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COMPUTING ZETA FUNCTIONS OF ARTIN-SCHREIER CURVES
OVER FINITE FIELDS

ALAN G. B. LAUDER anDp DAQING WAN

Abstract

The authors present a practical polynomial-time algorithm for com-
puting the zeta function of certain Artin—Schreier curves over finite
fields. This yields a method for computing the order of the Jacobian
of an elliptic curve in characteristic 2, and more generally, any hyper-
elliptic curve in characteristic 2 whose affine equation is of a particu-
lar form. The algorithm is based upon an efficient reduction method
for the Dwork cohomology of one-variable exponential sums.

1. Introduction

We present a low-degree polynomial-time algorithm for computing the zeta function ©
certain Artin—Schreier curves defined over finite fields. One consequence is a practi
method for computing the order of the Jacobian of an elliptic curve in characteristic -
and (more generally), any hyperelliptic curve whose affine equation is of a particular forn
Hyperelliptic curves have been proposed for use in public key cryptosystems by Kobli
[2, 13]. Our algorithm provides the first method of finding ‘random’ hyperelliptic curves
of arbitrary genus, defined over large finite fields of characteristic 2, whose Jacobians he
orders suitable for cryptographic use. Our method can be extended to more general cun
and we plan to present one such generalisation in a sequel paper.

We now introduce some notation that will allow us to explain our resultsplagnote
a prime number, and a positive integer. Defing = p“, and denote by, the finite field
with ¢ elements. Fix an algebraic closufg of g, and letF « be the unique subfield of
orderg*. We WriteFZ for the set of non-zero elementsIiy. The Artin—Schreier curves
overF, that we consider in this paper are defined by an equation of the form

ZP — Z = f(X), 1)

where f € F,[X, X~11is a Laurent polynomial. Specifically, we denote @y the curve
embedded iff} x F, with equation {), and we letC; be the unique smooth projective
curve that is birational t@’;. Letd denote the largest absolute value of any exponent tha
occurs in a non-zero term gf. For example, iff € F,[X], this is just the degree. Our main
theorem is as follows.

Theorem 1. The zeta function of the smooth projective cu&e may be computed
deterministically in®@(p#a3d>*?) bit operations. Heres = 0 for p > 2, ands = 1
forp =2
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Zeta functions and Artin—Schreier curves

Here we use the Soft-Oh notatigh which ignores logarithmic factors, as i, Sec-
tion 6.3]. More details of the complexity when using different methods of arithmetic, anc
also the space complexity, can be found in SecBidh

We now explain how our algorithm may be applied to certain hyperelliptic curves ir
characteristic 2. Lef denote the affine curve with equation

Y2+ X™MY = h(X),

whereh(X) € Fa[X]is of degree 2+ 1 andm is a non-negative integer not greater tigan
Let C be the unique smooth projective curve birationaltoThenC is birational to an
Artin—Schreier curve, as explained in Né&gand thus one may compute the zeta function
of C in the complexity bounds of Theorein From this, the next corollary follows.

Corollary 2. The order of the Jacobian of the curemay be computed deterministically
in @(a®g®) bit operations.

This algorithm for hyperelliptic curves in characteristic 2 has been implemented by Vel
cauteren.With regard to the dependencezpmwe note that our method, when restricted
to elliptic curves, has comparable time complexity 1]} Moreover, it is the first practi-
cal algorithm for hyperelliptic curves in characteristic 2 that has polynomial-time growtt
in both the field size and the genus. (The problem of polynomial-time computability fo
arbitrary varieties in small characteristic has already been solvetinhut the general
algorithm there is not very practical. Also, a practical algorithm for hyperelliptic curves ir
odd characteristic is presented 2] using different, though related, methods.) We refer
to the references irg] for the large literature on point counting, including 1.8, 19], and
the more recent work in [8, 10,11,12,16,17,22,23, 25].

Section®, 3,4 and5 lay the mathematical foundation of our algorithm: itis based mainly
upon an extension of the work of Dworg][ due to Adolphson and Sperbéf[Section6
contains a statement of the algorithm for what we call ‘Type 1 Artin—Schreier curves’
and Sectiorv describes exactly how to perform the main steps. In particular, we preser
an efficient reduction method for the Dwork cohomology of one-variable exponential surr
over the torus. This lies at the heart of our point-counting algorithm, and is the main origin:
contribution of the paper. The complexity analysis is tied up in Se@icemd Sectior®
discusses the remaining type of Artin—Schreier curve in a more condensed fashion. As
[14], we aim to give a largely self-contained presentation.

2. L-functions and Artin—Schreier curves
2.1. General theory

Let Q denote an algebraic closure of the ratiorfald.et W : F, — Q be a non-trivial
additive character, and let It F « — F), be the absolute trace map. A specifiavill be
constructed in Sectiof.2, but for now it may be arbitrary. Defing : F « — Q to be the
non-trivial additive characteb o Try.

For f € F,[X, X~1], define

Si(f W) = Y W(f(x) )
xeFZk
L*(f, W, T) = exp(Z MT"). )
k=1
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Zeta functions and Artin—Schreier curves

For simplicity, we shall omit the in this notation. LeC be the curve embeddediij x F,,
with equation
ZP — 7 = f(X).

Let C; denote the unique smooth projective curve birational to

Lemma 3. For eachx € IFZk, there are exactly:, points of the formx, z) € ]sz x F
onCy, where

0, if Tri(f(x)) # 0.
Proof. This follows from [15, Theorem 2.25]. O

i ={ po I TH(F() =0,

Denote byCy (IF +) the set off «-rational points orCy. From Lemma3, one deduces
that

p—1
#CrFp) =D Y WGf0)) =Y _0Si(f)+(¢" - 1),
j=OXEFZk 0eG

wheregG is the Galois group 0f)(¢) overQ, with ¢ := W (1) a primitive pth root of unity.
Writing Z(Cy, T) for the zeta function of y (see [14, Section 1]), it follows that

{Tlpec L (£, TH}A—T)
(1-4T) '

Here,G acts on the power serié¥(¢)[[T]] coefficient-wise, fixing the monomialg.
To proceed further, it is necessary to split the possible Laurent polynorhiate three

types.

Z(Cy,T) = (4)

2.2. Three types of Artin—Schreier curves

Typel: Assume thay e F,[X] has degred not divisible byp. Here we can also define

Se(f) = D W(f () = S{(f) + Wk Tra(f(0)): ®)

xelf
qk

08
L(f.T) = exp(Z %T") = L*(£, HA-vTr(fOND)™L  (6)

k=1
Hence, from (4),

{Tlpec 0L TH}A-T)
(1= 4D {[lpeg 0L~ W(Tra(fONT}

(The latter term on the denominator(& — 7)? L or 1+ T + ... + TP~1, depending
upon whether Tr(f(0)) is zero or not, although this does not concern us.) By Weil, the
L-function L(f, T) is a polynomial of degreé — 1, and all of its reciprocal roots have
complex absolute valug/g under all complex embeddings af Thus[[peq O(L(f, T))

is a polynomial of degreép — 1)(d — 1), pure of weight 1. (A complex number has weight
i fori =0, 1,2 if it has absolute valug’/2, and a rational function with algebraic integer
coefficients is pure of weigthitif its roots all have weight under any complex embedding
[24, Section 3].)

Z(Cs,T) =
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Let Z(C’f, T) denote the zeta function of the smooth projective cuffyeLetg be the
genus ofi“f. Again, by Weil, we know that

P(Cy.T)

2D =G na-gry

where the numerator is a polynomial of degrge @ure of weight 1. Sinc€'s andéf are
birational, they differ by a finite number of points, and hence their zeta functions differ b
a factor of weight 0. Comparing the pure weight 1 part&i€;, T) and Z(éf, T), we
deduce that

P(Cy, T) =[] O£ T)). 7

0eG

In particular, the genug of the curveCy is given by the formula
g=(p-DH@d-1/2 (8)

Type2: Assume thatf € I, [X~1] has negative degre&™, not divisible by p. That
is, d~ is the lowest exponent occurring i ThenCy is birational toC s+, where f* :=
f(x~1), and we have reduced to Type 1.

Type3: Assume thayf € F,[X, X~1], butthatf ¢ F,[X]UF,[X~1]. Let the negative
degree be/~ and the positive degree lag". Assume thap does not divide/~d™. In this
case, by WeilL*(f, T) is a polynomial of degreé* —d—, pure of weight 1. By comparing
the pure weight 1 parts if(Cy, T) andZ(Cy, T), we find that

P(Cp, T) = [ OL*(f, T, ©)

0eG

is the numerator OZ(C’f, T). In particular, the genug of the curveéf is given by the
formula
g=(p—-1d"—d)/2

Thus in all cases the computation of the zeta function of the smooth projectiveé;prve
reduces to the evaluation of the L-function of certain one-variable exponential sums.

Note 4. The degree conditions ofi are essential for cohomological arguments; however,
given a Laurent polynomiaf that does not satisfy them, one may replace it by a new
polynomial / which does, such_ that; and Cf are isomorphic. For each tera;pr{’,

the isomorphisnZ — Z + b; X/ (X — X) shows that we can replace the temm X /?

with b; X/, whereb; := a];[fp € IFy. Repeat this procedure until no term has a non-zero
exponent divisible by. The resulting polynomiaf has no terms with non-zero exponents
divisible by p, and thus it certainly satisfies any necessary degree restrictions.

Note 5. Let C be the curve in Corollar®. ThenC is birational to the curveC, with
equationZ® 4+ Z = f(X), wheref := X~2"h. This can be seen by making the change
of variabley = ZX™. ThusC, as in Corollary?, is birational toC, and the zeta function
of é/- can then be computed using Nat¢to get f in the correct form) and the algorithm
that we shall present later. By the special value formula for the zeta functibr=at, the
order of the Jacobian is the numerator of the zeta function evaluafed=at [2, p. 175].
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Similar comments apply to curves ougy of the formY?” — X™Y = h(X), whereg = p*
andp — 1 dividesm. Also, general hyperelliptic curves in characteristic 2 are birational to
Artin—Schreier curves of the form? + Z = f(X) for f arational function. As such, they
may be tackled using a generalisation of our approach.

2.3. Typel Artin—Schreier curves

In Sections3, 4,5, 6, 7 and8, we shall denote by a polynomial inl¥,[X], of degreel,
not divisible by p. We write f = .., a; X/, wherea; # 0. In these sections we shall
explain how to compute the zeta function of the smooth projective atijvd hat is, we
shall cover classical ‘Type 1’ Artin—Schreier curves. In Sectiprwe shall discuss the
modifications required whefi € F,[X, X~11is a Laurent polynomial with both positive
and negative exponents. These are ‘Type 3’ Artin—Schreier curves. As mentioned befo
‘Type 2’ curves may be reduced to ‘Type 1’, so we shall not discuss them again.

3. p-adic theory
3.1. p-adicrings

LetQ, denote thep-adic numbers with ring of integefs,. Fix © the completion of an
algebraic closure d,. Denote by a primitive (¢ — 1)th root of unity inQ, and byr € @
an element that satisfies’~1 = — p. Define

A= Zyle, m]. (10)

In particular,A has residue fiellf, . Elements im may be represented viaadic expansions
whose coefficients are taken from some distinct set of representatives for the quotie
A/ () of sizeq. By binomial expansion and Hensel's lemma, one sees that the equatic
(14 m1)? = 1 has exactly distinct solutions in Z,[x]. Thus for any primitivepth root

of unity ¢, we haveZ,[¢] = Z,[n], and soA contains the exponential sums defined in
the previous section. Le¥ denote the group of automorphisés: Q, () — Q,(x) for

1< j < p— 1, where each; fixesQ, and

0; () == n'm. (12)

Heren € Z, is a primitive (p — 1)th root of unity. ThenG is the Galois group of the
extensionQ, (7)/Q,. (Its action or¢ is6; : ¢ + ¢ M7 although we shall not need
this explicitly.)

It will be convenient to work in complete rings that contain arbitrary radt®f =, for
r a rational number. To this end, I8t = U, y{7%/%}, and letA denote the completion of
the ringZ,[e, IT]. HereN denotes the positive integers.

Denote byr the endomorphism oA defined as
T(€) :=€P, 1 fixesZ,[I1] and is continuous. (12)

Let ord and|.|, denote thep-adic valuation and norm oA normalised so that ofgh) = 1
and|p|, =1/p.

Note that the ringd can be easily constructed and computed; $ée$ection 3] for more
details onp-adic fields. (The larger ring is introduced only for mathematical convenience;
all of our computations are performedin)
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3.2. A weight function

Asin[14, Section 4] we define a weight function: for each non-negative iniegef> o,
let
Wt(u) = [u/d].
Here[x] is the leastinteger notless tharandd is the degree of the polynomigl e F,[X].
Definewt(x) := u/d, and so[wt(x)] = wt(u). Notice thatz"") € A andz"?) ¢ A
for everyr € Zxo.

3.3. Banach modules

Let B denote a complete subring &f. A Banach module oveB is an ultrametrically
normed complete modulg over B, such that|re|| = ||, |le|| for r € B ande € E, where
Il is the module norm. An orthonormal basis fBris a set{e; |i € N} such that every
element inE can be written uniquely in the for’; b;e; whereb; € B with |b;|, — O as
i — oo. (See R0, Section 1] and4, Section A].) In the case thd is a field, we call it a
Banach space.

Definition 6. For each rational numbér> O, letZ(8) be the Banach module ovénwhose
orthonormal basis consists of all term&' ") X" for r € Zxo. Let A{X} andA{X} denote

the Banach module over or A, respectively, whose orthonormal basis consists of all terms
X" forr e Z>0.

Note thatZ(8') ¢ L(8) for 8’ > 8, and all the above spaces lieA{X}. One may check
that all the above spaces are closed under multiplication, and are in fact rings. Extend
act on each power series in the riagX} by taking

7(X) =X, 7 is a continuous endomorphism. (13)

4. Analytic representation of additive characters
4.1. Dwork’s splitting functions

We now present the analytic construction of an additive character due to Dwork (se
[5, Section 1] and§, pp. 55-57], referring tol[4] for more details). Lef (t) denote the
splitting function [14, Section 4.1]

0(t) := 01(t) = exp(m (t — 7). (14)
Write N .
f=) ax (15)
jeJ

for the polynomial overA obtained by taking the Teighuller lifting of each coefficient
of f.

Lemma 7. For each termiz; X/ in f, we haved(a; X/) e L(8) for any
—1\?
< (p_) .
p
Proof. Writing 6(1) =: ) 72y A-t", we see from [14, Section 4] that

ord(x,) > (p — Lyr/p>.
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Terms m@(a]XJ) are of the formh &]’X/’ for r a non- negat|ve integer. Now cmda’)
(p — 1)r/p? since orda;) = 0. Also, 0< j <d, and sowt(jr) = jr/d < r.Thus

o Pl -
ord (%,a;) > p r>—s

Also, fors < ((p — 1)/ p)? we have
o 1.
ord (JTSWt(‘/r)) < p—ZWt(Jr),
p
and the result follows. O

Definition 8. Let F and F® be defined as follows:

F:=]]o(ax/); (16)
jeJ
a—1 )
F@ =T]t(F(x")). (17)

i=0
Recall here thag = p“. Both F and F@ are one-way infinite power series #{X}.
By Lemma7 and the fact that each(d) is a ring, we have the next lemma.

Lemma 9. The power serie¥ € L(8) for any

N2
§ < (_p 1) .
p

4.2. Dwork’s additive character
Fork > 1, define

ak—1 .
(1) = [ 0(t7) € Z, =111,
i=0
and let
a—1 )
O(t) := ]—[ 0(t"") € Zplx1lr1].
i=0

Denote by ‘Teich’ the Teichmdller liting map from, to Zy"am, whereZ, "M is the
unramified integral closure &, in Q2. Then

Y, ;= droTeich and ¥ := ® o Teich

are non-trivial characters fronf « and F,, respectively, toZ,[x]. We see that
Wy (x) = W(Trg(x)), where Ty, is the trace map fror}ﬁ’qk toF,. (See [14, Lemma 6].)

The following lemma is proved exactly a$4, Proposition 9]. It gives an analytic ex-
pression for the exponential SUsi(f) := S; (f, ¥).

Lemma 10. Let S} (f) be the exponential sum defined in equaii@pusing Dwork’s ad-
ditive characterw, and letF @ (X) be the power series from Definiti@ Then

SE(f) = Z F@O@)F@(x?) . F@(xd ).
x4 ko1 =1

Here, the sum is over the Teichmdiller liftingsZl"*@™ of the points on the toruEZk.
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4.3. Completely continuous maps

The next step is to introduce operatorsAfX} so that the right-hand side of the above
expression can be interpreted as the ‘trace’ of a map on a certain Banach module.

Definition 11. Let v, be the map om{X} that acts on monomials as

X'/P, if p dividesr,

X" =
Vr(XD) 0, otherwise,

and extends to all ofi { X} by r ~1-linearity and continuity. Specificallyy, (3", A, X") =
2o oir T —1(A,)X"/P. Write Vg = V¥, a linear map since ¢ is the identity onA.
Let o := ¢, o F and leta, := ¥, o F@, Preciselyp is multiplication by F followed
by the mapy,,, and likewise forx, (see [14, Definitions 20, 21]).

Lemma 12. The maps satisfy, = a“.

Proof. This is proved exactly as in [14, Lemma 22]. O

Lemma 13. The map is stable onl(8) for
(p— 17
p

Proof. We first claim thahp,,(i(S)) C L(pé) for any rationals > 0. For this, it is enough
to observe that

§ <

vy (n,th(r)BXr) — nVVt("/P)Pstr/P

for any r divisible by p. Now let G € L(8), wheres satisfies the necessary inequal-
ity, depending orp. Then, by Lemma, F € L(8/p), and so (since alsG e L(3/p)
by closure under multiplication) we find th&G < L(8/p). Hencey,(FG) e L();
that is,a(G) € L(8), as required. O

Definition 14. Let L be defined as
L(1)NA{X}, if p>2,
Ly)nAXHeQ, ifp=2.

Herey may be taken to be any rational numberinthe rang@ + (1/2d)) < y < 1/2.
The key point is thatr is stable onL(y), sincey < 1/2, and the spacg(y) is small
enough such that an ad hoc argument that we shall present later (L2&)marks. Thus
for p > 2, we see that is just the Banach module ovarwith orthonormal basis the terms
Wt xu for non-negative integens. For p = 2 it is the Banach space ovar® Q with
orthonormal basis the termg”"t®1x“ for non-negative:.

Lemma 15. The mapsr andc, are stable orL.

Proof. First, suppose thai > 2. Thena is stable onl.(1), by Lemmal3. Certainlyg is
stable on the ring of convergent power serg }, sinceF € A{X}. Thusx is stable on
L(1)N A{X} = L. Thate, is stable on_ now follows from Lemmal2. Second, consider
the casep = 2. Puttingp = 2 in Lemmal3, we find that is stable onL(y) N A{X},
sincey < 1/2. GivenG € L, we have mGe L(y) N A{X} for somep-adic integenn.
The result now follows easily. O
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Note 16. The ringsA and L(8) and the functionwt were introduced to prove the above
result in as simple a manner as possible; we shall have little further need for them, workil
from now on mainly withA andL.

For certain classes of linear maps on Banach modules, the trace and determinant are
fined. This is done in the usual way, via matrices for the maps with respect to an orthonorn
basis. We refer to [20, Section 5] and [4, Section A2] for definitions. The key result is th
chain-level Dwork trace formula.

Theorem 17. With S (f) andL*(f, T) the exponential sum and the L-function defined as
in (2) and(3) using Dwork’s additive characteb (Sectiom.2), andx, the map orL given

in Definition11, we have

St () = (@ = DTr(eg|L).

Thus we have

det(l — Tay,|L)

det(1 — Tgay|L)’

Here the trace and the determinant are defined via matrices for the maps with respect
the orthonormal basis af.

L*(f.T) =

Proof. Thisis in essence a case @#l, Theorem 25] (witlk = 0). Note that the matri®/,

in [14, Theorem 25] is that for the mag with respect to a ‘formal basis1f, Section 5.2]

of the form{X' |i e Zx>0}. For the above formulae we require a matrix with respect to
the orthonormal basist" X' |i € Z>o} (Whenp > 2, with a slightly different basis
for p = 2). One may verify that the traces of the powers of these two matrices ar
the same. O

These formulae may be used to compute the zeta function in a similar fashibf]to [
In other words, a finite matrix may be computed that represents thexraafing on some
appropriate modular reduction af This matrix is then used to compute the characteristic
polynomial of, itself, up to a necessany-adic accuracy. (This algorithm has been im-
plemented by Vercauteren). However, this ‘chain-level’ method results, for example, in
time complexity of@ (a*38) with space®(a*) bits, using the fastest methods for matrix
multiplication and ring arithmetic. Using some homological algebra, one can derive a be
ter ‘cohomological’ formula, leading to an improved algorithm. That is what we do in this
paper.

At this stage, sincg is an ordinary polynomial rather than a Laurent polynomial with
negative and positive terms, we can do a little more work to derive a better chain-lev
formula, as follows. LeL - o denote the Banach module comprising those power series i
L with zero constant term. Fgr > 2, the modulel . is defined overd, and forp = 2,
over A ® Q. The next lemma follows easily from Lemnia.

Lemma 18. The maps ande, are stable on...g.

Now one may check via a matrix for the map with respect to the orthonormal basis
(MO XY, 50 for p > 2, and{x YW1 X7}, 5 for p = 2, that

det(1 — Tay|L) = (1 — F“(0)T) det(d — Taq|L-0).

Here
F@(0) = W(Tr1(ao))

is a root of unity, wherel is Dwork’s additive character froifi,, to Z,[x].
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LetSy(f)andL(f, T) beasin(5)and (6). Thenone h&s /) = S;(f)+ W (k Tri(ao)),
and soL(f, T) = L*(f, T)(1 — F“(0)T)~L. Hence we have the following theorem.

Theorem 19. Let L( f, T) be the L-function for the exponential sum over the affine line

from equation(6). Then
det(1 — T'ay|L~0)

det(l — Tga,|L)

L(f.T) =

5. Dwork cohomology

Let H be the polynomial irl. defined as

H=nxf. (18)
(Infact, H € L(1) N A{X} in all cases, and this latter ring equdldor p > 2, and lies
strictly within L for p = 2.)

Let D be the operator oh defined as
D=X d + H
dX X’
where
Hy = X—.
X=X

Hered/d X is the usual differential operator on polynomials extended to power series b
continuity, withX andHy just acting by multiplication. NowX (d/d X) is stable orL, and
L is aring. From this it follows thab is stable onl., and in fact map4. to L. .

Note 20. We pause to explain the motivation behind the above definitions. Define=
]j?ioe(tp’). One may check that(r) = exp(rrt). Now F = H,eje(&]Xf) Defining
F(X) = ]_[IEJG(aJXJ) we find that this equals e(qz)f) which is just expH), with H
asin (18). Slnceq = a; andt’(a)) = a" for eachj € J, it follows from Definition8 that
F@O(X) = F(X)/F(Xq) Fromthis, weseetha;, = Y oF'Y = exp(—H)oy 0 exp(H).
Define the operatoE := X (d/dX), and sOE o (q4) = ¥, o E. Then, withD as above,
one may checkthdd = E+ E(H) = exp(—H) o Eoexp(H). ThusD ande,, are obtained
from E andv, by some kind of twisting; also, it now follows th# o (gas) = @4 o D,
which is the crucial relation. (See [6, pp. 55-60] and [21, pp. 267—-270] for more details.)

Let £ be the complex

O—)L—D>L>O_)O-

This is a complex oA-modules wherp > 2 andA ® Q-spaces fop = 2. Denote byH;
and Hyp the kernel and co-kernel of the mdh In particular,Hp := L.o/D(L).

Proposition 21. The mapD is injective, and sd; = 0. Moreover, forp > 2andp = 2,
Ho is respectively a finite frega-module or anA ® Q-space, of ranki — 1. A basis forHyp
may be taken as the set of terms

(x"MOX 10 <i <d} = {nX, 7Xx? ..., 7 X471}

Proof. Over the formal power series rin@[[X]], the formal solutions of the first-order
linear differential equatio®» = 0 is the one-dimensional subspace generated by-eip.
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But the power series exp H) ¢ L (the decay rate of coefficients is too slow). This shows
that the restriction of the operat@r to L is injective. The second part of the proposition
follows from the normal form computations in Sectidn O

By Note 20, we have
Dogoy, =a50D.

Thus the maje,, defines a chain map of:

0 — L L L>O — 0
I qaq | ag
0 — L £> L.o — O

Denote byHp () andH; (g, ) the maps induced on the homologigsandH+ by this chain
map, and by déil. — Hy(x,)T) and detl — Hi(qo,)T) the corresponding determinants.

Theorem 22. The L-function from Theore® satisfies
L(f,T) = det(1 — Ho(ea)T).
Proof. We have
det(1 — Tay|L~0) _ det(1 — Ho(ato)T)
detl — Tqa,|L) — detl — Hi(qaa)T)’
This identity is proved in the same way tha0[ Proposition 9] is derived fron2p, Lemma

2]. Now H1 = 0, and so the denominator on the right-hand side is 1. The expression for t
L-function now follows from Theorent9. O

Corollary 23. The zeta functioﬂ(éf, T) of the smooth projective cur\[éf birational to
the affine curve with equatiod? — Z = f(X) satisfies
[17-1 6;(det(l — Ho(a)T))

1-T)A—qT)

Hereo; are the automorphism@1) of Z,[] extended to act on polynomials by fixifig
The numerator is a polynomial of degrge — 1)(d — 1).

Z(Cy,T) =

Proof. This follows from Theoren22 and equation (7). O

Thus the strategy of the algorithm is to compute the determinant of theHy@p ) on
the zeroth homologydy, up to a suitable modular precision. This may be done efficiently
via the following lemma, which is an immediate consequence of Letftitna

Lemma 24. Let Hp(«) denote the map induced @iy by «. ThenHp(r,) = Hp()“.

Itwill be enough to compute the coefficients of the characteristic polynomial of Frobeniu

modulop” for
N=|(p—-1d-1(A+a/2)+1].

This follows since the L-function of the exponential sunif, T) has reciprocal roots
whose complex absolute values agg. Thus the coefficient of * in the polynomial
[To,ec 6 (L(f. T)) are integers of absolute value at m@Y p?/2 < 228 pak/2, Since the

ponnomiaI]_[gj_eG 0;(L(f, T)) has degree@= (p —1)(d —1), it follows that determining
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the coefficients modulp® for N > (p —1)(d — 1)(1+a/2) is sufficient. (Due to a certain
‘loss of accuracy’ when one performs the homological reduction, it is initially necessary t
compute the coefficients @f modulop?N+D, for a small positive integer, whose precise
value we shall determine.)

6. The algorithm

We now present our point-counting algorithm for Type 1 Artin—Schreier curves (sel
Section2 for our classification of Artin—Schreier curves).

Algorithm 25 (Artin—Schreier Type 1).
Input: An equationZ? — Z = f(X) overF,, wheref € F,[X] andg = p“.
Output The zeta functiorZ(Cf, T) of the unique smooth projective curve birational to the
affine curve defined by this equation.
Step0: Replacef by a polynomial all of whose terms have exponents not divisible by
in the manner explained in Note Denote this new polynomial also by This will not
change the zeta function. SEt:= [(p — 1)(d — 1)(1+ a/2) + 1], whered is the degree
of f. Lete := 4 whenp > 2, ande := (4d + 1) whenp = 2. We shall compute the
coefficients of the numerator of the zeta function moduta
Stepl: Compute the power serigs given in Definition8 with coefficients determined
modulo p*V+D_ Let be the map on the ring (Definition 6), defined ag = ¥, o F
(Definition 11). Let Hp(«) be the map induced on the zeroth homoldgyof the complex
L by a.
Step2: Letr X, 7 X2, ..., n X?~! be the basis for the zeroth homology. For each basis
elemente, compute the imagélo(a)(e) € Ho with coefficients determined moduje" .
ConstructM, defined as the matrix representing the ni&ie) with respect to the basis,
with coefficients determined modu}d” . Specifically,M = (m;;), wherei is the row index
and; the column index, ando (o) (T X/) = Zf:_llm,-j(nxi) mod pV for1 < j <d—1.
Step3: Compute

M, = Mt Y(M)t2(M) ...t~ D(m)

modulo p”, where the map is the lifting of Frobenius toA as given in {2). ThusM,, is
a matrix for the maHo(ay,).
Step4: Output the rational function
[10-7 6 (dettt — M,T))
1-T)1-qT)
wheref); is the automorphism from (11) extended to acZoifir ][ T ] by fixing monomials.

Z(Cy, T) =

The correctness of the algorithm follows from Coroll&¥and Lemma24, along with
the discussion of the choice of at the end of Sectioh, and the choice of from Lemmas
27 and31. The matrixM is called theabsolute Frobenius matrjand det/ — M, T) the
characteristic polynomial of Frobeniuk Section7 we shall describe exactly how this first
matrix is computed, allowing us to give a complexity analysis of the algorithm in Setion
This will complete the proof of Theorerfor Types 1 and 2 Artin—Schreier curves. We
present the algorithm for Type 3 curves in Secton
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Note 26. The above algorithm can be improved in practice by using the functional equatio
.1 .
T%48pP(Cr, — ) = P(C;. T).
q ( i qT> (Cr.T)

This functional equation shows that it is enough to determine the coefficients metiylo
whereN’ := [(p — 1)(d — 1)(1+ a/4) + 1], computing only the first half of the coeffi-
cients directly inP(C‘f, T), and then recovering the second half by the functional equation
Moreover, our choice of is perhaps rather large, especially in the case 2. It may be
enough in practice, as observed by Vercauteren, to work initialiyadic accuracy’ + 8,
wheres is some small variable that can be determined ‘experimentally’ (see als@Rpte

7. Performing the main steps

We shall work with elements ih with coefficients determined modufg V+1_ (In the
casep = 2 by this we mean that, giveti € L, we haveG = G’ + p*N*tDG” whereG’
is a known polynomial oveA ® Q andG” is a power series with coefficients i) If an
element is given to this accuracy, we say that it lieg imod p¥+1. Similarly, Hy is the
free module over whenp > 2, andA ® Q the free module whep = 2, spanned by the
basis monomials

{T[X,JTXZ,...,TL’Xd_l}. (29)

We writes € Ho mod p" if an elements is given in Hy with coefficients modulg? . In
the next two sections we shall explain how, given an elengert L. mod p*™V+D we
can compute € Ho mod p? such that

G = D(r) + s mod pV

for somer € L. We call this process ‘finding a normal form’ ib-o mod p*™+1D and
say thats is ‘cohomologous’ taG. (Here, we identifyHg with a subspace aof. Also, for

an arbitraryG € L. the choice ofe would in fact depend upon the decay rate of the
coefficients ofG. As such, in what follows should be thought of as a variable; in Lemmas
27 and31we determine which values fersuffice in the cases of interest.)

7.1. Normal formsinL.q/D(L): Casep > 2

Inthe case > 2, because of the decay rate of power serids working inL-o/D(L)
is particularly simple. From (15) and (18),

d d
H=nY ax/, andthus Hy =7 » a;jX’.
j=0 j=1
where orda,d) = 0 sinced # 0 in F,. Consider the basis monomial"'™ x* for the
Banach moduld., whereu > d. We have the trivial identity
d

. d
nWt(u)Xu — (ﬂ < Z&/]X]) + Xd_X) ((&dd)fln,wt(u)*lxufd)
j=1
d—1

; d
_ (7.[ ( Z &ﬂX’) + Xﬁ) ((&dd)_lj'[Wt(u)_]'XM_d)
Jj=1

= D)+, (20)
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wherer € L andr’ € L.o. Moreover,r’ is a sum of monomials of degree less than
and greater than or equal #0— d + 1. Now letG € L.o mod p*¥+D, and assume that
br"'® X is the highest term that occurs @ for someb € A. (Note that by the decay
rate on the coefficients of elementsiinwe see that = @ (¢ Npd).) We may suppose for
our purposes that > d. We can write this term a®(br) + br’, wherebr’ is a sum of
monomials of degree less tharbut not less than — d + 1. Write G = G’ + baW'® x¥,
TheninL.o/D(L) we find thatG is ‘cohomologous’ taG1 := G’ + br’. To computeG1
requires? multiplications inA mod p¢”+b and the same number of additions (plus a little
precomputation, which can be ignored). Now continue in this way until the highest term i
someG,, has degree less thah Precisely, we neegt at mostu —d + 1 = O (e Npd).

In this way we may find a ‘normal form’ for any element in.q. That is, givenG €
L-o mod ptV+D we can write it as

G=D()+s,

wherer € L, ands € Hyo mod p” is a linear combination with coefficients i mod p¥
of the basis monomials

{JTX, JTXZ, e, erd_l}.
The process above has time complexity
O((eNpd)d(Npa)°) (21)

bit operations, where is the exponent for multiplication as defined in Sect®h. This
complexity estimate lies at the heart of our proof of Theofer(Strictly speaking, using
the method that we describe, the final factor in the bracket should¥ga)¢. However,
a simple analysis based upon the proof of the next lemma shows that for each coefficit
c. X" in G wherec, is given modulop?¥+1 | one must keep track of only the filStterms
in the p-adic expansion of,, not including the leading zero terms.)

The next lemma justifies the choice®in the case > 2.

Lemma 27. Lete € {n X, ..., 7 X1} witha(e) cohomologous te, a linear combination
of the basis elements. To determinmod p”, it is enough to compute the coefficients of
a(e) modulop?N+D),

Proof. Let e = wX/. By Lemma9, terms inF(e) are of the forme, X"/, where
ord(cy) > ((p — 1)/ p)?(v/d). By the action ofy,,, terms ina(e) are of the forme, X*,
where ordc;,) > ((p — 1)/p)?((pu — j)/d). Equality (20) shows that far such that

(15 (57) 5o

p d d

the normal form of the tern?, X* vanishes modulg” . Thus for
N+1

((p—1%p -1

the terme/, X* does not contribute to mod p. It is now easy to check that computing
the coefficients’ X" for u/d less than this bound with coefficients determined moghilo
where

223(N+1)>

b=3(N+1)+(N+1)=4N+1),
is enough to determine the normal formeai) modulo p? . O
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7.2. Normal formsinL.o/D(L): Casep = 2

The reduction process fgr = 2 is in essence the same; in other words, one uses ¢
trivial identity to reduce the degree at each step. However, the justification that it works
somewhat more involved, since the power seriek adecay rather more slowly.

We shall assume that,; = 1; the more general situation just involves some notational
complications, the essential point being that we always hav&léggl = 0. Let J; =
J — {d} be the support set of f excluding the element, and leth; := ja;. We may
assume that all non-constant termsfitnave odd degree (Not®, so each integer it is
odd. (The argument below in fact works, provided only & odd, the key point being
thatin any case of@;) = ord(;) forall j € J1, andthisis at least 1 fgreven.) In a similar
manner to that shown above, we have the identity

X4 — D<1Xud> _ <(M —d) Xufd + Z b/Xle+j>_ (22)

T b :
J€N

This is used to reduce a power series given in finite precisidb.igto its normal form,
that is, a polynomial oveA ® Q of degree less tha# with no constant term. As before,
the complexity is (21).

We must also address one theoretical problem.det >, ¢, X" € L, and suppose
thatc, X" = D(r,) + s, with s, a polynomial of degree less thanover A ® Q. Then
G =D, ru) + Y, su, provided thatr,|, |s,| — 0 asu — oo. To show that these
sequences indeed converge, and to get a bound on pikegilic orders, requires a more
careful analysis, which we now perform in a rather ad hoc fashion.

Lemma 28. We may write any monomi&“ in the formX* = D(r) + s, wherer is

a polynomial of degree at most— d, ands is a linear combination of the monomials
X, X2, ..., x9-1 with coefficients iM ® Q. Moreover, the coefficients efhave p-adic
order atleast-mu — 1, and for any the coefficient ok“~" in r has order at least mv — 2.
Here, 1

"=

Proof. Our approach will be to show that" = D(r') +s’, wherer’ satisfies the conditions
in the statement of the lemma, axdhas the following property: it is a sum of terms of
the forme, X%~V wherev > 1 and either or¢t,) > —muv, or ordic,) > —mv — 1 with

u —v < d. (In particular, ifv > 24 + 1 with ord(c,) > —1, orv > 4d + 1 with
ord(cy) > —2, then the terna, X*~ is of the required form.) The result then follows by
induction. For simplicity, we shall consider only the remainder tetrone may verify that
the other termy’, which we abbreviate as ‘', has the required properties in all cases.

If u < d there is nothing to prove, so we assume that d. By (22), if u — d is even,
we have finished, since thén — d)/x is integral.

Assume then that — d is odd. Applying £2), we are reduced to considering the term
((u —d)/m)X"~¢. If u < 2d, thenu — d < d, and once again we have finished. Thus we
assume that > 24. Applying (22) to this new term, we find th&tu — d) /7) X"~ equals
D (%) plus

(u d)n(;t 2d) yu-2d _ Mnid 3 by xumd ==, 23)
JEJ1
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We first examine the terms in the final summation2§)( Ifu —d — (d — j) < d, we have
finished. Otherwise, applyin@®), we find that (u — d) /) X*~¢~@=)) equalsD (x) plus

—d)(u —3d
. (u )(”;2 +])Xu 3d+j = Zb XU d—(d—j)—(d— z) (24)
i€y

For the first term(u — 3d + j) is divisible by 2, and also — 3d + j < u — (2d + 1). Thus
this term is of the required form ,&X“~V’, where ordc,) > —1 andv > 2d + 1. For the
terms in the summation in (24), one repeatedly applies (22). The first time that one uses
middle term on the right-hand side ¢f4), one gets the term X“~V, say. Here, the order
of the coefficient, is —1, since(u — 2d — (d — j) — (d — i) — ...) is even. Moreover,
we havev = 2d + (d — j) + (d —i) + ... > 2d + 1, and once again this term is of the
required form. If one never uses the middle term, then the resultingdexifi ¥, say, has
coefficientc, of order at least-1 andu — v < d, and once again we have finished.

It remains to consider the first term &3). We may assume that> 3d, (for otherwise
it is already of the correct form). Applying (22) to this term, we @gt) plus

w—dy(u—2d)y(u—3d) _,_ (u—d)(u—Zd)(u 3d) U2d—(d— i
= X — > bjx =D (25)

Jj€J1

The terms in the last summation are of the required form, since 2d) is even and
2d + (d — j) > 2d + 1. For the first term of (25), applying (22), we getx) minus

wu—d)...(u—4d) yu—ad (u—d)y(wu —2d)(u — 3d) Z b, xu-3d—(d—)
i .

=z 3 (26)

JEN

The first term is of the required form, sin¢e — 2d)(u — 4d) is divisible by 2 and also

4d > 2d + 1. For the terms in the summation @), one repeatedly applied?). The first
time that one uses the middle term on the right-hand sid&)f bne gets, X*~?, say. Here

the order of the coefficient, is —2, since bothu —2d) and(u —4d — (d — j)— (d —i)—...)

are divisible by 2. Alsop = 4d + (d — j) + (d — i) + ... > 4d + 1, which shows that
this term is of the required form. If one never uses the middle term, then the resulting ter
¢y, X"V, say, has coefficient, of order at least-1, since(u — 2d) is even, andi — v < d,

and once again we have finished. O

Corollary 29. For p = 2, the set{n X, ..., 7 X?"1}is a basis forL.o/D(L).

Proof. Sincey > 1/(24(1/2d)), by Lemma28and a straightforward continuity argument
we know that this set sparis.o/D(L). Any basis cannot have fewer thdn- 1 elements,
by consideration of the degree of the L-functibif, 7') (using (8)), and so it must be a
basis. O

The above result is primarily of theoretical interest. The next lemma shows that in th
case in which we are interested, denominators do not in fact occur.

Lemma 30. Letp =2ande € {7X,7X? ..., 7 X971} Thena(e) is cohomologous to
an eIemenE I~ Imj(x X)), wherem; € A.

Proof Dividing through byr, we show thabl(rr’le) is cohomologous to an element
Z “1m;X7 withm; € A. Lete = X/, where 1< j < d — 1. Then the terms ifF (e)
are of the forme, XVt/, where ordc,) > v/4d (from Lemma9). By the action ofyr,
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the terms inx(X/) are of the forme, X*, where ordc),) > [(u/2d) — (j/4d)]. We claim
that such terms are cohomologous to polynomials of degree atirdsbverA. If u < 2d,
the resultis true by one application @A) and induction. Fat > 24, one proves the result
using at most two applications of (22) and induction. O

The next lemma justifies the choicein the case = 2.

Lemma 31. To compute the normal form afe) € L modulop?, it is sufficient to deter-
mine the coefficients af(¢) modulop@+DNV+D),

Proof. Lemma28 shows that foi: such that
u

ordcw) = 512

2 £

the normal form of the termy, X* vanishes modulp” . Sincex(e) € L, terms in this power
series are of the form, X", say, where or@,) > u/2d. For u/2d := (4d + 1)(N + 1),
we haveu/(2d + (1/2)) = 4d(N + 1) and(u/2d) — (u/(2d + (1/2)) — 1 = N, and for
u' > u we get a strict inequality in the latter. Thus, it is enough to work mogélahere

b=4d(N+1)+(N+1)=({4d+1)(N+1). O

7.3. Computing the absolute Frobenius matrix

We now describe how to perform the main step of the algorithm—that is, constructin
the matrix for the absolute Frobenius map with respect to the fasis..., 7 X7 1}.
First, one may comput& with the coefficients determined modutd¥+1 directly from
the formula in Definitior8 and the expression féx(¢) in (14). Working with coefficients
modulo p*¥* D for each basis elemeatthe polynomialy, o F(e) mod p*¥+1 may
be constructed. The reduction method of Sectiérisand 7.2 is then used to write this
as a linear combination of the basis elemenss . .., 7 X¢~1. In this way the matrix\/
is found, with coefficients determined modybd . (Note that the entries it/ are p-adic
integers for allp, by Lemma30.)

7.4. Finding the characteristic polynomial of Frobenius

One may compute the matri¥,, via the formula
a—1 '
My =[]t ). (27)
i=0

This is proved from Lemma4 in the same way adfl, Lemma 26]. (See also the sentence
following that lemma for an alternative approach.) The characteristic polynomial may the
be found deterministically by computing (M%) for 1 < k < d and using the Newton

identity © Trmb)
det(/ — M,T) = exp< - Z T“T").
k=1

(Alternatively, one could use an interpolation method.) The numerator of the zeta functic
may now be found by computing the conjugatek)(@and taking a product to get a polynomial
inZ,[T].
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8. Complexity analysis
8.1. Exponents for ring multiplication

LetA/(p") be some modular reduction af and letA /(p”)[ X] be the ring of polynomi-
alsin one variable ovet /(p"). Denote by the (deterministic) exponent for multiplication
in both rings. Precisely, polynomials of degieim A/(p’)[X] can be multiplied ir® (5¢)
operations inA/(p"), and elements im /(p") can be multiplied in ((rpa log(p))°) bit
operations, wheregpa log(p) is the logarithm of the size of the ring. Using classical meth-
ods, we take = 2; Karatsuba’s algorithm gives= log,(3) < 1.59, and: = 1 using Fast
Fourier Transform (FFT) methods. (Note that we ignore logarithmic factors, and the spa
complexity isO(8), O(rpalog(p)) in all cases. For polynomial multiplication using FFT
methods, we refer to [3]; we assume as in [12, Section 5] and [10, Section 4.3] that FF
methods may be applied t/(p"), although we do not know a convenient reference for
this.) Similarly, letw denote the exponent for deterministic multiplication of matrices over
A/(p"); thus twos x § matrices can be multiplied i@ (5*) operations imA/(p"). It will
transpire that the choice af(< 3) does not affect the overall complexity.

8.2. Complexity of the point-counting algorithm

First, we must computé& with coefficients determined modujg®¥+1. This may be
done by multiplying together th@(d) polynomial®) (4; X /) inthe ring ‘L (8) mod p*N+1»
for § as in Lemmad. (Note that eacl(¢) can itself be constructed via multiplication of
truncated power series of the form gxp”’), as in [L4, Lemma 29]. This part is dominated
by the computation of itself.) From the decay rate of the coefficients of the power series
in L(5), we see that polynomlaIS(a]X/) mod p¢N+D are linear combinations of the
monomialst ™81 x7 for wt(i) bounded so that

Wt(i)8] < e(N +1)(p—1).

There are® (¢ Npd) such terms. Since the coefficients of the power s@r(éJst) lie in
A, it follows that the construction af may be done in

O((eNpd)“(eNpalog p)°) = O((e2N?p2ad)®) (28)

bit operations. (Her&) (s Npa log p) is the bit-size of elements in the risgmod p* ™V +1) )
Second, findingy,, o F(e) for all d — 1 basis monomials requires

@(d(szd)(eNpa)) = (5(82N2p2ad2) (29)

bit operations. Here, we use the quasi-linear time method to compute the Tapn
A mod ptV+D suggested in12, Section 5] and1[0, Step 2] (namely, precomputation of
the map on the elemeantby Newton iteration).
Third, we must compute a normal form for each such expression to find the coefficients
the matrixM. By the time estimate (21), we see that each colun¥ afan be computed in
@(ch+lpc+ld2aC) (30)

bit operations. We requir¢ — 1 = 0 (d) such computations.
Fourth, computing the matrix foM, may be done using equation (27) and the fast
exponentiation method of [14, Lemma 31] in

O(d”(Npa)*) (31)
bit operations.
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Finally, the computation of the characteristic polynomial takes
0@ (Npa)) (32)

bit operations. (Computation of the products of the conjugates udihyi$¢ absorbed
in the other estimates.) Addin@g), (29),d x (30), (31) and 82) together, and putting
N = O(pad) withe = 9(1), 9(d), we get

@(p4ca3cd4+c‘), for p > 2,
B(plea®dmEct)  forp =2,

wherec is the exponent for ring multiplication as discussed in Sedidn (Here we have
assumed thab < 3.) Using FFT methods, we may take= 1, giving the time complexity
claimed in Theorem.

The space complexity is in all cases determined by the size of the.rngd p¢V+1
and also the polynomial mod p*“+1D_ These are both

@(p4a3d3), for p > 2,

O((eNpd)(eNpa)) = { 6 (a3d5) forp=2

This completes the proof of Theorehin the case of Type 1 Artin—Schreier curves, and
also Type 2, since they are easily reduced to Type 1.

Note 32. Itis possible to reduce the factafs® andd® in the time and space complexities,
respectively, forp = 2 to d* andd* using a more careful analysis: we have not taken
into account that only pari{ terms) of thep-adic expansion of each coefficientihmod
pfW+D needs to be computed. A much more detailed analysis of the actinooiuld
perhaps reduce the value required fovhen p = 2, giving a uniform time estimate of
O (p*aBd®) with spaced (p*ad®) for all p.

Note 33. We briefly describe one alternative approach foe= 2, which has also been
implemented by Vercauteren.The idea is to use a more complicated splitting function
improve the decay rate of the coefficients in The result is that one may ude :=
L(1)NA{X} for the casg = 2, and the proofthat.o/D(L) becomes easier. Specifically,
settingp = 2, taked := 63, whereds is the splitting function defined ir6[ p. 55]. One may
compute the required elemep € Z, in the following manner: ley; satisfy the relation

vi=1+4y5 —8y" +8y5".

Thenys := 2y;. Leta be defined as before, but with the néwThis time, it is stable on

L := L(1)N A{X}. DefineH to be
2

H=Y y, v/ (f(X")).

j=0
where i
. 73

i=0
Then one must compute the actiorwadn the homology...o/ D(L), whereD := X (d/d X)
+Hy.Todo t_his, forj > Odefiner’ L. oto be the Banach module ovémwith orthonormal
basistWt+J X" (4 > 0). Then R
df

Hy =7X—— modnrL-.o.
X dx >0
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Now one performs the reduction process from Seciidncoupled with a Hensel lifting
argument to reveal ands with G = D(r) + s, working modulor/ L. for increasing
powers ofj. Note that one may take any > (d —1)(1+ (a/2)) + 1 ands = 11/3, and all
computations are done wigtadic integers. The algorithm has complexitya™a<3<-4 46y,
wherec is the exponent for multiplication and space complegty:34%). This is slightly
slower in terms of: due to a step in the Hensel lifting, for which we were unable to find a
fast method.

9. Artin—Schreier covers of the torus

In this section we presentin a much more condensed fashion the algorithm for computi
the zeta function of the Type 3 Artin—Schreier curves.

Let f € F,[X, X~1] have negative degre&” < 0 and positive degred* > 0. We
shall explain how to compute the L-functidri( f, 7). From this one may easily compute
the zeta functions of Type 3 Artin—Schreier curves using (9).

Define a weight function wt o by

[u/ld~|1, if u <0,

Wt(u) := { ujd* . fu >0,

where|.| is the usual (nop-adic) absolute value. Fgr > 2, let L be the Banach module
over A with orthonormal basig"'") X" for r € Z. For p = 2, let L denote the Banach
space overt ® Q with orthonormal basis "W X" for r € Z. (Herey is any rational
number with 1/2> y > 1/(2+ 1/(2d")), whered’ := max(|d~|,d™).) Note thatL
contains two-way infinite power series, and in fact still forms a ring because of the decs
conditions on coefficients. Now define the power sefieand F@ in exactly the same
manner as before. In this case they are two-way infinite power seriese\&fite,, defined
exactly as before, we find that both maps are stablé.dfWe have the formula

det(1 — Ta,|L)
det(l — Tqa,|L)

In this case one cannot remove any unit root factors.Aeé the (slightly ‘larger’) complex

of modules D
0O — L — L — 0.

L*(f,T) =

These ared-modules forp > 2 andA ® Q-spaces fop = 2. HereD is defined in exactly
the same manner as before (in Sectynin this caseHy = L/D(L) andH; = 0, and one
recovers the cohomological trace formula

L*(f,T) = det(l — Ho(cta)T).
Once again we have the crucial relatifig(«,) = Ho(a)?. A basis forHp can be taken as
{erdi, axd o ax i ax, ..., nXd+_1},

with d+ —d~ the dimension of this space. Computation of normal fornis/i (L) is done

in a similar manner to before. Precisely, one first uses the method in Sectioasd 7.2

to find an element that is cohomologous to a given element whose leading term has deg
less thand™. One then performs a similar process to increase the degree of the lowest tel
sothatitis not less tha#i". Note that we need a finaladic accuracy of any greater than
(p—1)(d™ —d)(a/2+1). For p >2, the factor can be taken to be 4, and fpr= 2, it

is 4d" + 1. The complexity of the above algorithm may be checked to be identical to that i
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the case whelf is just an ordinary polynomial. More precisely, if we write= d* —d—,
then all the bounds in Sectighare still true. This completes the proof of Theorgépand
Corollary 2 follows from Note5.

Acknowledgements.The research was partly undertaken when the authors were visitin

the Lorentz Center, University of Leiden, and the second author the Institute for Mathe
matical Sciences, National University of Singapore. We wish to thank Hendrik Lenstra ar
Harald Niederreiter, respectively, for their support during these visits, and also Pierric
Gaudry and Frederik Vercauteren for helpful comments on an earlier version of the pap

1.

2.

10.

11.

12.

13.
14.

15.

References

A. ApoLPHSON andS. SPERBER, ‘Exponential sums and Newton polyhedra: cohomol-
ogy and estimatesAnn. of Math.130 (1989) 367—-40635

I. BLAKE, G. SEroUsst andN. SMART, Elliptic curves in cryptography, LMS Lecture
Note Ser. 265 (Cambridge Univ. Press, 1999}, 35, 37

D. Cantor andE. KALTOFEN, ‘On fast multiplication of polynomials over arbitrary
algebras’Acta Inform.28 (1991) 693-70151

R. F. CoLEMAN, ‘P-adic Banach spaces and families of modular forims'ent. Math.
127 (1997) 417-47939,42

B. Dwork, ‘On the rationality of the zeta function of an algebraic variefymer.
J. Math.82 (1960) 631-648.39

B. DWoRK, ‘On the zeta function of a hypersurfacénist. Hautes Etudes Sci. Publ.
Math.12 (1962). 35,39,43,52

N. ELkIEs, ‘Elliptic and modular curves over finite fields and related computational
issues’,Computational perspectives in number theory: Proceedings of a conferenc
in honour of A. O. L. AtkinAMS/IP Stud. Adv. Math. 7 (ed. D. A. Buell and

J. T. Teitelbaum, Amer. Math. Soc., Providence, RI, 1998) 21-3%.

M. FouQUET, P. GAUDRY andR. HARLEY, ‘An extension of Satoh’s algorithm and its
implementation’J. Ramanujan Math. So&5 (2000) 281-318.35

M. FouQuer, P. GaAupry andR. HARLEY, ‘Finding secure curves with the Satoh—FGH
algorithm and an early abort strategigvances in Cryptology - EUROCRYPT 2001
Lecture Notes in Comput. Sci. 2045 (ed. B. Pfitzmann, Springer, 2001) 14329.

P. Gaupry andN. GUReL, ‘An extension of Kedlaya’s algorithm for counting points
on superelliptic curves’, preprint, 200B5,51,51

P. Gaupry andR. HARLEY, ‘Counting points on hyperelliptic curves over finite fields’,
Advances in Cryptology - EUROCRYPT 2000, Lecture Notes in Comput. Sci. 18C
(ed. B. Preneel, Springer, 2000) 19-335

K. S. KEDLAYA, ‘Counting points on hyperelliptic curves using Monsky—Washnitzer
cohomology’, preprint, 200135, 35,51,51

N. Kosritz, ‘Hyperelliptic cryptosystems. Cryptologyl (1989) 139-150.34

A. G.B. Lauper andD. WaN, ‘Counting points on varieties over finite fields of small
characteristic’, preprint, 200135, 35, 35, 36, 38, 39, 39, 39, 39,40, 40,41,41,42,
42,42,42,50,51,51

R. LipL and H. NIEDERREITER, Introduction to finite fields and their applications
(Cambridge Univ. Press, 1986R6

https://doi.org/10.1112/51461157000000681 Published online by Capdridge University Press


https://doi.org/10.1112/S1461157000000681

Zeta functions and Artin—Schreier curves

16. B.PoonEN, ‘Computational aspects of curves of genus at leagtlgorithmic number
theory Il, Lecture Notes in Comput. Sci. 1122, (ed. H. Cohen, Springer, 1996) 283
306. 35

17. T. SatoH, ‘The canonical lift of an ordinary elliptic curve over a finite fields and its
points counting’J. Ramanujan Math. So&5 (2000) 247-270.35, 35

18. R. ScHoor, ‘Elliptic curves over finite fields and the computation of square roots mod
p', Math. Comp44 (1985) 483-494.35

19. R. Schoor, ‘Counting points on elliptic curves over finite fieldd,, Théor. Nombres
Bordeaux7 (1998) 219-254.35

20. J.-P. SERRE, ‘Endomo,rphisms complétement continus des espaces de Banach
adique’,Inst. Hautes Etudes Sci. Publ. Matt2 (1962) 69-85.39,42,44,44

21. S. SPERBER, ‘On the p-adic theory of exponential sum#mer. J. Math108 (1983)
255-296. 43

22. F. VERCAUTEREN, B. PRENEEL andJ. VANDEWALLE, ‘A memory efficient version of
Satoh’s algorithm’ Advances in Cryptology - EUROCRYPT 200g&cture Notes in
Comput. Sci. 2045 (ed. B. Pfitzmann, Springer, 2001) 1-33.

23. D. Wan, ‘Computing zeta functions over finite fieldsContemp. Math225 (1999)
131-141.35

24. D. WAN, ‘Pure L-functions from algebraic geometry over finite fieldshite fields
and applicationged. D. Jungnickel and H. Niederreiter, Springer, 2000) 437—-861.

25. D. WaN, ‘Algorithmic theory of zeta functions over finite fields’, preprint, 20035

Alan G. B. Lauder alan.lauder@comlab.ox.ac.uk
http://web.comlab.ox.ac.uk/oucl/work/alan.lauder/
Computing Laboratory

Oxford University

Oxford OX1 3QD

Daging Wan dwan@math.uci.edu
http://www.math.uci.edu/~dwan/Overview.htm|
Department of Mathematics

University of California

Irvine, CA 92697

USA

https://doi.org/10.1112/51461157000000681 Published online by Cafplbridge University Press


mailto:alan.lauder@comlab.ox.ac.uk
http://web.comlab.ox.ac.uk/oucl/work/alan.lauder/
mailto:dwan@math.uci.edu
http://www.math.uci.edu/$sim $dwan/Overview.html
https://doi.org/10.1112/S1461157000000681

	Introduction
	L-functions and Artin--Schreier curves
	General theory
	Three types of Artin--Schreier curves
	Type 1 Artin--Schreier curves

	p-adic theory
	p-adic rings
	A weight function
	Banach modules

	Analytic representation of additive characters
	Dwork's splitting functions
	Dwork's additive character
	Completely continuous maps

	Dwork cohomology
	The algorithm
	Performing the main steps
	Normal forms in L_{>0}/D(L): Case p > 2
	Normal forms in L_{>0}/D(L): Case p = 2
	Computing the absolute Frobenius matrix
	Finding the characteristic polynomial of Frobenius

	Complexity analysis
	Exponents for ring multiplication
	Complexity of the point-counting algorithm

	Artin--Schreier covers of the torus

