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Abstract

Individuals in a population which grows according to the rules defining the Markov branching
process can mutate into novel allelic forms. We obtain some results about the time of the
last mutation and the limiting frequency spectrum. In the present context these results re-
fine certain results obtained in the discrete time case and they answer some conjectures still
unresolved for the discrete time case.
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1. Introduction

Recently Griffiths and Pakes [4] considered a simple branching process in which
individuals were classified according to their allelic type and a newly born in-
dividual has probability u of mutating to a novel type independently of the
previous history of the process. All alleles are selectively neutral in the sense
that the offspring distribution is independent of allelic type. Asymptotic results
were found for

(i) the number Kn of alleles in generation n.
(ii) the generation number L of the last mutation event.
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[2] An infinite alleles version of the Markov branching process 147

(iii) the frequency spec t rum (<j>\n (j)), where 4>\n'(j) is the expected number
of alleles represented by j members of the n t h generation in a process which
begins with i individuals carrying the same allele.

A number of questions remain unresolved in the discrete t ime case. For ex-
ample, in the subcritical case it was shown t h a t (Kn) has a conditional limiting
distribution, bu t almost nothing is known about the na tu re of this distr ibution.
Again, if T is the extinction t ime it was shown in the non-supercritical case tha t
(Ei(T - L)) has a limit as i —* oo, where Ei(-) denotes the conditional expecta-
tion given the above initial configuration. The si tuat ion in the subcritical case is
actually quite involved because i must be restr icted to certain sub-sequences. It
would be of some interest to determine how the limit behaves as a function of the
mean number of offspring per individual TO, even if only for specific examples.
However, the limit depends in a complicated way on s ta t ionary measures of the
process giving the generation sizes and it does not seem possible to gain any
insight by purely analytical means . Numerical results were given for the case of
a geometric offspring distr ibution which suggest t h a t when i is large, Ei(T - L)
increases with TO.

Finally, when TO < oo it was shown tha t there is a limiting frequency spect rum
<t>i{j) = limn-^oo m~n(j)\ (j). Let M — m( l—u) be the mean number of offspring
carrying the parental allele. When M > 1 the behaviour of Ylk>j & ( * ) as J —> oo
such tha t jM~n —» c > 0 was determined and a conjecture was made about the
behaviour of individual <j>i(j). Obstacles in the way of proving the conjecture
were discussed and it was shown to be valid for the fractional linear offspring
distribution. A parallel discussion was presented for the case M = 1 but here
no general results are known. The behaviour of <j>i(j) can be determined in the
fractional linear case and a conjecture was made on the basis of this example
and some other considerations.

Nearly all propert ies of the simple discrete t ime branching process have an
analogue for the continuous t ime Markov branching process (M.B.P.) and in
many cases the M.B.P. results are more complete and easier to prove. One
example, which we will use below, is t h a t the M.B.P. has a unique s ta t ionary
measure (apart from multiplicative constants) and its generating function has
an explicit integral representation. In view of this it seems worthwhile to look at
a M.B.P. in which individuals have independently and exponentially dis tr ibuted
life times with mean life-length a " 1 , bu t otherwise they reproduce and muta t e
as in the discrete t ime branching case. It may be hoped tha t the smoother
behaviour of the M.B.P. will lead to a more complete t rea tment of the problems
mentioned above.

Unfortunately it does not seem possible to develop a more complete theory
for the number Kt of alleles a t t ime t. However, we can make some progress
with respect to the other problems. For example, in the next section we consider
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148 Anthony G. Pakes [3]

the non-supercritical case and use L to denote the last time at which a mutation
event occurs. We obtain the distribution function (D.F.) of L and some limit
theorems for a large initial population. All this is very similar to the discrete
time case. One simplification however, is an integral expression for Ei(L). We
show that the D. F. of D = T — L, where we use T to denote the extinction time
of the M.B.P., can be explicitly evaluated in terms of the solution of a certain
differential equation (equation (2.7) below). This gives more complete results
for the limiting behaviour of D as i —• oo than are available in the discrete time
case. Many of our formulae can be explicitly evaluated for the birth and death
process. We use these results to discuss the behaviour of E\ (D) and E\ (L) under
variations of the defining parameters.

In Section 3 we study the frequency spectrum with particular emphasis on
the tail behaviour of the limiting frequency spectrum {4>(j)) defined below in
Lemma 3.1.3 and (3.1.1). When M > 1 we argue as in [4] to determine the
rate at which X)fc>, 4>{k) decreases to zero a s ; ' - * oo. The form of our result,
Theorem 3.2.1, is nicer than in [4] because here the limit has a simple form and
j is not forced to increase through a lacunary sequence as in the discrete time
case. By obtaining a representation of <j>{j) in terms of a renewal sequence we
are also able to determine the asymptotic behaviour of {<j>(j)); see Theorem 3.2.2
below. This result supports the conjecture in [4].

When M = 1 and heavy moment conditions are satisfied we are able to
obtain the asymptotic behaviour of {<f>{j)) (Theorem 3.3.1 below) and again
this supports the conjecture made in [4]. In the M.B.P. case we can express
the generating function of {</>(j)) in terms of that of the stationary measure of
a critical process (see (3.3.5)). We first prove Theorem 3.3.1 under a special
condition which includes the particular case of the birth and death process.
This is done because the details are much simpler than in the general case which
follows the overall strategy of the special case. In addition we can isolate the
main ingredient of the proof of the special case, Theorem 3.3.2, for later use in
the general case.

We close this section by introducing some notation. The overall population
size at time t is denoted by Zt; we assume that ZQ — i and that the initial individ-
uals carry the same allele. Expectations conditional on this initial configuration
are denoted by £*(•)• Let f(s) = J2j>oPjs^ ^ e t n e probability generating func-
tion (p.g.f.) of the offspring distribution, pi = 0, pj ^ 1 (j > 0) and we always
assume m = Y^OVj < °° . Let Ft(s) = Ei(sZt), which satisfies the forward and
backward equations,

(1.1) dFt/dt = b(s)dFt/ds and dFt/dt = b(Ft).

respectively, where b(s) — a(f(s) — s).
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[4] An infinite alleles version of the Markov branching process 149

2. The time of last mutation

In this section we will assume m = /'(I—) < 1. The total number r of alleles
ever to have existed is exactly as it is for the discrete time case since r depends
only on genealogical aspects of the entire family tree and not on individual life
lengths. Then as indicated in [4],

Ei(sT) = 8[/9(l - u + us)}1

where 0(s) is the p.g.f. of the total number B of births and is the unique solution
of the equation

/? = /(«/?),

Let L be the time when the last mutation event occurs and L = 0 if mutation
never occurs. Our assumption m < 1 ensures that the process becomes extinct
after finitely many splits and hence L is a well-defined random variable. Let
<5 = 0(1 - u). Then clearly

(2.1) Pt(L = 0) = Pi(r = l) = 6\

Given J?t, the tr-algebra representing the history of the mutation process up to
t, then L < t if and only if there are no mutations among the descendents of
the Zt individuals alive at t. This has conditional probability 6Zt, see equation
(2.1), and hence

(2.2) Pi(L <t) = (Ft(S)y.

which is a precise analogue of the discrete time result in [4, Lemma 3.1]. This
distribution function (D.F.) can be evaluated when (Zt) is a birth and death
process. In this case f(s) = q 4- ps2 where p + q = 1 and then m = 2p,

6 = (2 - m)/[l + (1 - (1 - u)2m(2 - m))1/2],

and when m ̂  1,

, . _ (2 — m)(\ — s) — (2 — m — ms) exp(a(l - m)t)
t(S' ~ m(l - s) - (2 - m - ms) exp(a(l - m)t) '

and when m = 1,
2s + at(l-s)

Ft{s) ~ 2 + at(l-s)-
From (2.2) we obtain

Ei(L)= /"°°[1-(F« (*))*] dt.
Jo

Let y — Ft (6) and use the backward equation (1.1) to obtain the simpler expres-
sion
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150 Anthony G. Pakes [5]

Letting 6 — 0 in this integral gives the well-known formula for E{(T) and in

part icular we see t ha t these expectations are either both finite or both infinite.

In part icular Ei(L) is finite when m < 1 and infinite if m = 1 and J2PjJ2 < °°-

In the case of the bi r th and dea th process

„ , , , 2 , / 2 - m - m < T
2(1 - m )

and numerical calculations indicate that this is an increasing function of m. This
will be further discussed below. A first order approximation for small u is

T - t / r \ 1 1 1 \ 2

ti\\L) ~ mu/a{\ — m)
Equation (2.2) can be used to obtain limit theorems for L in almost exactly

the same way as for the discrete time case (op. cit. Theorem 3.1). To state the
subcritical (m < 1) part of this we need the following notation. It is known [9]
that limt-Kjo P\(Zt — j\%t > 0) exists as a proper discrete distribution with p.g.f.

Q{s) = 1 - exp IA I dx/b{x)]

where A = a(m — 1). When

(2.3) yv

this limiting conditional distribution has a finite first moment

c = exp / (- \-rrT) dx \.
[Jo \l-s b(x)J Js b(x)

Finally let V(-) be the inverse of the function 1 - Q{\ - s).

THEOREM 2.1 .

(i) When m = \ and 7 = 6"(l-)/2 < 00 then

lim Pi{L < it) = exp(-l/7<).
»—>oo

(ii) When m < 1 then

lim Pi(iip{eXL) < x) = 1 - exp[-a;(l - Q(6))].
i—*oo

(iii) If m < 1 and (2.3) holds then for —00 < y < 00

lim Pi(\X\L - log(z/c) < y) = exp[-(l - Q(6))e-
y}.

t—>oo

REMARK. The discrete time analogue of (iii) was not given in [4], although
it is easily formulated. A step in proving (ii) is to let i, t —> 00 such that
i(l - Ft) -> x, where Ft = Ft{0). It follows that

Pi(L < t) ^ 1 - exp[-x(l -
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[6] An infinite alleles version of the Markov branching process 151

To obtain (Hi) we need only use 1— Q{Ft) = eXt and 1— < 2 ( s ) ~ c ( l - s ) as s —> 1~.
We will now consider the difference D = T — L, the t ime elapsing between the

last muta t ion and extinction. Let Bt be the to ta l number of individuals born
within (0,<], $t(s,x) = Ei{sz>xB<) and G(t) = $t(0,1 - u).

THEOREM 2.2.

PROOF. Observe first that

Pi(L = 0,T < t) = Ei[Pi(L = 0\&)I{T < t)]

Now consider the event {v < L < v + dv < T < v + t}. This occurs if
(i) there is a split in (v, v + dv),
(ii) there are j > 2 offspring and at least one of these mutates,

and
(iii) there are no further mutations amongst the descendents of the Zv+j — l

individuals living at v + dv and the process is extinct within a further t — dv
units of time. If Y denotes the number of offspring produced by a typical split
then

Pi(v <L<v + dv<T<v + t)

= Ei[aZvdv(l - (l-u)Y)PZv+Y-i(L = 0,T< t);Y > 0}+o(dv)

= Ei[aZv dv{\ - (1 - u)y ' )(G(())z '+ y"1;y > 0] + o{dv)

= a[f(G(t)) - /((I - u)G(t))}§-s(Fv(s)y\s=G(t) dv + o(dv),

where we have used (2.5) to get the second equality. The forward equation yields

and integration with respect to v over (0, oo) yields

P(L-OP-t)-f{G{t))-m-u)G{t))n
Pl(L>0,D<t)- / ( G ( t ) ) _ G ( O ( 1 -

Adding this to (2.5) yields (2.4).
It only remains to check that (2.4) gives a proper D.F. This follows because

lim G(t) = £i(( l - u)B) = 6

and
Hm /((I-u)G(*)) = / ( ( ! - « ) « ) = « .
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152 Anthony G. Pakes [7]

REMARK. When m > 1 we may define D = 0 if T = oo, since the latter event

implies L = oo. A simple change in the proof will then give

(2.6) PtiD < t) - 1 - f m ) ) _ G { t ) (9 - (G(0) ),

a D.F. which has an atom of size 1 — ql at the origin.
The backward equation satisfied by $<(s, x) yields

(2.7) G'(t) = a[/((l - u)G(t)) - G(t)}

whence

( '
Integration over £ and a change of variable yields

THEOREM 2.3.

f
Jo -y

Since 8 < q we see that Ei(D) < oo when p0 > 0. If u = 0 then 5 = 1, L = 0
and we recover the well-known representation for Ei(T). If m < 1 then

lim Ei{D) = a~1 / dy/(f(y)-y)
•—oo ./0

which is always finite.
For the birth and death process with m < 1 we obtain

and numerical calculations indicate that this increases as m increases. The
behaviour of E\(D) and E\(L) when a = 1 as functions of m are illustrated
in Table 2.1. We note that E\(L) is very much smaller then E\{D) when m is
small, or even for quite large m if u is small enough, and E\ (L) increases very
rapidly when m ~ 1. For this example we have

lim Ei(D) = I/a and lim m~1E1(L) = (2 — u)u/a; and
m—•O m—>0

lim Ei(D) — (2/a) log[(u(2 - u))~1^2 + 1] and
m—>1

Ei(L) = (2/a)log(l-m)~1 - lim E^D) +o(l) a s m - » l .

Table 2.1 indicates that when m < 1 we have Ei(L) —> 0 as u —• 0 and it can
be shown quite generally that
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[8] An infinite alleles version of the Markov branching process 153

Finally, when m = 1 and 7 = / " ( l - ) / 2 < 00 the representation of Theorem 2.3
shows that E\(D) —• 00 as u —> 0 and some algebraic manipulation yields the
asymptotic relation

log u - 1

m

.2

.4

.6

.8

.9

.95

.99

.999
1

u =
Ei{D)

1.1496

1.3468

1.6113

1.9611

2.1666

2.2746

2.3623
2.3821
2.3843

0.1
Ei(L)

.02824

.09161

.2541

.7854

1.6217

2.6757

5.5609
10.0616

00

u =
Ei(D)

1.1747

1.4275

1.8297

2.5789

3.2438

3.6869

4.0808
4.1710
4.1810

0.01
Ei(L)

.003093

.01088

.03567

.1677

.5445

1.2634

3.8424
8.2727

00

u =
Ei(D)

1.1775

1.4373

1.8617

2.7269

3.7048

4.6530

5.9203
6.2641
6.3026

: 0.001
£,(£)

3.122 x 10-4

.001109

.003731

.01960

.08357

.2973
2.0029
6.1795

00

u =
Ei(D)

1.1778

1.4383

1.8650

2.7445

3.7794

4.9134

7.3077
8.4125
8.5453

0.0001

Ei(L)

3.129 x 10~5

1.111 x 10~4

3.748 x 10~4

.001996

.008929

.03687

.6155
4.0312

00

u = 0.000001

Ei(D)

1.1778

1.4384

1.8654

2.7465

3.7882

4.9499
7.9134
11.8207
13.1252

Ei(L)

3.55 x 10" 7

1.149 x 10~6

3.790 x 10-6

1.998 x 10-5

9.000 x 10~5

3.800 x 10"4

.009826

.6230
00

TABLE 2.1. Some values of Ei(D) and Ei(L) for the birth and death process with a = 1

Results qualitatively similar to those in Table 2.1 are exhibited by the geo-
metric offspring distribution, f(s) = 1/(1 + m~ ms), for which

6 = m + ((1 + m)2 - 4m(l - «)

= {S-\og(l-mS))/a

and

Ei(L) = [1 — 6 — log((l — m)/(l — m6))]/a.

An immediate consequence of Theorem 2.2 is the following limit theorem.

THEOREM 2.4. When m<l,

lim P(D <t)= f(G(t))-f((l-u)G(t))
<-oo lV - ; f{G{t))-G(t)

and the limit is a proper D.F.

This limiting D.F. can be evaluated for the birth and death process, as indeed
can the full D.F. of Theorem 2.2. In this case we have f(s) = q + ps2 and if we
set

f = (1 -4p<7(l - u ) 2 ) 1 / 2 , a o , a i - l ± f and a(t) = eaft,

then (2.7) can be solved, giving

CIO = » ^ .
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154 Anthony G. Pakes [9]

Further algebraic manipulat ion shows tha t the limit D.F. is

= 4s inh 2 (a ? </2)

where A = (1 — 4pq)/pqu(2 - u). When m = 1, A = 0 and then A(t) =

3. The frequency spectrum

3.1. In this section we let H(s) = f(u+(l—u)s) be the p.g.f. of the distribution
of the number of offspring born to a single individual carrying the parental allele
and let r denote the extinction probability corresponding to H(-). Let (Xt: t > 0)
denote the M.B.P. denned by H(s) and a, h(s) = a(H(s) - s) and

Now let at(j) be the number of alleles which are represented by j individuals
at time t, let Ti, T2,... be the successive split times of the process (Zt), Nt be
the number of split times in (0, t] and Un be the number of offspring produced
at time Tn. Define the indicator functions: Io,j(t) = 1 if the i ancestors have
j like-type representatives alive at time t and for n, k > 1, Intk,j{t) = 1 if the
Mh individual born at time Tn differs in type to its parent and has j like-type
representatives t time units later. It is clear that

N, Un

n=\fc=l

For each n, In,k,j{t) is independent of Un and Tn, Ei(IOj(t)) = qij{t) and
E(In>kJ(t)\Un,Tn) = uqij(t). Thus

} ..{t) + umE.(y (t-T))

The expectation on the right-hand side can be obtained from the following
lemma.

LEMMA 3 . 1 . 1 . Let a(t) be a bounded continuous function. Then

Pitt) = Ei
.n=l

f

a{t -Tn)\ = iaext / e-
Xua(u) du.

J J
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[10] An infinite alleles version of the Markov branching process 155

PROOF. The independence of family lines implies that f3t(t) — i/3i{t) and
hence if we let i = 1 we obtain

/ N, \

E £a(*-:rn)|r1,tf1) = a(t-T1)-
\n=l / [n=l

where we set T'n = Tn - T\ and N[ is the number of split times in (Ti,t]. It
is clear that the conditional expectation on the right-hand side is 0i(t — Ti),
whence removing the conditioning yields

/?i (t)=a [a(t - u) + m f t (t - u)\e~au du.
Jo

Rewriting the convolution shows that 0i(t) is differentiable and satisfies the
linear differential equation

X^{t) = aa(t).

Solving this subject to the condition /?i (0) = 0 gives the assertion.
The number of alleles present at time t is K% = Ylj>i aj{t) a nd setting At =

At(0), Lemma 3.1.1 gives

LEMMA 3.1.2. <f>itt{j) = qij{t)+iamuext ^e~Xxqij(x)dx and
ft

Ei{Kt) = 1 - A\ + iamuext / e~Xx(l - Ax) dx.
Jo

These expressions are similar in form to those for the discrete time case; see
equations (4.1.1) and (2.1.1), respectively in [4]. If A < 0, M = (1 - u)m and
A = a(M — 1), then A < 0 and 1 — At = O(eXt), and the following asymptotic
relations follow from Lemma 3.1.2.

LEMMA 3.1.3. Ast^oo,

e~Xt<fii,tti) -> iamuGj{\)

where Gj{\) = /0°° e-xt
qi]{t) dt, and e-

xtEi{Kt) -• iamu /0°° e~Xx(l - Ax) dx.

These may be compared with the second assertion in Theorem 4.1.1 and
Lemma 2.1.1, respectively, in [4]. Let

(3.1.1)

which we interpret as a kind of limiting frequency spectrum, cf. the discussion
following Theorem 4.1.1 in [4]. The Gj(X) are a kind of exponentially weighted
Green's function. In the following subsections we will be concerned with the
case M > 1, whence A > 0. Quantities similar to these, but with A < 0, have
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been studied by Pakes [8]. In the next subsection we will use the approach in
[4] to obtain the asymptotic behaviour of J2k>j ^ W i as j —» oo, when M > 1.
The details are similar but the result is a lot "nicer" than the discrete time
case. Then we use an approach similar to that in [8] to obtain the asymptotic
behaviour of <f>(j) (Theorem 3.2.2 below). This result corresponds to Conjecture
4.2.1 in [4].

We end this subsection with a couple of general observations. First, observe
that

/•O

=

J°
and when m > 1 we can define C = A /^° e~xtAt dt < 1 and write the last
relation as

(3.1.2) \^Gj(\) = l-C.

Secondly,

Y,JGjW= [ e-xtE1(Xt)dt = l/amu,
Jo

and hence for all parameter values jGj(X) —> 0 as j —> oo.

3.2. Throughout this subsection we assume M > 1 and J2j>i Pj3^°ZJ < °°-

When Xo = 1, e~'xtXt -* W (a.s.) and W has a D.F. V(-) satisfying

fx

V(x) =r+ v{y) dy
Jo

where v(x) > 0 for each x > 0. Let

i /= (m - 1) / (A/- 1)

and note that v > 1. The moment condition ^Zpjj" < oo is obviously necessary
for the finititude of the limit in our first main result, but the proof used here
requires a slightly stronger condition. Let \iv = E{WV).

THEOREM 3 . 2 . 1 . Let M > 1 and Y,Pj3v+e < ° ° for some £>0. Then

hm j } (j){k) — -\iv < oo.
3-Kx> *—' m — 1

k>3

PROOF. Observe first that the moment condition implies that E\ {X"+£) < oo
([2], page 153) and then that Theorem 5 in [3] applied to the discrete skeleton
{Xnh) shows that pv < oo.

Now

k>3
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[12] An infinite alleles version of the Markov branching process 157

Choose t so tha t je~xt — 1 and t' > 0. Observing tha t u\ = A, we have

/

OO /»OO

e-XvP1(Xv>j)dv = /
- t ' J-t'[

-t'

and we have used the dominated convergence theorem.
Markov's inequality yields

j v f e-XvP1(Xv > j) dv < j ~ e f e~vXv

Jo Jo

= o(j-£ C * e

= O{e-~XEt').

dv

It follows that
fOO

/ e-Xy{l-V(e-'Xy))dy< liminf j " T<t>(k)
J-*' j^°° t?j

< limsupj'^ y ^ <j>{k)
k>j

< f e-Xy(l-V(e-Xy))dy
J-t'

•e-'Xet')

-t

Now let t' —> oo to obtain

j " J2 GkW - f°° e~Xy(l - V(e-Xy)) dy,
J

even if the integral is infinite. Making the substitution x = e~Xy reduces the
integral to

/o
and the theorem follows.

We now prove the local analogue of Theorem 3.2.1.

THEOREM 3.2 .2 . Under the conditions of Theorem 3.2.1,

lim

PROOF. We begin by finding a representation for jGj(X). Let G(s,A) =
)»">i Gj(X)s:'. By using the forward and backward equations for At(s) (see
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equation (1.1)) we obtain

= f (ft(x))-1 (-x + X f e-xtAt{x)dt) dx,

whence

(3.2.1) dG{s,X)/ds = {h(s))-1{XG{s,X) + C - s).

The derivative in this equation is well-defined for 0 < s < 1 and since h(r) = 0
we conclude that

(3.2.2) C = r-XG(r,X).

Let W{s) = {H(s) - r)/(s - r), a p.g.f., and for 0 < s < 1 let

3=0

The form of H{s) shows that it generates an aperiodic distribution and we can
conclude that (UJ/UQ) is an aperiodic renewal sequence. Invoking the Erdos-
Feller-Pollard theorem yields

(3.2.3) Uj - Uoo - ^ p

By using (3.2.2) and the definition of U(s) we can express (3.2.1) as

(3.2.4) dG{s,X)/ds = a-*U(e

Let gj = A^fc>oGJ+fc(A)rfc (j > 0). It has been observed by Pakes [8] that
the generating function of the gj is the subtracted term in (3.2.4). Equating
coefficients of s-7 in (3.2.4) gives the representation

3

— „-!(j + l)GJ+1(X)=a-1 \uj-^uj-kgk

k>0

It follows from (3.1.1) and (3.2.2) that Ylj>o Si = ^ an<^ n e n c e w e c a n re-arrange
the previous expression into the desired representation

I
(3.2.5) (j + l)Gj+i(X) = a"1 I Uj Y^ gk + Y^(w

i fc=o
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[14] An infinite alleles version of the Markov branching process 159

We now set about estimating the rate of convergence to zero of each of the

two components on the right. Letting 7^ = A Ylk>j ^kW we obtain

fc>0

and using the dominated convergence theorem and the result j u ^
in essence is the result proved in Theorem 3.2.1, we obtain jvf3j
It follows from this that j"gj —• 0 and hence from (3.2.3),

//„, which

i^/(l - r).

This will give the assertion of the theorem once we show tha t the convolution-like

sum in (3.2.5) is o{j~v).

To see this first observe tha t

V * t • —

k<j/2
i E S f c + E iu°° ~ uj-k\gk-
k>0 k<j/2

The recurrence distribution generating the renewal sequence {UJ/UQ} has a finite
moment of order i>, whence Proposition 2 of Lindvall [6] yields Uoc —Uj = o(j~u)
and since J^ffj = 1 w e conclude that the above sum is o(j~").

The remaining component is

3/2<k<3

3

\ut-ui-i\ Yi

The first double sum on the right is at most

C%/2]-&) E l«i-«»-il = °(T")

since the series converges. The second double sum is

00 and 0.

In view of these, the dominated convergence theorem can be used to show that
the above sum is o(j~"), and the proof is complete.
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3.3. In this subsection we assume M = 1 and begin by finding some alternative
expressions for G(s,X). Let

= f dx/h{x)
Jo

be the generating function of the invariant measure (TT, : j > 1) which satisfies
•Kj = X)t>i KiQijit) f° r 3 ^ 1- The generating function form of these equations is

(3.3.1) *•(»)= 7r(,4t(«))-7r(Af).

Letting s = AT in this equation yields 7r(J4(+T) = 7r(>lt) + K{AT) which has the
solution

(3.3.2) w(At) = £<

for some positive constant <5. However, TT'(O) = 1/^(0) = (apo)~\ where po =
/ (u) , and (3.3.2) yields

(3.3.3) 6 = ^*'(At) = h(At)n'(At)\t=o = apo/apo = 1.

The function 7r() has an inverse "/(•) defined on [0, oo] and satisfying ^(0) = 0
and 7(00) = 1. Equations (3.3.1)-(3.3.3) yield

whence

(3.3.4) G(s, A) =

This representation has a number of alternative forms. For example, letting
t = 7T (i>) gives

G{s

where V(s) = exp(-A7r(s)). Alternatively, differentiation of (3.3.4) with respect
to s yields

G'{s, A) = 7r'(s) /" e-AS'(< + T(S) ) dt.
Jo

However, 1 = 7'(X)TT'(7(X)) = ^(x)/h(^{x)) and hence

G'{s, A) = TT'(S) f°° e-xth{i{t + jr (a))) A.

Now let y = 7(4 +TT(S)), that is, < = TT(J/) — TT(S). The integration interval R+ is
mapped into [s, 1] and dt — dy/h(y). Thus we obtain our principal representation

(3.3.5) G'(s, A) = ir'(s) f exp[-A(7r(tf) - *(s))] dy.
Js
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The integral in this expression can be "evaluated" in the case of the critical
birth-death process where h(s) = a(l — s ) 2 / 2 and TT(S) = 2 /a ( l — s). If we let
c = 2A/o = 2 ( m - l ) and make the change of variables^ = ( l - y ) ~ 1 - ( l - s ) ~ 1 the
resulting integral can be evaluated in terms of the exponential integral E\ (x) =
f£° e~v dv/v as

The integral giving this expression can be expressed as a power series in s which
yields

dv

/o \*--rv/ (1 + u)2

This integral arose as an approximant in the discrete time case and its asymptotic
behaviour was determined using a naive version of Laplace's method. An integral
similar to this arises in the general case and we apply Laplace's method more
carefully. First we state the main result.

We will assume that H{s) is holomorphic at s = 1. Let gn = H^n\l)/n\ and
<-yn = agn. It is known that under this condition TT(-) can be expressed in the
following form

(3.3.6) TT(S) = ^ [ ( l - s ) " 1 - (73/72) log(l - s) + i/>{s)]

where if>{s) is holomorphic at s = 1; see [5, equation (36)]. Let

c — (m- l)/g2 — u/(l - u)g2 and B = Xgz/gl = gzuj{\ - u)g%.

The function J / ( s ) = exp(c^(s)) is holomorphic at s — 1 and non-zero in its
region of holomorphy. The same is true for 38{s) — l/sf(s). With this notation
we state

THEOREM 3 . 3 . 1 . Let M - 1 and H(s) be holomorphic at s - 1. Then as

j —» 00

(3.37) <t>{j)~MjB/2~3/4 exp(-2(cj)1 / 2 )

where
M _ 1/2 B/2+5/4 ,

REMARK. The form of M suggests that the analagous discrete time result is
much more complicated than envisaged in [4].

For expository purposes it is convenient to consider the special case of (3.3.6)
where rj){s) is a constant function, the value of which is irrelevant. This choice
gives

J 92 + 33(1 -s)
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which is the p.g.f. of a critical offspring distribution having geometric weights on
{ 2 , 3 , . . . }. Indeed if a = 33/(92 + 33) then

h0 = g2a, ho + hi = l - g\a and h3 = ho{l - a) V ~ 2 (j > 2).

The case 93 = 0 arises when we start with a linear birth and death process, that
is, /(s) = q+ps2.

Substitution into (3.3.5) gives

G'(s, A) = TT'(S) J\exp(-c((l - y)'1 - (1 - a)"1))] (l^j dy.

The substitution a; = (1 — j / ) " 1 — (1 — s)~l reduces this to

(3.3.8) G'(s,\)=12
1[l + (g3/g2)(l-s)) f°° e~cx(l + x(l - s))"3"2 dx

Jo
and the binomial theorem applied to the integrand yields the "explicit" expres-
sion

(3.3..9)

where

and

(3.3..10) i,B,c)= f
Jo

1(3

We obtain a more compact expression for Fj as follows. The integral can be
expressed in terms of a confluent hypergeometric function:

I(j,B,c)=j\U(j + l,-B,c),

see [1, equation (13.1.3)]. Kummer's transformation (op. cit. (13.1.29)) applied
to this hypergeometric function is

U(j + 1, -B,c) = eB+1U(j + B + 2,B + 2,c)

and this yields

(3.3.11) I{j, B, c) = (cB+1j\/T(j + B + 2))i{j + B+l,B,c)

where

i(j,B,c)= [ e-CIaJ(l+ !)*-•» di.
Jo

In particular, we obtain

Fj = {cB+1/T{B + 2))i{j + B + 1, B,c).

The next theorem gives asymptotic results for i(j,B,c).
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THEOREM 3.3.2. Asj-+oo,

(o.o.l2) i(j,H,c) ~ it e c j exp(—2(cj) )

and ifA>0,

(3.3.13) i{j + A, B, c)/i(j, B, c) - 1.

PROOF. Let 0 = jxl2 and make the substitution v = 9/(1 + x) to obtain the
representation

i(j, B, c) = 6B+1ec f e~ce'v{l - v/eyv~B-2 dv.
Jo

Now

whence

(1 - y)1 = exp < exp[-j(y + y2/2)}

/•OO

i(j, B, c) < 0B+1ec / v~B~2 exp[-(c0/v + Ov + v2/2)} dv
Jo

= 9B+1ec f q(v)e-ep{v) dv,
Jo

where

p(v) = c/v + v and q(v) — v~B~2 exp(-v2/2).

Obviously p'(v) = —c/v2 + 1 has exactly one zero in [0, oo), namely v = c1/2,
and as x —> 0 we have

p(c1/2 + x) - p(c1/2) = c/(c1/2 +x)- c1 / 2 + x ~ i 2 c~ 1 / 2

and

It is evident that all the conditions for Laplace's method adumbrated by Olver
[7, page 81] are satisfied and in his notation we have

., _ 9 p _ ,,-1/2 \ _ 1 nnrI r) — r-B/2-l -c/2

It follows that (i(j, B,c)) is bounded above by a sequence having the asymptoic
form given in (3.3.12).

We now obtain a family of lower bounds for (i(j, B, c)) which are amenable to
Laplace's method as follows. For 0 < y < 1 let R(y) = J2n>3 Vnln an(^ observe
that as 0 —» oo,

jR(0/v) = ̂ 2 vn/n0n~2 -> 0.
n>3
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Let A be a fixed constant exceeding 2c1/2 and observe that if 9 > A then with
RA(V) = ^ n > 3 t ) n / n i n " 2 we have

/•2c"2

i(j\B,c) > 0B+1ec / Q(v)exp(-0p(v))dv
Jo

where

Laplace's method can be applied as above to the lower bound with the sole
change that now

We conclude that

< lunMx-We-'Wt+Wj-W-V'e^iti, B,c)
3->oo

< l imsup() < 1.

Now let A —> oo and observe that R^c1/2) —* 0. This completes the proof of
(3.3.12).

Equation (3.3.13) follows from (3.3.12) and

exp[2c1/2((j + A)1'2 -j1'2)} =exp[2^c1/2/((i + ^ ) 1 / 2 + j1'2)) - 1.

It follows from Theorem 3.3.2 that

(3.3.14) Fj ~ [•K1l2ec'2cB/2+1'4/T{B + 2)] j B / 2 + 1 / 4 exp(-2(cj)1/2)
and in addition we infer from (3.3.13) that Fj-x/Fj-2 —> 1. It follows that the
first term on the right-hand side of (3.3.9) dominates the second term and hence
(3.1.1), (3.3.9) and the above results yield the assertion of Theorem 3.3.1 for this
special case, that is, (3.3.7) holds with

M = n^im - l)ec'2cBl2+llilg2T{B + 2).

For the birth and death case we have B — 0.
We now consider the general case (3.3.6) and try to follow the above devel-

opment. The steps leading to (3.3.8) now yield

G'(s, A) = 72~1

The main task in the proof is to obtain the asymptotic behaviour of the coefficient
of sJ in the power series expansion of the integral. We anticipate that this
coefficient, Ij, is proportional to ^j = j a exp(—2(cj)1/2) for some a. Writing
s/{s) = X)aisJ> holomorphy of s/(-) implies that |o,| = O(p>) for some p < 1.
The leading contribution to jGj(X) will arise from the convolution of (aj) and
(Ij). The behaviour of this convolution is given in the next lemma, in which we
assume the result anticipated above.
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L E M M A 3 . 3 . 1 .

t = 0

PROOF. Let 6(j) = Kj1/2 where K > 0 is a constant. For all sufficiently
large j we can replace Ij by 7 j . Dealing first with small subscripts we observe
that (Ij) is a bounded sequence whence

H])<i<3

By choosing K so large that / H o g / ) " 1 > 2c1/2 we can ensure that ps<-J^/"i: —* 0.
Next, observe that

sup (7i-i/7>) = M,- exppc^V ' 3 - 0' ~ «(i))1/2)]
<«0)

where A/, = 1 if a > 0 and M,- = (1 - S(j)/j)a if a < 0. In either case
supj Mj < oo. Since the above exponent —> 0 as j —• oo we see that the
domainated convergence theorem can be applied to give T " 1 J2i<s(j) ail]-t ~*
Yl<ii, and the proof is complete.

Let
t(x,s) = (l-s)/(l + x-xs).

The function 38(\ — t(x,s)) is a holomorphic function of s in a disc centered
at the origin and radius exceeding unity and hence it has a power series rep-
resentation, 5TJ>0 /Cj(x)sJ say. Using the binomial expansion (1 - z)~B~2 =

z^ t h e coefficient, Ij, of 8* in the integral of (3.3.15) is

(3.3.16) J2 ( i ) f

The contribution of the i = j term is

and this differs from Fj only by the presence of 38(^ in the integrand. A
consideration of the proof of Theorem 3.3.2 shows that the main contribution to
Ij arises from the region where x is large and it is apparent that as j —> oo,

(3.3.17)

Let I j
Ij. The next lemma gives an explicit expression for Kj(x).

Let Ij — Ij — Ij . Our next task is to obtain a compact representation for
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LEMMA 3.3.2. LetBi=&W(l). Then for j > 1,

where

(3.3.18) di:i• = (il)-1 (3. ~_

PROOF. Observe that dt(x, s)/ds = —(1 + x - xs)~2 and

— tl'r e}\ (1 J_ T Tsl'^^'h _ tl'r e\\

By using these to calculate the second and third derivative it is a reasonable
guess that

3

(f)3 /rte3} C$ (\ — tl'r o ^ — \ i J ~ * f 1 - L T _ T S 1 " J " V > • ' S ' W f l — t(r e ^

where cij = j ! and CJJ = 1. This expansion can be verified by induction and the
proof yields the recursion

Cij+i = (j + i)cij + a - u (2<i< j).

The form of the asserted formula for Kj(x) follows by setting s = 0 in the
above expansion and defining d{j = (j'0~lctj- ^ m s gives t n e recursion

dij+i = ((j + i)dij + di-lti)/(j + 1),

with boundary conditions d\j — 1 and djj = 1/j!, and the validity of (3.3.18)
can be verified by induction on j .

Substituting the results of Lemma 3.3.2 and (3.3.16), reversing the order of
summation and using the notation of (3.3.10) yields

(3.3.19) 7* =

n=l

where

3 - n / i _ D i i \ / • _ _

t—1 \ i I \ n — 1
i=o v ' v

We compute this quantity in the next lemma.

LEMMA 3.3.3.
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PROOF. By using the decomposition

it is easily seen that the assertion is t rue for n = 1. Using the identities

OK':.1) !!{)•
we obtain

„(,,„+ !,

= — < r ( j - 1, n, B) - ^ ^ a ( j - 2, n, B + 1).n n
The assertion can now be proved using this identity and an induction argument.

Let F(j,n) = <r(j,n,B)I(j -n,B + 2n,c), whence F{j,0) = F}. The trans-
formation (3.3.11) yields

l f , B + 2)
iV + + B + 12 + B )

and Theorem 3.3.2 and the asymptotic relation r(z + a)/T(x + /?) ~ xa~0

(x —» oo) yields

as j —» co for each fixed n. Then provided it is permissable to take a limit inside
the sum representing Ij/Fj, see (3.3.19), we will obtain

(3.3.20) ^ / • / f , ^ ;

Without going into complete detail, the validity of this interchange can be seen
as follows.

As remarked above, the Bn tend to zero geometrically fast. Choose / so large
that \Bn\ < 6n for some 6 < 1 whenever n > j ' . Thus the sum denning Ij/Fj
can be split into two parts, a sum over {1 , . . . ,j'}, and the complimentary sum
which is bounded in modulus by

n = l
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It suffices to show that F(j,n)/Fj = O(Kn) for some positive number K and
that the bound is independent of j . This is done using the bound

i{j + n + B + l,2n + B,c)

< e
ce2n+B+1 / v-

2n-B~2 exp[-0(c/v + v)- v2/2] dv,
Jo

where 6 = (j + n + B + 1)1/2, obtained from the proof of Theorem 3.3.2.
The required uniform bounds are obtained by splitting the range of integration
into three parts, namely, Jx = [O,^/ 2 /^ + e)],J2 = [c1/2/(l - e),0] and
[0,0]\(Ji U J2). The main contribution arises from the last components and
modifications to the details of applying Laplace's method to this integral will
give the required bound.

The change of variable z = cxl2v~x — 1 shows that the contribution of J\,
i\ C/in) saYi satisfies

<cn+B/2 r { l + )

-l)2n+B
+ £-l)

and hence for some K > 0,

ii(j,n) = O{KnT{n + B + 1) exp(-2(cj)1/2)

where, here and below, the implicit constant is independent of j and n. It follows
that the corresponding contribution to F(j,n)/Fj is

B / a _ 1 / 4

which more than adequately fulfills our requirements. The contribution of J2 is
handled in a similar manner. Equation (3.3.20) now follows by letting j —> 00
and then / —> 00.

We have shown that /, is asymptotically proportional to

as required for Lemma 3.3.1. It is also apparent now that the contributions to
jGj(X) arising from the second and third terms within the square brackets in
(3.3.15) are negligible compared to the first term. It follows that

and Theorem 3.3.1 now follows from (3.1.1), (3.3.14), (3.3.17) and (3.3.20).
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