \setminus K$ and at least one point $x_- \in E_- \setminus K$.

By (ii) and the construction of Lawson [4], we see that all known examples of minimizing hypercones, except the case

$$\Sigma = S^2\left(\sqrt{\frac{2}{3}}\right) \times S^2\left(\sqrt{\frac{3}{5}}\right),$$

are strictly area minimizing.

Our theorem is, actually, a directly consequence of the characterization (i) and the O.D.E. results due to Simoes [7].
Proof of Theorem. For $\Sigma = S^m\left(\sqrt{n\over n-1}\right) \times S^{n-m}\left(\sqrt{n-m\over n}\right)$, the square of the length of the second fundamental form of $\Sigma = n$, see [6]. Since $\gamma_+ \geq \gamma_-$ are the roots of the characteristic equation:

$$\gamma^2 - (n-1)\gamma + n = 0,$$

we have that

$$\gamma_\pm = {1\over 2}(n-1 \pm \sqrt{(n-1)^2 - 4n}) = {1\over 2}(n-1 \pm \sqrt{n^2 - 6n + 1})$$

Now for $n \geq 6$, $n \geq 2m$ and $m \geq 1$, we have, by [7, Theorem 2.9.3],

on Σ_+ the following:

(a) $\lim [\arctan (dv/du) - \pi/4]/[\arctan (V/U) - \pi/4] = -\gamma_-$

where $v = |y|$, $u = s^{1/2} |x|$ and $U > V$; and Σ_+ denotes the leaf of the global foliation (see [3], [7]) in $U > V$, which passes through the point $U = 1$ and $V = 0$.

Then (a) is equivalent to

$$(a') \lim (dY/du)/(Y/u) = -\gamma_-$$

where $Y = u - v > 0$.

The latter implies that

$$u - v = u - \gamma_- + o(u - \gamma_-) \text{ as } u \to +\infty.$$
Minimal hypersurfaces

because \(V_\lambda(X) = |X|^{-\lambda} \) follows from the fact that \(|u - v| = |X|^{-\lambda} \), where \(X = (x, y) \). Thus we conclude, by (ii) that for \(n \geq 2m \) and either \(n \geq 6, m \geq 2 \) or \(n \geq 7, m \geq 1 \) the corresponding minimal hypercones \(C \) are strictly minimizing. We also obtain that, when \(n = 6, m = 1 \), \(C \) is one-sided strictly area minimizing in \(\overline{E} \).

Proof of Corollary. Using the same technique as [2], one concludes that \(\overline{E} = \{(x,y) \in \mathbb{R}^2 \times \mathbb{R}^6 : \|y\| \leq \sqrt{5} |X|\} \) is foliated by \(S_\lambda = \mu_\lambda \times S^1, \ 0 < \lambda < \infty \). Each \(S_\lambda \) will be a smoothly embedded one-sided area minimizing hypersurface, for \(0 < \lambda < \infty \), hence stable (see [3]). But \(S_\lambda \) cannot be area minimizing in \(\mathbb{R}^6 \), since \(C(1,5) \) is not area minimizing in \(\mathbb{R}^6 \), and \(C(1,5) \) is the tangent cone of \(S_\lambda \) at infinity.

3. An open problem

The following problem, which was raised by Simon, remains open.

\[(P) \text{ Is there an example (other than } \mathbb{R}^2 \text{ in } \mathbb{R}^6 \text{) of a minimal hypercone } C \text{ in } \mathbb{R}^N \text{ which is minimizing but not strictly minimizing?} \]

The candidate \(S^2 \times S^4 \) is now ruled out by our result.

References

Courant Institute of Mathematical Sciences,
New York University,
New York,
New York 10012
United States of America.