AXIOMATISATIONS OF THE AVERAGE AND A FURTHER GENERALISATION OF MONOTONIC SEQUENCES

by JOHN BIBBY

(Received 2 November, 1972; revised 10 January, 1973)

1. Introduction. A bounded monotonic sequence is convergent. This paper shows that a bounded sequence which is g-monotonic (to be defined) also converges. The proof generalises one attributed to Professor R. A. Rankin by Copson [1]. The theorem requires two definitions: the first axiomatises the notion of "average" and the second generalises the concept of monotonicity.

DEFINITION 1. A function $f: \mathbb{R}^r \to \mathbb{R}$, where \mathbb{R} is the set of real numbers, is said to be an averaging function if it is continuous, strictly increasing in each argument and satisfies

$$x = f(x, x, \dots, x)$$
 for all $x \in \mathbb{R}$. (1)

DEFINITION 2. A sequence $\{a_n\}$ is said to be g-decreasing if there exists an averaging function f such that

$$a_n \leq f(a_{n-1}, a_{n-2}, \dots, a_{n-r})$$
 for all $n > r$. (2)

If the inequality in (2) is reversed, we say the sequence is g-increasing. A sequence is g-monotonic if it is either g-decreasing or g-increasing.

2. The theorem and its proof. We can now concisely state the

THEOREM. If a real sequence is bounded and g-monotonic then it is convergent.

Proof. We first prove the theorem for g-decreasing sequences. Let

 $A_n = \max(a_{n-1}, a_{n-2}, \ldots, a_{n-r}).$

Clearly, for all n,

$$A_{n+1} \le \max\left(a_n, A_n\right) \tag{3}$$

and

$$A_n = a_{n-t(n)}$$
 for some $t(n)$ between 1 and r. (4)

By the properties of f,

$$f(a_{n-1}, a_{n-2}, \dots, a_{n-r}) \le f(A_n, A_n, \dots, A_n) = A_n.$$
(5)

Therefore, by (2),

 $a_n \leq A_n$

and so, by (3),

$$A_{n+1} \leq A_n$$

Therefore either A_n tends to a finite limit A or it diverges to $-\infty$. But, if the latter were true, a_n would also diverge, contrary to hypothesis. Thus $A_n \to A$. Therefore, by (5), $\lim_{n \to \infty} a_n \leq A$.

JOHN BIBBY

We now prove that $\lim_{n \to \infty} a_n \ge A$. Putting n = m + r + 1 and t(n) = r + 1 - s in (4) we obtain

$$a_{m+s} = A_{m+r+1} \ge A. \tag{6}$$

Now, by (2) and the monotonicity of f,

$$a_{m+s} \leq f(a_{m+s-1}, a_{m+s-2}, \dots, a_m, \dots, a_{m+s-r})$$
$$\leq f(A_{m+s}, A_{m+s}, \dots, a_m, \dots, A_{m+s}), \tag{7}$$

where A_{m+s} is in every place except the sth, where there is a_m . Here s is a function of m and its values can be $1, 2, \ldots, r$.

Now if

$$\lim_{n \to \infty} a_m = A - 2\delta < A$$

then there exists a strictly increasing subsequence $\{m_k\}$ of the positive integers such that

$$a_{mk} < A - \delta$$
 for $k = 1, 2, 3, \ldots$

Moreover, we may choose the subsequence so that each m_k corresponds to the same value of s in (7). Hence, from (6) and (7),

$$A \leq f(A_{m_k+s},\ldots,A-\delta,\ldots,A_{m_k+s}),$$

where, for all $k \ge 1$, $A - \delta$ occurs in the same sth place. Letting $k \to \infty$, we deduce from the continuity of f that

$$A \leq f(A,\ldots,A-\delta,\ldots,A),$$

which, with (1), contradicts the definition that f is strictly increasing in its sth argument. Hence $A \leq \lim_{n \to \infty} a_n$ and this, together with the result $\lim_{n \to \infty} a_n \leq A$, shows that $\lim_{n \to \infty} a_n = A$ for g-decreasing sequences.

To complete the proof we observe that, if $\{a_n\}$ is g-increasing with respect to the averaging function f, then $\{-a_n\}$ is g-decreasing with respect to the averaging function \tilde{f} , where

 $\bar{f}(b_1, b_2, \ldots, b_r) = -f(-b_1, -b_2, \ldots, -b_r).$

Hence if $\{a_n\}$ is g-increasing, $\{-a_n\}$ converges and so therefore does $\{a_n\}$.

3. Some further remarks. Among functions satisfying the properties required of f are weighted and unweighted arithmetic, geometric, and harmonic means. Perversities such as the median, mode and mid-range are either discontinuous or else not strictly increasing, and so do not satisfy our definition of an averaging function.

However, the conditions required of f are not necessary, as has been shown for the linear case on page 163 of [1]. This raises the question of whether one can derive necessary and sufficient conditions for convergence using an approach such as this. The obvious conjecture that if a real sequence converges it is g-monotonic after some point with respect to some averaging function is shown to be false by the sequence 1, p_1 , 1, q_1 , 1, 1, p_2 , 1, 1, q_2 , 1, 1, 1, p_3 ,

64

1, 1, 1, q_3, \ldots , where $\{p_n\}$ and $\{q_n\}$ are monotonically increasing and decreasing respectively, each with limit 1.

I should like to thank Professors J. M. Howie and R. A. Rankin for many useful comments.

REFERENCE

1. E. T. Copson, On a generalisation of monotonic sequences, Proc. Edinburgh Math. Soc. 17 (1970), 159-164.

DEPARTMENT OF STATISTICS UNIVERSITY OF ST. ANDREWS