BONGARTZ τ -COMPLEMENTS OVER SPLIT-BY-NILPOTENT EXTENSIONS

STEPHEN ZITO

Mathematics Faculty, University of Connecticut-Waterbury, Waterbury, CT 06702 USA e-mail: stephen.zito@uconn.edu

(Received 12 April 2018; revised 7 June 2018; accepted 8 June 2018; first published online 30 July 2018)

Abstract. Let *C* be a finite dimensional algebra with *B* a split extension by a nilpotent bimodule *E*, and let *M* be a τ_C -rigid module with *U* its Bongartz τ_C complement. If the induced module, $M \otimes_C B$, is τ_B -rigid, we give a necessary and sufficient condition for $U \otimes_C B$ to be its Bongartz τ_B -complement. If *M* is τ_B -rigid, we again provide a necessary and sufficient condition for $U \otimes_C B$ to be its Bongartz τ_B -complement.

1. Introduction. Let *C* be a finite dimensional algebra over an algebraically closed field *k*. By module is meant throughout a finitely generated right *C*-module and mod *C* denotes the category of finitely generated right *C*-modules. Let add *M* denote the full subcategory of mod *C* whose objects are direct sums of direct summands of *M*. Following [1], we call a *C*-module $M \tau_C$ -rigid if $\text{Hom}_C(M, \tau_C M) = 0$ and τ_C -tilting if *M* is τ_C -rigid and the number of pairwise non-isomorphic indecomposable summands of *M* equals the number of pairwise non-isomorphic simple modules of *C*. We say *M* is *almost complete* τ_C -tilting if *M* is τ_C -rigid and |M| = |C| - 1. It was shown in [1] that, given any τ_C -rigid module, there exists a τ_C -rigid module *U* such that $M \oplus U$ is a τ_C -tilting module. This module *U* is called the *Bongartz* τ_C -complement of *M*. In this paper, we are interested in the problem of extending Bongartz τ -complements. More precisely, let *C* and *B* be two finite dimensional *k*-algebras such that there exists a split surjective algebra morphism $B \to C$, whose kernel *E* is contained in the radical of *B*. We then say *B* is a split extension of *A* by the nilpotent bimodule *E*.

Our first main result is the following theorem.

THEOREM 1.1 (Theorem 2.2). Let B be a split extension of C by a nilpotent bimodule E, and let M be a τ_C -rigid module with U its Bongartz τ_C -complement. If $M \otimes_C B$ is τ_B -rigid, then $U \otimes_C B$ is the Bongartz τ_B -complement if and only if $\text{Hom}_C(U \otimes_C E, \tau_C M) = 0$.

Our second main result concerns M as a τ_B -rigid module and its Bongartz τ_B complement. Here, $(\tau_B M)_C$ denotes the C-module structure of $\tau_B M$.

THEOREM 1.2 (Theorem 3.3). Let B be a split extension of C by a nilpotent bimodule E, and let M be a τ_C -rigid module with U its Bongartz τ_C -complement. If M is τ_B -rigid, then $U \otimes_C B$ is the Bongartz τ_B -complement if and only if $\operatorname{Hom}_C(U, (\tau_B M)_C) = 0.$

STEPHEN ZITO

We use freely and without further reference properties of the module categories and Auslander–Reiten translations as can be found in [3]. For an algebra C, we denote by τ_C the Auslander–Reiten translation in mod C.

1.1. Split extensions and extensions of scalars. We begin this section with the formal definition of a split extension.

DEFINITION 1.3. Let B and C be two algebras. We say B is a *split extension* of C by a nilpotent bimodule E if there exists a short exact sequence of B-modules

$$0 \to E \to B \underset{\sigma}{\stackrel{\pi}{\rightleftharpoons}} C \to 0,$$

where π and σ are algebra morphisms, such that $\pi \circ \sigma = 1_C$, and $E = \ker \pi$ is nilpotent.

A useful way to study the module categories of *C* and *B* is a general construction via the tensor product, also known as *extension of scalars*, that sends a *C*-module to a particular *B*-module. Here, *D* denotes the standard duality functor.

DEFINITION 1.4. Let *C* be a subalgebra of *B* such that $1_C = 1_B$, then

$$-\otimes_C B : \operatorname{mod} C \to \operatorname{mod} B$$
,

is called the *induction functor*, and dually

$$D(B \otimes_C D -) : \mod C \to \mod B$$
,

is called the *coinduction functor*. Moreover, given $M \in \text{mod } C$, the corresponding induced module is defined to be $M \otimes_C B$, and the coinduced module is defined to be $D(B \otimes_C DM)$.

It was shown in [6, 3.6] that, as a *C*-module, $M \otimes_C B \cong M \oplus (M \otimes_C E)$. Next, we state a result that gives information about $\operatorname{Hom}_B(-, \tau_B(M \otimes_C B))$ and $\operatorname{Hom}_B(M \otimes_C B, -)$.

LEMMA 1.5. Let M be a C-module, $M \otimes_C B$ the induced module, and let X be any B-module. Then, we have

 $\operatorname{Hom}_{B}(X, \tau_{B}(M \otimes_{C} B)) \cong \operatorname{Hom}_{B}(X, \operatorname{Hom}_{C}(_{B}B_{C}, \tau_{C}M) \cong \operatorname{Hom}_{C}(X \otimes_{B} B_{C}, \tau_{C}M)$

and

$$\operatorname{Hom}_B(M \otimes_C B, X) \cong \operatorname{Hom}_C(M, \operatorname{Hom}_B(_CB_B, X)).$$

Proof. These isomorphisms follow from [2, Lemma 2.1] and the adjunction isomorphism.

We note that $-\otimes_B B_C$ and $\operatorname{Hom}_B(_CB_B, -)$ are two expressions for the forgetful functor mod $B \to \operatorname{mod} C$.

1.2. τ -rigid modules and Bongartz τ -complements. We start with a definition.

DEFINITION 1.6. Let M be a C-module. We define Gen M to be the class of all modules X in mod C generated by M, that is, the modules X such that there exists an integer $d \ge 0$ and an epimorphism $M^d \to X$ of C-modules. Here, M^d is the direct sum of d copies of M. Dually, we define Cogen M to be the class of all modules Y in mod C cogenerated by M, that is, the modules Y such that there exist an integer $d \ge 0$ and a monomorphism $Y \to M^d$ of C-modules.

To describe Bongartz τ -complements, we need the notion of a torsion class and torsion pair.

DEFINITION 1.7. A pair of full subcategories $(\mathcal{T}, \mathcal{F})$ of mod *C* is called a *torsion pair* if the following conditions are satisfied:

(a) $\operatorname{Hom}_{C}(M, N) = 0$ for all $M \in \mathcal{T}, N \in \mathcal{F}$.

(b) $\operatorname{Hom}_{C}(M, -)|_{\mathcal{F}} = 0$ implies $M \in \mathcal{T}$.

(c) $\operatorname{Hom}_{C}(-, N)|_{\mathcal{T}} = 0$ implies $N \in \mathcal{F}$.

We call \mathcal{T} and \mathcal{F} a torsion class and torsionfree class, respectively.

DEFINITION 1.8. Let \mathcal{T} be a full subcategory of mod C and $X \in \mathcal{T}$. We say a C-module X is Ext-*projective* in \mathcal{T} if $\text{Ext}_{C}^{1}(X, \mathcal{T}) = 0$. We denote by $P(\mathcal{T})$ the direct sum of one copy of each indecomposable Ext-projective module in \mathcal{T} up to isomorphism.

It was shown in [1, 2.10] that, for every τ_C -rigid module M, there exists a module U such that $M \oplus U$ is τ_C -tilting. This module is called the Bongartz τ_C -complement of M. To give an explicit construction, we define

$${}^{\perp}(\tau_C M) = \{ X \in \text{mod } C \mid \text{Hom}_C(X, \tau_C M) = 0 \}.$$

It was also shown in [1](2.11) that $^{\perp}(\tau_C M)$ forms a torsion class, the corresponding torsionfree class is Cogen($\tau_C M$), and ($^{\perp}(\tau_C M)$, Cogen($\tau_C M$)) is a torsion pair.

Then, $P(^{\perp}(\tau_C M))$ is a τ_C -tilting module satisfying $M \in \operatorname{add}(P(^{\perp}(\tau_C M)))$. Let U be the direct sum of one copy of each indecomposable Ext-projective module in $^{\perp}(\tau_C M)$ up to isomorphism that does not belong to add M. Then, $M \oplus U$ is τ_C -tilting and U is the Bongartz τ_C -complement of M.

2. Main results and corollaries. Throughout this section, *B* is a split extension of *C* by a nilpotent bimodule *E*. We begin with a result proved in [2] that shows precisely when an induced module, $M \otimes_C B$, is τ_B -rigid (τ_B -tilting).

THEOREM 2.1 ([2, Theorem A]). Let M be a C-module. Then, $M \otimes_C B$ is τ_B -rigid $(\tau_B$ -tilting) if and only if M is τ_C -rigid $(\tau_C$ -tilting) and Hom_C $(M \otimes_C E, \tau_C M) = 0$.

We are now ready for our main result. We assume throughout that M is τ_C -rigid with U its Bongartz τ_C -complement.

THEOREM 2.2. Suppose $M \otimes_C B$ is τ_B -rigid. Then, $U \otimes_C B$ is the Bongartz τ_B complement if and only if $\text{Hom}_C(U \otimes_C E, \tau_C M) = 0$.

Proof. Suppose $U \otimes_C B$ is the Bongartz τ_B -complement of $M \otimes_C B$. This implies Hom_B $(U \otimes_C B, \tau_B(M \otimes_C B)) = 0$. Using Lemma 1.5 and [6, 3.6], we have the following

isomorphisms

$$\operatorname{Hom}_B(U \otimes_C B, \tau_B(M \otimes_C B)) \cong \operatorname{Hom}_B(U \otimes_C B, \operatorname{Hom}_C({}_BB_C, \tau_C M)) \cong$$

$$\operatorname{Hom}_{C}(U \otimes_{C} B \otimes_{B} B_{C}, \tau_{C} M) \cong \operatorname{Hom}_{C}(U \otimes_{C} B_{C}, \tau_{C} M) \cong$$

$$\operatorname{Hom}_{C}(U \otimes_{C} (C \oplus E)_{C}, \tau_{C}M) \cong \operatorname{Hom}_{C}(U \oplus (U \otimes_{C} E), \tau_{C}M) \cong$$

 $\operatorname{Hom}_{C}(U, \tau_{C}M) \oplus \operatorname{Hom}_{C}(U \otimes_{C} E, \tau_{C}M).$

We conclude that $\operatorname{Hom}_{C}(U \otimes_{C} E, \tau_{C} M) = 0$.

Conversely, suppose $\operatorname{Hom}_C(U \otimes_C E, \tau_C M) = 0$. Then, $\operatorname{Hom}_C(U \otimes_C E, \tau_C U) = 0$ because U is Ext-projective in $^{\perp}(\tau_C M)$ and proposition [3, VI, 1.11] shows $\tau_C U$ is cogenerated by $\tau_C M$ since $\operatorname{Cogen}(\tau_C M)$ is the corresponding torsionfree class by [1, 2.11]. Thus, Theorem 2.1 says $U \otimes_C B$ is τ_B -rigid. Using the above vector space isomorphisms, we see $\operatorname{Hom}_B(U \otimes_C B, \tau_B(M \otimes_C B)) = 0$. Next, we will show $U \otimes_C B$ is Ext-projective in $^{\perp}(\tau_B(M \otimes_C B))$. By proposition [1, 2.9], we need to show that

$$\operatorname{Gen}(U \otimes_C B) \subseteq {}^{\perp}(\tau_B(M \otimes_C B)) \subseteq {}^{\perp}(\tau_B(U \otimes_C B)).$$

The first containment is clear so let $X \in {}^{\perp}(\tau_B(M \otimes_C B))$ but $X \notin {}^{\perp}(\tau_B(U \otimes_C B))$. Using the above vector space isomorphisms, $\operatorname{Hom}_C(X_C, \tau_C M) = 0$ and $\operatorname{Hom}_C(X_C, \tau_C U) \neq 0$, where X_C denotes the *C*-module structure of *X*. Since proposition [3, VI, 1.11] says $\tau_C U$ is cogenerated by $\tau_C M$, we have a contradiction. Thus, $U \otimes_C B$ is Ext-projective in ${}^{\perp}(\tau_B(M \otimes_C B))$.

Finally, we need to show $U \otimes_C B$ comprises all the indecomposable Ext-projective modules in ${}^{\perp}(\tau_B(M \otimes_C B))$ up to isomorphism not in $\operatorname{add}(M \otimes_C B)$. Suppose not and let Y be the direct sum of all remaining Ext-projective modules in ${}^{\perp}(\tau_B(M \otimes_C B))$ up to isomorphism not in $\operatorname{add}(M \otimes_C B)$. Then, $(U \otimes_C B) \oplus Y$ is the Bongartz τ_B -complement of $M \otimes_C B$. Thus, $(M \otimes_C B) \oplus (U \otimes_C B) \oplus Y$ is a τ_B -tilting module such that the number of pairwise non-isomorphic indecomposable summands equals the number of pairwise non-isomorphic simple modules of B. However, [6, 3.4] implies the number of pairwise non-isomorphic simple modules of C and B are equal. Thus, we have the inequality $|(M \otimes_C B) \oplus (U \otimes_C B) \oplus Y| > |B|$ but this contradicts [1, 1.3]. We conclude Y must be 0 and $U \otimes_C B$ is the Bongartz τ_B -complement of $M \otimes_C B$. \Box

Next, we present three corollaries. If $M \in \text{Gen } U$, then $\text{Hom}_C(U \otimes_C E, \tau_C M) = 0$ guarantees $M \otimes_C B$ is τ_B -rigid with $U \otimes_C B$ the Bongartz τ_B -complement.

COROLLARY 2.3. Suppose $M \in \text{Gen } U$. Then, $M \otimes_C B$ is τ_B -rigid with $U \otimes_C B$ its Bongartz τ_B -complement if and only if $\text{Hom}_C(U \otimes_C E, \tau_C M) = 0$.

Proof. We only need to show $M \otimes_C B$ being τ_B -rigid follows from the assumption $\operatorname{Hom}_C(U \otimes_C E, \tau_C M) = 0$. The rest follows from Theorem 2.2. Since $M \in \operatorname{Gen} U$, there exists an epimorphism $f: U^d \to M$ where $d \ge 0$. The functor $_{-} \otimes_C E$ is right exact and applying to f yields an epimorphism $f \otimes_C 1_E : (U \otimes_C E)^d \to M \otimes_C E$. Thus, $\operatorname{Hom}_C(U \otimes_C E, \tau_C M) = 0$ implies $\operatorname{Hom}_C(M \otimes_C E, \tau_C M) = 0$ that further implies $M \otimes_C B$ is τ_B -rigid by Theorem 2.1.

464

In the special case, where M is indecomposable and non-projective, we always have $M \in \text{Gen } U$.

COROLLARY 2.4. Let M be indecomposable and non-projective. Then, $M \otimes_C B$ is τ_B -rigid with $U \otimes_C B$ its Bongartz τ_B -complement if and only if $\operatorname{Hom}_C(U \otimes_C E, \tau_C M) = 0$.

Proof. We need to show $M \in \text{Gen}U$ and the result will follow from corollary 2.3. By [1, 2.22], either $M \in \text{Gen}U$ or ${}^{\perp}(\tau_C U) \subseteq {}^{\perp}(\tau_C M)$. Assume ${}^{\perp}(\tau_C U) \subseteq {}^{\perp}(\tau_C M)$ is true. Since U is the Bongartz τ_C -complement, we have ${}^{\perp}(\tau_C M) \subseteq {}^{\perp}(\tau_C U)$ by [1, 2.9]. Thus, ${}^{\perp}(\tau_C U) = {}^{\perp}(\tau_C M)$. Again, since U is the Bongartz τ -complement of M, we know $\tau_C U \in \text{Cogen}(\tau_C M)$. Now, $\text{Gen}M \subseteq {}^{\perp}(\tau_C M) = {}^{\perp}(\tau_C U)$ and [1, 2.9] implies Mis Ext-projective in ${}^{\perp}(\tau_C U)$. [3, VI, 1.11] gives $\tau_C M \in \text{Cogen}(\tau_C U)$. Since $\tau_C U$ and $\tau_C M$ cogenerate each other, we conclude $\tau_C M \cong \tau_C U$. This is only possible if both $\tau_C M$ and $\tau_C U$ are 0 that implies M and U are projective. But we assumed M is not projective and thus a contradiction. We conclude $M \in \text{Gen}U$.

Next, we assume that $E \in \text{Gen}M$ when E is viewed as a right C-module.

COROLLARY 2.5. Let $E \in \text{Gen}M$. Then, $M \otimes_C B$ is τ_B -rigid with $U \otimes_C B$ its Bongartz τ_B -complement.

Proof. Since $E \in \text{Gen}M$, we have $\text{Hom}_C(E, \tau_C M) = 0$. Since $\tau_C U$ is cogenerated by $\tau_C M$ by [3, VI, 1.11], we also have $\text{Hom}_C(E, \tau_C U) = 0$. Using the adjunction isomorphism,

 $0 = \operatorname{Hom}_{C}(M, \operatorname{Hom}_{C}(E, \tau_{C}M)) \cong \operatorname{Hom}_{C}(M \otimes_{C} E, \tau_{C}M).$

By Theorem 2.1, $M \otimes_C B$ is τ_B -rigid. By the same reasoning, $\operatorname{Hom}_C(U \otimes_C E, \tau_C M)$ and $\operatorname{Hom}_C(U \otimes_C E, \tau_C U)$ are equal to 0. The result now follows from Theorem 2.2. \Box

Our next proposition concerns almost complete τ -tilting modules.

PROPOSITION 2.6. Suppose M is an almost complete τ_C -tilling module such that $M \oplus Y$ is τ_C -tilling and Y is not the Bongartz τ_C -complement for some indecomposable C-module Y. Suppose $M \otimes_C B$ is τ_B -tilling. Then, $(M \otimes_C B) \oplus (Y \otimes_C B)$ is τ_B -tilling if and only if $\operatorname{Hom}_C(M \otimes_C E, \tau_C Y) = 0$.

Proof. Since Y is indecomposable and not the Bongartz τ_C -complement, we have $Y \in \text{Gen}M$ by [1, 2.22]. Thus, there exists an epimorphism $f : M^d \to Y$ where $d \ge 0$. The functor $_{-} \otimes_C B$ is right exact and applying to f yields an epimorphism $f \otimes_C 1_E : (M \otimes_C B)^d \to Y \otimes_C B$. Since $M \otimes_C B$ is τ_B -rigid and $Y \otimes_C B \in \text{Gen}(M \otimes_C B)$, we have $\text{Hom}_B(Y \otimes_C B, \tau_B(M \otimes_C B)) = 0$. Using Lemma 1.5 and [6, 3.6], we have

 $\operatorname{Hom}_{B}(M \otimes_{C} B, \tau_{B}(Y \otimes_{C} B)) \cong \operatorname{Hom}_{C}((M \otimes_{C} B)_{C}, \tau_{C} Y) \cong$

 $\operatorname{Hom}_{C}(M, \tau_{C} Y) \oplus \operatorname{Hom}_{C}(M \otimes_{C} E, \tau_{C} Y).$

Thus, $\operatorname{Hom}_C(M \otimes_C E, \tau_C Y) = 0$ if and only if $\operatorname{Hom}_B(M \otimes_C B, \tau_B(Y \otimes_C B)) = 0$ and our statement follows.

3. *M* as a τ -rigid *B*-module. In this section, we present several results concerning a *C*-module *M* which is τ_B -rigid. Throughout, we assume *B* is a split extension of *C*

by a nilpotent bimodule *E* and *M* is τ_C -rigid. We begin with a sufficient condition for *M* to be τ_B -rigid.

PROPOSITION 3.1. If $\operatorname{Hom}_{C}(M \otimes_{C} E, \operatorname{Gen} M) = 0$, then M is τ_{B} -rigid.

Proof. By [6, 3.6], we have the following short exact sequence in mod B

 $0 \to M \otimes_C E \to M \otimes_C B \to M \to 0.$

Applying $Hom_B(-, Gen M)$, we obtain an exact sequence

 $\operatorname{Hom}_B(M \otimes_C E, \operatorname{Gen} M) \to \operatorname{Ext}^1_B(M, \operatorname{Gen} M) \to \operatorname{Ext}^1_B(M \otimes_C B, \operatorname{Gen} M).$

First, we wish to show $\operatorname{Ext}_B^1(M \otimes_C B, \operatorname{Gen} M) = 0$. We know from [5, 5.8] this is equivalent to $\operatorname{Hom}_B(M, \tau_B(M \otimes_C B)) = 0$. By Lemma 1.5 and the assumption that M is τ_C -rigid, $\operatorname{Hom}_B(M, \tau(M \otimes_C B)) \cong \operatorname{Hom}_C(M, \tau_C M) = 0$. Next, we want to show $\operatorname{Hom}_B(M \otimes_C E, \operatorname{Gen} M) = 0$. By restriction of scalars, any non-zero morphism from $M \otimes_C E$ to $\operatorname{Gen} M$ in mod B would give a non-zero morphism in mod C, contrary to our assumption. Thus, $\operatorname{Hom}_B(M \otimes_C E, \operatorname{Gen} M) = 0$. We conclude $\operatorname{Ext}_B^1(M, \operatorname{Gen} M) = 0$ and [5, 5.8] implies M is τ_B -rigid.

The following determines precisely when $M \otimes_C B$ is Ext-projective in $^{\perp}(\tau_B M)$. Recall, we denote the *C*-module structure of $\tau_B M$ by $(\tau_B M)_C$.

PROPOSITION 3.2. Suppose M is τ_B -rigid. Then $M \otimes_C B \in P(^{\perp}(\tau_B M))$ if and only if $\operatorname{Hom}_C(M, (\tau_B M)_C) = 0$.

Proof. Assume $M \otimes_C B \in P(^{\perp}(\tau_B M))$. Then $\operatorname{Hom}_B(M \otimes_C B, \tau_B M) = 0$. Using Lemma 1.5, we have $\operatorname{Hom}_B(M \otimes_C B, \tau_B M) \cong \operatorname{Hom}_C(M, (\tau_B M)_C) = 0$. Next, assume $\operatorname{Hom}_C(M, (\tau_B M)_C) = 0$. Again, Lemma 1.5 gives $\operatorname{Hom}_B(M \otimes_C B, \tau_B M) = 0$. Thus, $M \otimes_C B \in ^{\perp}(\tau_B M)$ and we need to show $M \otimes_C B \in P^{\perp}(\tau_B M)$. We have $\tau_B(M \otimes_C B) \in \operatorname{Cogen}(\tau_B M)$ by [4, 1.2] and [3, VI, 1.11] gives $M \otimes_C B$ is Ext-projective in $^{\perp}(\tau_B M)$. \Box

Suppose U is the Bongartz τ_C -complement of M. If M is τ_B -rigid, our main result gives a necessary and sufficient condition for $U \otimes_C B$ to be the Bongartz τ_B -complement.

THEOREM 3.3. Suppose M is τ_B -rigid. Then $U \otimes_C B$ is the Bongartz τ_B -complement if and only if $\text{Hom}_C(U, (\tau_B M)_C) = 0$.

Proof. Assume $U \otimes_C B$ is the Bongartz τ_B -complement. Then $\operatorname{Hom}_B(U \otimes_C B, \tau_B M) = 0$ and Lemma 1.5 gives $\operatorname{Hom}_B(U \otimes_C B, \tau_B M) \cong \operatorname{Hom}_C(U, (\tau_B M)_C) = 0$. Next, assume $\operatorname{Hom}_C(U, (\tau_B M)_C) = 0$. Again, Lemma 1.5 gives $\operatorname{Hom}_B(U \otimes_C B, \tau_B M) = 0$. Thus, $U \otimes_C B \in \bot(\tau_B M)$ and we need to show $U \otimes_C B \in P^{\bot}(\tau_B M)$. Using [1, 2.9], we need to show the following containments

$$\operatorname{Gen}(U \otimes_C B) \subseteq {}^{\perp}(\tau_B M) \subseteq {}^{\perp}(\tau_B(U \otimes_C B)).$$

The first is clear so let $X \in {}^{\perp}(\tau_B M)$. We need to show $X \in {}^{\perp}(\tau_B(U \otimes_C B))$. B)). If $X \notin {}^{\perp}(\tau_B(U \otimes_C B))$, then Lemma 1.5 implies $\operatorname{Hom}_B(X, \tau_B(U \otimes_C B)) \cong$ $\operatorname{Hom}_C(X_C, \tau_C U) \neq 0$. Since $\tau_C U \in \operatorname{Cogen}(\tau_C M)$, we would have $\operatorname{Hom}_C(X_C, \tau_C M) \neq$ 0. Since we assumed $X \in {}^{\perp}(\tau_B M)$ and $\tau_B(M \otimes_C B) \in \operatorname{Cogen}(\tau_B M)$ by [4, 1.2], we must have $\operatorname{Hom}_B(X, \tau_B(M \otimes_C B)) = 0$. However, using Lemma 1.5, we see Hom_{*B*}(*X*, $\tau_B(M \otimes_C B)$) \cong Hom_{*C*}(*X*_{*C*}, $\tau_C M$) = 0, a contradiction. Thus, we must have $X \in {}^{\perp}(\tau_B(U \otimes_C B))$ and conclude by proposition [1, 2.9] that $U \otimes_C B \in P^{\perp}(\tau_B M)$. Finally, to show $U \otimes_C B$ comprises all the indecomposable Ext-projective modules in ${}^{\perp}(\tau_B M)$ up to isomorphism not in add*M*, we apply the same reasoning used in the conclusion of Theorem 2.2.

Our next result shows that $(M \otimes_C B) \oplus (U \otimes_C B)$ and $M \oplus U$ are both τ_B -tilting if and only if they are isomorphic to each other.

PROPOSITION 3.4. $M \oplus U$ and $(M \otimes_C B) \oplus (U \otimes_C B)$ are both τ_B -tilting if and only if $M \otimes_C E = 0$ and $U \otimes_C E = 0$.

Proof. Assume $M \oplus U$ and $(M \otimes_C B) \oplus (U \otimes_C B)$ are both τ_B -tilting. Since $M \otimes_B U$ is τ_B -tilting, we know $\operatorname{Ext}^1_B(M \oplus U, \operatorname{Gen}(M \oplus U)) = 0$ by [5, 5.8]. Since $(M \otimes_C B) \oplus (U \otimes_C B)$ is τ_B -tilting, we know $\operatorname{Hom}_C((M \otimes_C E) \oplus (U \otimes_C E), \tau_C(M \oplus U)) = 0$ by Theorems 2.1 and 2.2. Thus, $(M \otimes_C E) \oplus (U \otimes_C E) \in \operatorname{Gen}(M \oplus U)$ by [1, 2.12]. However, we know $\operatorname{Ext}^1_B(M \oplus U, (M \otimes_C E) \oplus (U \otimes_C E)) \neq 0$ by [6, 3.6]. This contradicts the fact that $\operatorname{Ext}^1_B(M \oplus U, \operatorname{Gen}(M \oplus U)) = 0$ unless $M \otimes_C E$ and $U \otimes_C E$ are equal to 0.

Assume $M \otimes_C E$ and $U \otimes_C E$ are equal to 0. [6, 3.6] implies $(M \otimes_C B) \oplus (U \otimes_C B) \cong (M \oplus U)$. Also, $\operatorname{Hom}_C((M \otimes_C E) \oplus (U \otimes_C E), \tau_C(M \oplus U)) = 0$ implies $(M \otimes_C B) \oplus (U \otimes_C B)$ is τ_B -tilting by Theorems 2.1 and 2.2 and our statement follows.

If we don't assume *M* is τ_C -rigid (τ_C -tilting), our last result shows *M* being τ_B -rigid (τ_B -tilting) guarantees *M* being τ_C -rigid (τ_C -tilting).

PROPOSITION 3.5. Suppose M is τ_B -rigid (τ_B -tilting), then M is τ_C -rigid (τ_C -tilting).

Proof. Since *M* is τ_B -rigid (τ_B -tilting), Hom_B($M, \tau_B M$) = 0. Since $\tau_C(M \otimes_C B)$ is a submodule of $\tau_B M$ by [4, 1.2], we must have Hom_B($M, \tau_B(M \otimes_C B)$) = 0. Using Lemma 1.5 and the fact *M* is also a *C*-module, we have

 $\operatorname{Hom}_{B}(M, \tau_{B}(M \otimes_{C} B)) \cong \operatorname{Hom}_{C}(M \otimes_{B} B_{C}, \tau_{C} M) \cong \operatorname{Hom}_{C}(M, \tau_{C} M).$

Thus, we have $\operatorname{Hom}_{\mathcal{C}}(M, \tau_{\mathcal{C}}M) = 0$ and conclude M is $\tau_{\mathcal{C}}$ -rigid ($\tau_{\mathcal{C}}$ -tilting).

4. Examples. In this section, we give two examples illustrating our results. We will construct a cluster-tilted algebra from a tilted algebra. Such a construction is an example of a split extension. Let *A* be the path algebra of the following quiver:

Since A is a hereditary algebra, we may construct a tilted algebra. To do this, we need an A-module which is tilting. Consider the Auslander–Reiten quiver of A which

is given by

Let T be the tilting A-module

$$T = 5 \oplus \frac{3}{2} \oplus \frac{3}{2} \oplus \frac{3}{2} \oplus \frac{2}{1} \oplus 1.$$

The corresponding titled algebra $C = \operatorname{End}_A T$ is given by the bound quiver

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \xrightarrow{\gamma} 4 \longrightarrow 5 \qquad \alpha \beta \gamma = 0.$$

Then, the Auslander–Reiten quiver of C is given by

468

The corresponding cluster-tilted algebra $B = C \ltimes \operatorname{Ext}_{C}^{2}(DC, C)$ is given by the bound quiver

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \xrightarrow{\gamma} 4 \longrightarrow 5 \qquad \alpha \beta \gamma = \beta \gamma \delta = \gamma \delta \alpha = \delta \alpha \beta = 0.$$

Then, the Auslander–Retien quiver of B is given by

EXAMPLE 4.1. In mod *C*, consider $M = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} \oplus \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \oplus 3$. *M* is a τ_C -rigid module with

Bongartz τ_C -complement $U = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \oplus \begin{pmatrix} 3 \\ 4 \end{pmatrix}$. In this case, we have $M \otimes_C B \cong M$ that implies $M \otimes_C E = 0$. Thus, $M \otimes_C B \cong M$ is τ_B -rigid and the induced module of $U, U \otimes_C B = 1$ 3 $2 \oplus 4$, is the Bongartz τ_B -complement. Notice, we have $\tau_C M = 4 \oplus 4$, $U \otimes_C E = 1$, 3and Hom_C($U \otimes_C E, \tau_C M$) = 0, in accordance with Theorem 2.2.

EXAMPLE 4.2. In mod C, consider $M = \begin{array}{c} 5\\ 4\\ 5\end{array}$ M is projective with Bongartz

 τ_C -complement $U = 5 \oplus \frac{4}{5} \oplus \frac{2}{3} \oplus \frac{1}{2}$. We have $M \otimes_C E = 1$ and it is clear to see $\operatorname{Hom}_C(M \otimes_E C, \operatorname{Gen} M) = 0$. Thus, M is τ_B -rigid by proposition 3.1 with

STEPHEN ZITO

 $\tau_B M = \frac{4}{1}$. Since $M \otimes_C B = \frac{3}{4}$, Proposition 3.2 says $M \otimes_C B \in P(^{\perp}(\tau_B M))$ because Hom_C($M, (\tau_B M)_C$) = Hom_C($M, 4 \oplus 1$) = 0.

is a summand of the Bongartz τ_B -complement because $\operatorname{Hom}_B\begin{pmatrix} 1 & 4 \\ 2 \oplus 15, 4 \\ 3 & 2 \end{pmatrix} \neq 0.$

Notice, $(\tau_B M)_C = 4 \oplus 1$ and $\operatorname{Hom}_C \begin{pmatrix} 1 \\ 2 \oplus, 4 \oplus 1 \\ 3 \end{pmatrix} \neq 0$ in accordance with Theorem

3.3. However, Theorem 3.3 guarantees $5 \oplus \frac{3}{4}$ are summands of the Bongartz τ_B -

complement since $\operatorname{Hom}_C \left(\begin{array}{c} 2\\ 5 \oplus \frac{3}{4}, 4 \oplus 1\\ 5 \end{array} \right) = 0.$

ACKNOWLEDGEMENTS. This work was supported by the University of Connecticut-Waterbury.

REFERENCES

1. T. Adachi, O. Iyama and I. Reiten, τ -tilting theory, *Compos. Math.* 150(3) (2014), 415–452.

2. I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, *Comm. Algebra* 26 (1998), 1547–1555.

3. I. Assem, D. Simson and A. Skowronski, *Elements of the representation theory of associative algebras, 1: Techniques of representation theory*, London Mathematical Society Student Texts 65 (Cambridge University Press, 2006).

4. I. Assem and D. Zacharia, Full embeddings of almost split sequences over split-bynilpotent extensions, *Coll. Math.* **81**(1) (1999), 21–31.

5. M. Auslander and S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69(2) (1981), 426–454.

6. R. Schiffler and K. Serhiyenko, Induced and coinduced modules in cluster-tilted algebras, J. Algebra 472 (2017), 226–258.

470