
J. Functional Programming 6 (5): 757-761, September 1996 © 1996 Cambridge University Press 757

A simple proof of the undecidability of
inhabitation in XP

MARC BEZEM1 and JAN SPRINGINTVELD2*
1 Department of Philosophy, Utrecht University,

P.O. Box 80126, 3508 TC Utrecht, The Netherlands
2 Computing Science Institute, University of Nijmegen, P.O. Box 9010,

6500 GL Nijmegen, The Netherlands

Capsule Review

It had been known that the simplest system with dependent types, XP, is undecidable, in that
sense that the set

{(A,D\3pr\-XPp:A}

is non-computable.
The proof runs as follows. First, there is an obvious embedding of predicate logic into XP.

This is the principle idea of one of the basic members of the AUTOMATH family, AUT-QE,
and also later of Edinburgh LF. It can be shown that this embedding is conservative (Berardi;
Barendsen and Geuvers). This is not completely obvious, since XP has functions of arbitrarily
high type at its disposal. Now it follows from Godel's technique (proving the incompleteness
theorems) that arithmetic and even a finitely axiomatizable part of it (Robinson's arithmetic)
is essentially undecidable. Therefore XP is also undecidable.

This is quite a long path to the result - admittedly quite beautiful, passing along classical
details like the Chinese remainder theorem - but almost too much. Fortunately, the authors
of this paper have given a very direct argument showing the same result, by a surprisingly
straightforward encoding of a register machine.

An inhabitation problem in a given Pure Type System (PTS) XS is a pair (F, B)
such that, for some sort s, F \-^s B : s. A solution for (F, B) is a term A such that
F \~xs A : B. In this note we prove that in the PTS kP it is undecidable whether an
inhabitation problem has a solution. This result also follows from Lob's results on
embeddings of predicate logic in fragments of intuitionistic logic (Lob, 1976, p. 1, 1.
10) plus the fact that XP is sound and complete with respect to minimal predicate
logic (see Geuvers (1993)). The merit of our proof is that it is short, simple and
intuitive.

Sometimes, inhabitation problems are defined with F the empty context. In IP,
however, this makes little sense: the only statement valid in the empty context is
* : D. After the proof of our result, we discuss related results concerning the other
systems of the ^-cube. For a general introduction to PTSs the reader is referred to
Barendregt (1992).

f Supported by the Netherlands Computer Science Research Foundation (SION) with finan-
cial support of the Netherlands Organisation for Scientific Research (NWO).

https://doi.org/10.1017/S0956796800001969 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001969

758 M. Bezem and J. Springintveld

The machine model we use in this note is the register machine of Shepherdson
and Sturgis (1963). It easily follows from Shepherdson and Sturgis (1963) that every
partial recursive function can be computed by a register machine program using the
instruction set below. As a consequence, the halting problem for register machines
is undecidable. We shall encode this halting problem as an inhabitation problem
in XP, thus proving that inhabitation in XP is undecidable too. To this end, we
translate register machine programs into contexts of IP, similarly to the way in
which Shepherdson (1985) translates them into logic programs. The advantage of
this machine model and our translation is that it only requires primitives that are
already present in XP, thus trivializing the encoding.

Definition I

A register machine program P is a finite sequence I\,...,In (n > 0) of instructions

which operate on registers xi,..., xm, where each instruction is of one of the following
two forms (with 1 < i < m, 1 < j < n+ 1):

x, := x, + l (1)

IF x, ± 0 THEN x, := x, - 1 AND GOTO j (2)

Every program is completed with a HALT instruction In+i. Execution of a register
machine program with respect to given contents n\,...,nm e N of the registers
xi,...,xm starts from I\, executing the instructions in the obvious sequential way, and
terminates when the HALT instruction 7n+i is reached.

The idea of the translation is that registers are modelled as arguments of predicates
Pk (all having arity m), with k the program counter, and that state transitions of
the register machine by the execution of an instruction are modelled by passing
from the conclusion of an implication to its premiss ('backward reasoning'). So the
instructions correspond to (universally closed) implications. The HALT instruction
corresponds to a predicate Pn+\ which is unconditionally true. Thus, a terminating
execution corresponds to a normal proof of an atomic statement modelling the
initial state of the register machine ('extracting proofs from programs'). Via the
formulas as types interpretation, the formulas corresponding to the instructions can
be interpreted as types of XP. Proofs of these formulas correspond to terms of the
corresponding types. Thus a terminating execution corresponds to a normal term of
an atomic type modelling the initial state of the register machine.

We now explain in detail how instructions of P are translated into types of XP
corresponding to the logical statements above.

Definition 2
Let P be a register machine program. The signature of P is a context ZP denned by
(with AT1-** denoting JV->* if m = 1 and JV->(Nm~'->*) if m > 1):

Z P = (N : *, o : N, s : N^N, Pi : Nm^*,..., Pn + 1 : AT->*>.

If the instruction h of a register machine P is of the form (1), then the corresponding
type is:

q>k = Tlx\:N...T\xm:N.Pk+lxx...(sxl)...xm - • Pkx\...Xi...xm.

https://doi.org/10.1017/S0956796800001969 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001969

A simple proof of the undecidability of inhabitation in AP 759

If the instruction Ik is of the form (2), then there are two corresponding types, one
for each of the two cases x, = o and (sx,):

<Pko = Tlxr-N...Tlxm:N.Pk+lxi...o...xm -> Pkx\...o...xm,

(Pks = n* i :N...Ylxm:N.PjXi...x,...xm -> Pkxi...(sxi)...xm.

The HALT instruction In+\ corresponds to:

q>n+1 =Uxi:N ...Ylxm:N.Pn+iXi...xm.

The above types are referred to as cp-types. The context of P is a context Tp
extending the signature of P with declarations of the form ik : q>k for all <p-types q>k.
So Tp is of the form:

TP = Zp, (. . . , ik : cpk,..., ii0 : cpi0, i/s : q>is,...).

We need a few technicalities. Numerals are defined as usual by: 0 = o; n + 1 = (sn).
Furthermore, sequences of numerals are denoted as vectors. Before proving the
theorem, we give an example of a register machine program and its translation.

Example 3
We describe a register machine program P operating on one register.

h = IF x ± 0 THEN x := x - 1 AND GOTO 4

h = x := x + 1

h = IF x ^ O THEN x : = x - l AND GOTO 1

U = HALT

It is easy to see that this program terminates on every positive number, returning
the predecessor of that number, but that it does not terminate on 0.

Next, we translate P into a context TP of kP. The signature of P is given by

I,p = {N :*,o :N,s : N->N,P\ : N->*,...,P4 : N—>•).

The context TP consists of £/>, extended with the following declarations:

ho "

rix:iV.P4X->Pi(sx)
h - - - - - -

'3s

u
Ilx:N.Pix->P3{sx)

Ux:N.PAx

It will follow from the theorem below that for all numerals n the type P\{sn) is
inhabited in TP, while P\o is not inhabited. To provide an intuitive explanation,
we view types again as formulas (reading II as V) and in particular the types of
the variables iio, ..., i4 as assumptions. We show that Pi (so) is provable from these
assumptions and argue that P\o is not provable.

https://doi.org/10.1017/S0956796800001969 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001969

760 M. Bezem and J. Springintveld

To prove Pi (so), use the assumption TIx:N.P4X—>P\(sx), after which one has
to prove P40. This follows from Hx.N.P4x. Note that the inhabitant of Pi (so)
corresponding to this proof is i\so(Uo).

A proof of P10 would necessarily have the following shape. First, use the
assumption Y\x:N.Pio—>P\O. This yields the obligation to prove P20. Next, use
Ylx:N.Pi(sx)—*P2x. Then one has to prove P3(so). For this, use Tlx:N.P\x->P}(sx).
This leads back to the original goal P10.

Theorem 4
Let P be a register machine program. Then we have: P terminates on n if and only
if TP \~XP M : P{h for some term M.

Proof
We start with an important observation: for every type Pun there is exactly one
instance of a (p-type whose conclusion matches with P&n. The uniqueness of the
matching predicate symbol reflects the fact that register machines are deterministic.
The uniqueness of the match with respect to the numerals follows from the fact that
the matching is first order, so that matching substitutions are unique (if they exist).
'=>' Assume P terminates on h. Then we have

T p \-XP iXthi{iX2h2(...(iXphp)...)) : P i n ,

where x\ = 1, xp = n + 1 and the n,'s are suitable instantiations of the <p-types such
that the conclusion of the type of iXlhi matches P\h and, for all 1 < q < p, the
conclusion of the type of iXq+1nq+l matches the premiss of the type of iXqnq. These
instances follow the execution step by step by the observation above.
'<=' Assume TP \~xp M : P\h for some term M. Since XP is strongly normalising
and the subject reduction property holds, we may assume that M is normal. Now
termination of P on h follows from the claim below (to be proved by induction on
the length of the normal form, using the observation above). •

Claim
If TP \-),P M : Pkfi and M is in normal form, then M is of the form
'x, n x { i X l h 2 { . . . (i X p n p) . . .)) .

We end this paper with a discussion of related results for systems of the A-cube
(Barendregt, 1992). Since all systems on the right hand side of the /l-cube are
conservative over XP (Geuvers, 1993), the undecidability of inhabitation in these
systems follows from the undecidability of inhabitation in XP. Shifting to the left-
hand side of the cube, we observe that the proof in this note can easily be adapted
to a proof of the undecidability of inhabitation in Xa>. This is done by changing all
occurrences of N to * and deleting the declaration N : *. For example, the signature
of P now reads (with *m—>* denoting *—>* if m = 1 and *—>(*m~'—>*) if m > 1):

UP = (o : *,s : *-»*,Pi : *m^*,...,Pn+l : *m->*).

Decidability of inhabitation in 2—• can be proved by means of the formulas as types
interpretation and finite Kripke models. The decidability of inhabitation in XM is
proved in Springintveld (1995) by reducing it to inhabitation in X—*. From Lob

https://doi.org/10.1017/S0956796800001969 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001969

A simple proof of the undecidability of inhabitation in kP 761

(1976), it follows that inhabitation in)2 is undecidable. It would be very interesting
to see if the simple proof method in this paper can be transferred to the setting of
A2. In fact the adapted proof above is valid for A3, which is XI with abstraction
from variables of type *m—> • (m > 0). As a PTS, A2 is specified by the axiom * : O
and the rules (*,*), (•,*). In addition, XI has an extra sort D', with axiom * : • '
and rules (D,a'),(D', *). The axiom * : • ' and the rule (D, n') justify typings of the
form *m—•* : • ' in A3. So A3 contexts may contain declarations of the form s : *—>*
and Pk : *m—>*. The rule (•',*) can be used to abstract from these variables. Note
that we only need the presence of these variables in the context, and do not need to
abstract from them. This means that our proof holds in a system A3~, which is A3
minus the rule (• ' , *).

References

Barendregt, H. P. (1992) Lambda calculi with types. In S. Abramsky, D. M. Gabbay and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Vol. 2, pp. 117-309.
Oxford Science Publications.

Geuvers, H. (1993) Conservativity between logics and typed X calculi. In H. P. Barendregt and
T. Nipkow, editors, Proceedings of the 1" Annual Workshop 'Types for Proofs and Programs'
TYPES '93: Nijmegen, The Netherlands, Lecture Notes in Computer Science 806, pp. 79-108.
Springer-Verlag.

Lob, M. H. (1976) Embedding first order predicate logic in fragments of intuitionistic logic.

J. Symbolic Logic 41 705-719.

Shepherdson, J. C. (1985) Undecidability of Horn clause logic and pure Prolog. Unpublished

manuscript.

Shepherdson, J. C. and Sturgis, H. E. (1963) Computability of recursive functions. J. ACM

10: 217-255.

Springintveld, J. (1995) Algorithms for type theory. Phd thesis, Department of Philosophy,
Utrecht University.

https://doi.org/10.1017/S0956796800001969 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001969

