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Abstract

The best known results about the distribution of prime numbers in short intervals imply that all
intervals [n, n + H ] ⊂ [N , 2N ] contain the expected number of primes for all H ≥ N 7/12, and almost
all intervals [n, n + H ] ⊂ [N , 2N ] contain the expected number of primes for all H ≥ N 1/6. As a
natural generalization, this paper is concerned with the distribution of prime numbers in intervals of
type [nα, nα + H ] with α > 1.
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1. Introduction

Let ψ(x)=
∑

n≤x 3(n), where 3(n) is the von Mangoldt function. We consider the
asymptotic formula

ψ(x + H)− ψ(x)∼ H as x→∞, (1)

which is related to the number of primes in the interval (x, x + H ]. The prime number
theorem implies that (1) holds with H � x . An interval (x, x + H ] with H = o(x) is
called a short interval. The best known unconditional result about the distribution
of primes in short intervals is due to Huxley [8] and asserts that (1) holds for all
H ≥ x7/12+ε. This was slightly improved by Heath-Brown in [7] to H ≥ x7/12−o(1).
Under the assumption of the Riemann hypothesis, Selberg [11] proved that (1) holds
for all H ≥ x1/2 f (x) log x where f (x)→∞ arbitrarily slowly. These results imply
that all intervals [n, n + H ] ⊂ [N , 2N ] contain the expected number of primes for
all H ≥ N 7/12 and, assuming the Riemann hypothesis, for all H ≥ N 1/2 f (N ) log N
where f (N )→∞ arbitrarily slowly.
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We can relax our conditions and investigate if (1) holds for ‘almost all’ x .
By this, we mean that the measure of x ∈ [X, 2X ] for which (1) does not hold
is o(X). Huxley’s zero density estimate [8], in conjunction with the method of
Selberg [11], shows that (1) holds for almost all x with H ≥ x1/6+ε, slightly improved
by Zaccagnini in [14] to H ≥ x1/6−o(1). Under the assumption of the Riemann
hypothesis, Selberg [11] proved that (1) holds for almost all x with H ≥ f (x) log2x ,
where f (x)→∞ arbitrarily slowly. These results imply that almost all intervals
[n, n + H ] ⊂ [N , 2N ] contain the expected number of primes for all H ≥ N 1/6

and, assuming the Riemann hypothesis, for all H ≥ f (N ) log2 N with f (N )→∞
arbitrarily slowly.

As a natural generalization of the above results, this paper is concerned with the
distribution of prime numbers in intervals [nα, nα + H ], with fixed α > 1. Our main
unconditional result is as follows.

THEOREM 1. Let ε > 0 and α > 1. Then almost all intervals [nα, nα + H ] ⊂
[N , 2N ] contain the expected number of primes for all H ≥ N c(α)+ε, where

c(α)=



1
6

if 1< α ≤
6
5
,

11α − 10
16α

if
6
5
< α ≤

6
5
+1,

1− sup
(k,l)

5(1+ α − l + k)

α(5k + 12)
if α ≥ 4,

with 1 suitable positive constant and (k, l) running over the exponent pairs.

For the sake of simplicity, we will explicitly work out the value of the function c(α)
only for the extreme and more interesting values of α. However, it will be clear from
the proof that the same method enables one to obtain the explicit values of the function
c(α) in the whole range α > 1. As one might expect, we get an increasing function
c(α) such that c(1)= 1/6, c(α) < 7/12 for every α and

lim
α→+∞

c(α)= 7
12 .

To bound some sums which arise in our argument we employ the counting functions
N (σ, T ) and N∗(σ, T ). The former is defined as the number of zeros ρ = β + iγ
of Riemann zeta function which satisfy σ ≤ β ≤ 1 and |γ | ≤ T , while N∗(σ, T ) is
defined as the number of ordered sets of zeros ρ j = β j + iγ j (1≤ j ≤ 4), each counted
by N (σ, T ), for which |γ1 + γ2 − γ3 − γ4| ≤ 1. If we make the heuristic assumption
that

N∗(σ, T )�
N (σ, T )4

T
, (2)

as in Bazzanella and Perelli [2], then we can simplify and improve Theorem 1 for large
values of α as follows.
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THEOREM 2. Assume (2), suppose that ε > 0 and α ≥ 4. Then almost all intervals
[nα, nα + H ] ⊂ [N , 2N ] contain the expected number of primes for all H ≥ N c(α)+ε

and

c(α)=
7

12
−

5
12α

.

We conclude by presenting our results under the assumption of more standard
hypotheses.

THEOREM 3. Let α > 1, ε > 0 and assume the Lindelöf hypothesis. Then almost
all intervals [nα, nα + H ] ⊂ [N , 2N ] contain the expected number of primes for all
H ≥ N c(α)+ε and

c(α)=
1
2

(
1−

1
α

)
.

THEOREM 4. Let α > 1 and assume the Riemann hypothesis. Then almost all
intervals [nα, nα + H ] ⊂ [N , 2N ] contain the expected number of primes for all
H ≥ N c(α) f (N )log2 N with f (N )→∞ arbitrarily slowly and

c(α)=
1
2

(
1−

1
α

)
.

As one might expect, under the assumption of the Lindelöf hypothesis or the
Riemann hypothesis, we get an increasing function c(α) such that c(1)= 0, c(α) <
1/2 for every α and

lim
α→+∞

c(α)= 1
2 .

The main tools of the proofs are the Kusmin–Landau estimate for an exponential
sum together with the van der Corput’s method of exponent pairs, see [4], and a result
about the structure of the exceptional set for the distribution of primes in short intervals
due to Bazzanella and Perelli, see [2] and [1].

2. Definitions and basic lemmas

Our starting point is the definition of the exceptional set for the number of primes
in short intervals. Let | · | denote the modulus of a complex number or the Lebesgue
measure of an infinite set of real numbers or the cardinality of a finite set. Let X be a
large positive number, δ > 0 and define

Eδ(X, H)= {X ≤ x ≤ 2X : |ψ(x + H(x))− ψ(x)− H(x)| ≥ δH(x)}.

It is clear that (1) holds if and only if for every δ > 0 there exists X0(δ) such that
Eδ(X, H)= ∅ for all X ≥ X0(δ). Hence for small δ > 0, X tending to ∞, the set
Eδ(X, H) contains the exceptions, if any, to the expected asymptotic formula for the
number of primes in short intervals. We will consider increasing functions H(x) of
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the form H(x)= xθ+ε(x), with some 0< θ < 1 and a differentiable function ε(x) such
that |ε(x)| is decreasing, ε(x)= o(1) and

ε(x + y)= ε(x)+ O

(
|y|

x log x

)
. (3)

A function satisfying these requirements will be called of type θ . It is easy to see that
functions like xθ logc x , with c a real constant, and similar functions, are of type θ ,
and that for every function H(x) of type θ we have H(2x)� H(x).

REMARK. In a preceding paper, the author and Perelli [2] defined in a slightly
different way the set of functions H(x) of type θ , and set

ε(x + y)= ε(x)+ O

(
|y|

x

)
instead of (3). We remark that with this weaker condition we do not have H(2x)
� H(x) as claimed.

Our first lemma is concerned with the structure of the exceptional set above.

LEMMA 1. Let 0< θ < 1, let H(x) be of type θ , let X be sufficiently large
depending on the function H(x) and let 0< δ′ < δ with δ − δ′ ≥ exp(−

√
log X). If

x0 ∈ Eδ(X, H) then Eδ′(X, H) contains the interval [x0 − cH(X), x0 + cH(X)] ∩
[X, 2X ], where c = (δ − δ′)θ/5.

PROOF. We will always assume that x and X are sufficiently large as prescribed by
the various statements, and ε > 0 is arbitrarily small and not necessarily the same at
each occurrence.

We first observe from the definition of a function of type θ that if y = O(xα+ε)with
some 0< α < 1, then

H(x + y)= H(x)+ O(xθ+α−1+ε) (4)

for every ε > 0.
From the Brun–Titchmarsh theorem (see Montgomery and Vaughan [10]), we have

that

ψ(x + y)− ψ(x)≤
21
10

y
log x

log y
(5)

for all 10≤ y ≤ x . From (5) we easily obtain that

ψ(x + y)− ψ(x)≤
9

4α
cY (6)

for all X ≤ x ≤ 3X and 0≤ y ≤ cY , where 0< α < 1, Xα−ε ≤ Y ≤ X and

α

5
exp(−

√
log X)≤ c ≤ 1.
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Let H(x) be of type θ , x0 ∈ Eδ(X, H),

x ∈ [x0 − cH(X), x0 + cH(X)] ∩ [X, 2X ],

where c satisfies the above restrictions, and

1(x, H)= ψ(x + H(x))− ψ(x)− H(x).

We have

|1(x, H)| = |1(x0, H)+1(x, H)−1(x0, H)|

≥ |1(x0, H)| − |ψ(x + H(x))− ψ(x0 + H(x0))|

− |ψ(x)− ψ(x0)| − |H(x)− H(x0)|.

But from (4) with α = θ we get

H(x0)= H(x)+ O(X2θ−1+ε),

hence from (6) with α = θ we obtain

|1(x, H)| ≥ δH(x)−
9

2θ
cH(X)+ O(X2θ−1+ε)≥ δH(x)−

5
θ

cH(X)≥ δ′H(x)

by choosing c = (δ − δ′)θ/5, since H(x) is increasing. Hence x ∈ Eδ′(X, H) and the
lemma follows. 2

Lemma 1 is part (i) of Theorem 1 of Bazzanella and Perelli, see [2], and essentially
says that if we have a single exception in Eδ(X, H), with a fixed δ, then we necessarily
have an interval of exceptions in Eδ′(X, H), with δ′ a little smaller than δ.

We now present the necessary results about the conditional and unconditional
bounds for the exceptional set for the number of primes in short intervals. With this in
mind, we consider H(x) of type θ and define the functions

µδ(θ)= inf{ξ ≥ 0 : |Eδ(X, H)| �δ X ξ }

and

µ(θ)= sup
δ>0

µδ(θ). (7)

Our results are as follows.

LEMMA 2. There exists a constant η > 0 such that

µ(θ)≤
(11− 6θ)

10
if

1
6
< θ ≤

1
6
+ η.
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PROOF. In order to prove Lemma 2 we use the classical explicit formula (see
Davenport [3, Ch. 17]) to write

ψ(x + H(x))− ψ(x)− H(x)=−
∑
|γ |≤T

xρcρ(x)+ O

(
X log2 X

T

)
, (8)

uniformly for all X ≤ x ≤ 2X , where 10≤ T ≤ X , ρ = β + iγ runs over the nontrivial
zeros of ζ(s),

cρ(x)=
(1+ H(x)/x)ρ − 1

ρ
and cρ(x)�min

(
H(X)

X
,

1
|γ |

)
. (9)

Let H(x) be of type θ . Choose

T =
X

H(X)
log3 X (10)

and use the theorem of Montgomery (see Theorem 11.3 of Ivić [9]) which asserts that

N (σ, T )� T 1600(1−σ)3/2 log15T (11)

for every 152/155≤ σ ≤ 1. From (9)–(11) and Vinogradov’s zero-free region (see
Titchmarsh [12, Ch. 6]) we deduce by a standard argument that there exists a constant
d > 0 such that∑

|γ |≤T
β 6∈I

xρcρ(x)�
H(X)

X
log X max

σ 6∈I
Xσ N (σ, T )�

H(X)

log X
, (12)

where I = [1/2, 1− d], uniformly for all X ≤ x ≤ 2X .
Again by a standard argument, from (9), (10) and the Ingham–Huxley density

estimates which assert that for every ε > 0 we have

N (σ, T )�

T 3(1−σ)/(2−σ)+ε, 1
2 ≤ σ ≤

3
4 ,

T 3(1−σ)/(3σ−1)+ε, 3
4 ≤ σ ≤ 1,

(13)

we obtain∫ 2X

X

∣∣∣ ∑
|γ |≤T
β∈I

xρcρ(x)
∣∣∣2 dx � X2θ−1+ε max

σ∈I
X2σ N (σ, T )� X (11+14θ)/10+ε,

for sufficiently small η > 0 and 1/6< θ ≤ 1/6+ η. Hence, for every ε > 0 and δ > 0,

|Eδ(X, H)| � X (11−6θ)/10+ε,

and so the lemma is proved. 2
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We observe that we can take d = 2.5 · 10−7 and then η = 3.125 · 10−7. The value of
η could be somewhat increased by using an optimized version of density estimate (11).

LEMMA 3. Assume (2). Then

µ(θ)≤ 7
5 (1− θ) if 23

48 < θ <
7
12 .

PROOF. Let H(x) be of type θ and

T =
X

H(X)
log3 X.

Following the method of Heath-Brown [5], we can write∫ 2X

X
|ψ(x + H(x))− ψ(x)− H(x)+6|4 dx � X4θ−3+ε max

1/2≤σ≤1
X4σ N∗(σ, T ),

with 6 = o(H(X)). Assuming (2) and using the Ingham–Huxley zero density
estimates, the above estimate implies that

|Eδ(X, H)| � X−3+ε max
1/2≤σ≤1

X4σ N∗(σ, T )� X−3+ε max
1/2≤σ≤1

X4σ N (σ, T )4

T

� X θ−4+ε
(

max
1/2≤σ≤3/4

X4σ T 12(1−σ)/(2−σ)

+ max
3/4≤σ≤1

X4σ T 12(1−σ)/(3σ−1)
)
,

for every δ > 0 and ε > 0. With 23/48< θ < 7/12 the maximum is attained at
σ = 3/4, so

|Eδ(X, H)| � X
7
5 (1−θ)+ε,

for every δ > 0 and ε > 0. This completes the proof of the lemma. 2

LEMMA 4. Assume the Lindelöf hypothesis, let ε > 0 and δ > 0. For every H ≥ 1,

|Eδ(X, H)| �
X1+ε

H(X)
.

Lemma 4 may be proved along the same lines as Yu [13, Lemma B].
To deal with the problem of estimating the exceptional set for the distribution of

primes in intervals [nα, nα + H ] ⊂ [N , 2N ], suppose that H(x) is of type θ , let

1(n, H, α)= ψ(nα + H(nα))− ψ(nα)− H(nα),

and define the set

Aδ(N , H, α)= {N 1/α
≤ n ≤ (2N )1/α : |1(n, H, α)| ≥ δH(nα)},
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that contains the exceptions, if any, to the expected asymptotic formula for the number
of primes in intervals of type [nα, nα + H(nα)] ⊂ [N , 2N ]. Our last lemmas allow
us to link |Aδ(N , H, α)| to the exceptional set for the distribution of primes in short
intervals.

LEMMA 5. Let H(x) be of type θ , with 1/6< θ < 7/12. Then for every δ > 0 we have
the following results:

(i)

|Aδ(N , H, α)| = o(N 1/α) if 1< α ≤ 6
5 .

(ii)

|Aδ(N , H, α)| �
|Eδ/2(N , H)| f (N ) log2 N

H(N )
+ o(N 1/α) if α >

6
5
,

with f (N )→∞ arbitrarily slowly.

PROOF. Recalling the explicit formula for ψ(x) and putting

T =
N

H(N )
f (N ) log2 N ,

where f (N )→∞ arbitrarily slowly, we have

ψ(nα + H(nα))− ψ(nα)− H(nα) = −
∑
|γ |<T

nαρ cρ(n)+ o(H(N ))

= −

∑
|γ |<T
β∈I

nαρcρ(n)+ o(H(N )),

where d and I = [1/2, 1− d] are defined as in the proof of Lemma 2,

cρ(n)=
1− (1+ H(nα)n−α)ρ

ρ
and cρ(n)�min

(
H(N )

N
,

1
|γ |

)
.

Further we divide the interval I into O(log N ) subintervals I j of the form

I j =

[
j − 1
log N

,
j

log N

]
∩ I.

On applying Cauchy’s inequality we find∣∣∣∣ ∑
|γ |<T
β∈I

nαρcρ(n)

∣∣∣∣2� log N
∑

j

∣∣∣∣ ∑
|γ |<T
β∈I j

nαρcρ(n)

∣∣∣∣2,
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and so we get

H(N )2|Aδ(N , H, α)| �
∑

n∈Aδ(N ,H,α)

|ψ(nα+H(nα))− ψ(nα)−H(nα)+o(H(N ))|2

≤

∑
N 1/α≤n≤(2N )1/α

∣∣∣∣ ∑
|γ |<T
β∈I

nαρ cρ(n)

∣∣∣∣2

� log N
∑

N 1/α≤n≤(2N )1/α

∑
j

∣∣∣∣ ∑
|γ |<T
β∈I j

nαρcρ(n)

∣∣∣∣2.
Squaring and using partial summation we then have

|Aδ(N , H, α)| �
log N

H(N )2
∑

N 1/α≤n≤(2N )1/α

∑
j

∑
|γ |<T
β∈I j

∑
|γ ′|<T
β ′∈I j

nα(ρ+ρ
′)cρ(n)cρ′(n)

�
log N

N 2

∑
j

N 2 j/log N
∑
|γ |<T
β∈I j

∑
|γ ′|<T
β ′∈I j

|S|

where

S =
∑

N 1/α≤n≤(N1)
1/α

nαi(γ−γ ′)
=

∑
N 1/α≤n≤(N1)

1/α

e(g(n)),

e(x)= e2π i x , g(x)=
α(γ − γ ′)

2π
log x

and N ≤ N1 ≤ 2N .
Let

H(N )≥
2α
π

N 1−1/α f (N ) log2 N , (14)

with f (N )→∞ arbitrarily slowly. Using the theorem of Kusmin–Landau (see
Graham and Kolesnik [4, Theorem 2.1]) and the trivial bound, one finds that

|S| �
N 1/α

|γ − γ ′|
and |S| � N 1/α,

and hence

|Aδ(N , H, α)| �
log N

N 2

∑
j

N 2 j/log N
∑
|γ |<T
β∈I j

∑
|γ ′|<T

β ′∈I j , |γ−γ
′
|≤1

N 1/α

+
log N

N 2

∑
j

N 2 j/log N
∑
|γ |<T
β∈I j

∑
|γ ′|<T

β ′∈I j ,|γ−γ
′
|>1

N 1/α

|γ − γ ′|
,
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which implies

|Aδ(N , H, α)| �
N 1/α

N 2 log3 N

(∑
j

∑
|γ |<T
β∈I j

N 2 j/log N
)
. (15)

For every 1< α ≤ 6/5 and H(x) of type θ with 1/6< θ < 7/12, and for every
α > 6/5 and H(x) satisfying (14), it follows by a standard argument and the Ingham–
Huxley zero density estimates that∑

j

∑
|γ |<T
β∈I j

N 2 j/log N
�max

σ∈I
N 2σ N (σ, T )�

N 2

logA N
, (16)

for every A > 0. From (15) and (16), it follows that

|Aδ(N , H, α)| = o(N 1/α)

for every 1< α ≤ 6/5 and for every α > 6/5 with

H(N )≥
2α
π

N 1−1/α f (N ) log2 N .

Finally, let α > 6/5 and

H(N ) <
2α
π

N 1−1/α f (N ) log2 N .

To deal with this small H we observe that if n ∈ Aδ(N , H, α) then N ≤ nα ≤ 2N and

|ψ(nα + H(nα))− ψ(nα)− H(nα)| ≥ δH(nα).

Thus nα ∈ Eδ(N , H). By Lemma 1 we find a constant c > 0 such that

[nα − cH(N ), nα + cH(N )] ∩ [N , 2N ] ⊂ Eδ/2(N , H).

We now consider m ∈ Aδ(N , H, α), with |m − n| ≥ (2/π) f (N )log2 N and similarly
we get mα

∈ Eδ(N , H) and then

[mα
− cH(N ), mα

+ cH(N )] ∩ [N , 2N ] ⊂ Eδ/2(N , H),

again by Lemma 1. Since

|mα
− nα| ≥ |m − n|αN 1−1/α

≥
2α
π

N 1−1/α f (N ) log2 N > H(N ),

we may deduce that

[mα
− cH(N ), mα

+ cH(N )] ∩ [nα − cH(N ), nα + cH(N )] = ∅,

for c suitable small. This leads to the bound

|Aδ(N , H, α)| �
|Eδ/2(N , H)| f (N ) log2 N

H(N )
,

for every δ > 0, which proves the lemma. 2
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LEMMA 6. Assume the Lindelöf hypothesis. Let H(x) be of type θ , with 0< θ < 1/2.
Then, for every δ > 0 and α > 1,

|Aδ(N , H, α)| �
|Eδ/2(N , H)| f (N ) log2 N

H(N )
+ o(N 1/α)

with f (N )→∞ arbitrarily slowly.

PROOF. We follow the proof of the Lemma 5 until the equation (15). Under the
assumption of the Lindelöf hypothesis, which states that the Riemann zeta function
satisfies

ζ(σ + i t)� tη (σ ≥ 1
2 , t ≥ 2),

for any η > 0, we have

N (σ, T )�

{
T (2+4η)(1−σ)(log T )M , 0≤ σ ≤ 1,

T 3η(1−σ)/(σ−3/4)(log T )M , 3
4 < σ ≤ 1,

(17)

with T ≥ 2 and M suitable absolute constant (see Lemma 3 of Yu [13]). From (17) it
follows that the bound (16) holds for every

H(N )≥
2α
π

N 1−1/α f (N ) log2 N

and α > 1. We can conclude the proof by dealing with smaller values of H in the same
way as in the proof of Lemma 5. 2

3. Proof of the Theorem 1

By the case (i) of Lemma 5, we can take

c(α)= 1
6 if 1< α ≤ 6

5 .

For all α > 6/5, by (ii) of Lemma 5,

|Aδ(N , H, α)| �
|Eδ/2(N , H)| f (N ) log2 N

H(N )
+ o(N 1/α),

for every H(x) of type θ , with 1/6< θ < 7/12. Furthermore, by Lemma 2 there exists
η > 0 such that

|Eδ/2(N , H)| � N (11−6θ)/10+ε,

for every
1
6 < θ ≤

1
6 + η,

and every H(x) of type θ . These estimates together yield

|Aδ(N , H, α)| � N (11−16θ)/10+ε
+ o(N 1/α),
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and
|Aδ(N , H, α)| = o(N 1/α),

for every

θ >
11α − 10

16α
and sufficiently small α > 6/5.

It follows that

c(α)=
11α − 10

16α
if

6
5
< α ≤

6
5
+1,

for suitable positive constant 1. From the explicit value for η available from the
Lemma 2, we can state that an admissible value is 1= 7.2 · 10−7.

To estimate c(α) for large values of α we need to follow a quite different method.
In a similar way as in the proof of Lemma 5, we let

T =
N

H(N )
log3 N

and write

ψ(nα + H(nα))− ψ(nα)− H(nα)=−
∑
|γ |<T
β∈I

nαρcρ(n)+ o(H(N )),

where I = [1/2, 1− d], for a suitable positive constant d . Next we divide the interval
I into O(log N ) subintervals I j of the form

I j =

[
j − 1
log N

,
j

log N

]
∩ I.

Using Hölder’s inequality, we get∣∣∣∣ ∑
|γ |<T
β∈I

nαρcρ(n)

∣∣∣∣4� log3 N
∑

j

∣∣∣∣ ∑
|γ |<T
β∈I j

nαρcρ(n)

∣∣∣∣4

and then we can deduce

|Aδ(N , H, α)| �
log3 N

H(N )4
∑

N 1/α≤n≤(2N )1/α

∑
j

∣∣∣∣ ∑
|γ |<T
β∈I j

nαρcρ(n)

∣∣∣∣4

�
log3 N

H(N )4
∑

N 1/α≤n≤(2N )1/α

∑
j

∑
|γ |<T
β∈I j

∑
|γ ′|<T
β ′∈I j

∑
|γ ′′|<T
β ′′∈I j

∑
|γ ′′′|<T
β ′′′∈I j

nα(ρ+ρ
′
+ρ′′+ρ′′′)Cn

�
log3 N

N 4

∑
j

N 4 j/log N
∑
|γ |<T
β∈I j

∑
|γ ′|<T
β ′∈I j

∑
|γ ′′|<T
β ′′∈I j

∑
|γ ′′′|<T
β ′′′∈I j

|S|

= V1 + V2,
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where

Cn = cρ(n)cρ′(n)cρ′′(n)cρ′′′(n),

S =
∑

N 1/α≤n≤(N1)
1/α

e(g(n)), g(x)=
α(γ + γ ′ − γ ′′ − γ ′′′)

2π
log x,

V1 =
log3 N

N 4

∑
j

N 4 j/log N
∑
|γ |<T
β∈I j

∑
|γ ′|<T
β ′∈I j

∑
|γ ′′|<T
β ′′∈I j

∑
|γ ′′′|<T
β ′′′∈I j

|γ+γ ′−γ ′′−γ ′′′|≤(π/α)N 1/α

|S|

and

V2 =
log3 N

N 4

∑
j

N 4 j/log N
∑
|γ |<T
β∈I j

∑
|γ ′|<T
β ′∈I j

∑
|γ ′′|<T
β ′′∈I j

∑
|γ ′′′|<T
β ′′′∈I j

|γ+γ ′−γ ′′−γ ′′′|>(π/α)N 1/α

|S|.

We first proceed to estimate V1. For the terms in the inner sum with

|γ + γ ′ − γ ′′ − γ ′′′|< 1

we can estimate |S| using the trivial bound. For the terms with

1≤ |γ + γ ′ − γ ′′ − γ ′′′| ≤
π

α
N 1/α

we can use the Kusmin–Landau theorem. Hence we obtain the estimate

S�
N 1/α

1+ |γ + γ ′ − γ ′′ − γ ′′′|
,

which, by Heath-Brown’s method [5], implies

V1�
N 1/α log5 N

N 4 max
σ∈I

N 4σ N∗(σ, T ).

For H(x) of type θ , with 0.342< θ < 7/12, Heath-Brown’s zero-density estimates

N∗(σ, T )�


T (10−11σ)/(2−σ)+ε, 1

2 ≤ σ ≤
2
3 ,

T (18−19σ)/(4−2σ)+ε, 2
3 ≤ σ ≤

3
4 ,

T 12(1−σ)/(4σ−1)+ε, 3
4 ≤ σ ≤ 1,

(18)

[6, Theorem 2] give upper bounds for N 4σ N∗(σ, T ) that attain their maximum at
σ = 1− d . A short calculation then shows that

max
σ∈I

N 4σ N∗(σ, T )�
N 4

(log N )A ,
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for every A > 0. Hence we conclude that

V1 = o(N 1/α),

for every 0.342< θ < 7/12.
Now we turn to estimating V2. Let (k, l) be an exponent pair, then

S�

(
|γ + γ ′ − γ ′′ − γ ′′′|

N 1/α

)k (
N 1/α

)l
�

(
T

N 1/α

)k

N l/α
� N (kα(1−θ)−k+l)/α+ε,

for every ε > 0 and H(x) of type θ . This yields

V2 � N (kα(1−θ)−k+l)/α−4+ε
∑

j

 ∑
|γ |<T
β∈I j

N j/ log N


4

� N (kα(1−θ)−k+l)/α−4+ε(max
σ

Nσ N (σ, T )
)4
.

For H of type θ , with
23
48 < θ <

7
12 , (19)

the density estimates of Ingham–Huxley give upper bounds for Nσ N (σ, T ) that attain
their maximum at σ = 3/4. So we may deduce

V2� N (kα(1−θ)−k+l)/α−4+εN 3+12(1−θ)/5.

The above bound is o(N 1/α) for every

θ > 1−
5(1+ α − l + k)

α(5k + 12)
, (20)

if (k, l) is an exponent pair, H is of type θ and α is sufficiently large. Thus we can
select

c(α)= 1− sup
(k,l)

5(1+ α − l + k)

α(5k + 12)
,

where (k, l) runs over the exponent pairs. Since all exponent pairs (k, l) have
0≤ k ≤ 1/2≤ l, we obtain

1−
5

12
1+ α
α

< 1− sup
(k,l)

5(1+ α − l + k)

α(5k + 12)
= c(α),

which implies (19) if α ≥ 4. On the other hand from the exponent pairs

Ai−1 B(0, 1)=
(

1
2(2i − 1)

, 1−
i

2(2i − 1)

)
,
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where

i =

[
5α
12

]
,

we get

1− sup
(k,l)

5(1+ α − l + k)

α(5k + 12)
= c(α) <

7
12

and then, as one might expect, we conclude that

lim
α→+∞

c(α)= 7
12 .

This completes the proof of Theorem 1. 2

NOTE. We are able to obtain the function c(α), in a suitable interval of α, from every
estimate of the counting function N (σ, T ) in a fixed interval of σ . As an example, if
we recall that

N (σ, T )� T 9(1−σ)/(7σ−1) logC T, (21)

with 41/53≤ σ ≤ 1 and C suitable constant (see Theorem 11.4 of Ivić [9]), we can
choose H of type θ , d = (9θ − 3)/7− ξ with ξ > 0, in (12) of Lemma 2, using the
Ingham–Huxley density estimates and (21) we can obtain an estimate of |Eδ(X, H)|.
Hence, from Lemma 5, we can obtain

c(α)=


5
8
−

7
16α

if
3
2
< α ≤

3339
1138

,

1969
2809

−
35

53α
if

3339
1138

≤ α ≤ 3.447,

that cover a great part of the gap between 6/5+1 and 4. Along the same lines we
can obtain a large number of possible function c(α), for every α > 1.

4. Proof of Theorems 2, 3 and 4

In order to prove Theorem 2 we assume (2) and use Lemma 5 to see that

|Aδ(N , H, α)| �
|Eδ/2(N , H)| f (N ) log2 N

H(N )
+ o(N 1/α),

for every H(x) of type θ , with 1/6< θ < 7/12. So by Lemma 3

|Eδ/2(N , H)| � N
7
5 (1−θ)+ε,

with H(x) of type θ and 23/48< θ < 7/12. The last two estimates together yield

|Aδ(N , H, α)| � N
7
5−

12
5 θ+ε + o(N 1/α),
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so that
|Aδ(N , H, α)| = o(N 1/α),

for every

θ >
7

12
−

5
12α

and
23
48
< θ <

7
12
.

Then we can define

c(α)=
7
12
−

5
12α

if α ≥ 4.

This completes the proof of Theorem 2. 2

Similarly we can prove Theorem 3, using Lemmas 6 and 4 instead of Lemmas 5
and 3, so obtaining

|Aδ(N , H, α)| � N 1−2θ+ε
+ o(N 1/α),

so that
|Aδ(N , H, α)| = o(N 1/α),

for every

θ >
1
2

(
1−

1
α

)
.

Then we can choose

c(α)=
1
2

(
1−

1
α

)
if α > 1.

This completes the proof of Theorem 3. 2

To prove Theorem 4 we recall that Selberg [11] proved, under the assumption of
the Riemann hypothesis, that∫ 2X

X
|ψ(x + H)− ψ(x)− H |2 dx � H X log2 X,

for all H ≥ 10, which implies

|Eδ(N , H)| �
N

H(N )
log2 N ,

for every δ > 0. In conjunction with Lemma 6, this gives

|Aδ(N , H, α)| �
N log4 N

H(N )2
f (N )+ o(N 1/α),

with f (N )→∞ arbitrarily slowly, so that

|Aδ(N , H, α)| = o(N 1/α),

with

H(N ) > N
1
2

(
1− 1

α

)
f (N ) log2 N ,

for every α > 1 and δ > 0. This completes the proof of Theorem 4. 2
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