Math. Struct. in Comp. Science (2017), vol. 27, pp. 1236-1264. (© Cambridge University Press 2015
doi:10.1017/S0960129515000523 First published online 9 December 2015

Enhanced coalgebraic bisimulation

JURRIAAN ROT!, FILIPPO BONCHI}, MARCELLO
BONSANGUEY, DAMIEN POUS* JAN RUTTENY
and ALEXANDRA SILVAT

T Université de Lyon, CNRS, ENS de Lyon, UCBL, LIP, 46 Allée d’Italie, 69364 Lyon, France
Email: jurriaan.rot@ens-lyon.fr

tCNRS, Plume team, LIP (UMR 5668, ENS de Lyon, UCBL, Université de Lyon), 46 Allée
d’Italie, 69364 Lyon, France

SLIACS - Leiden University, Niels Bohrweg 1, 2333CA, The Netherlands

Email: m.m.bonsangue@liacs.leidenuniv.nl

YCentrum Wiskunde en Informatica (CWI), Science Park 123, 1098 XG Amsterdam, The
Netherlands

IRadboud University Nijmegen, Toernooiveld 212, 6525 EC Nijmegen, The Netherlands

ft University College London, Gower Street, London WCIE 6BT, UK.

Received 15 February 2013; revised 15 January 2015

We present a systematic study of bisimulation-up-to techniques for coalgebras. This
enhances the bisimulation proof method for a large class of state based systems, including
labelled transition systems but also stream systems and weighted automata. Our approach
allows for compositional reasoning about the soundness of enhancements. Applications
include the soundness of bisimulation up to bisimilarity, up to equivalence and up to
congruence. All in all, this gives a powerful and modular framework for simplified
coinductive proofs of equivalence.

1. Introduction

In the quest for good models of computation, the challenge of finding canonical notions of
equivalence and corresponding proof methods has occupied the mind of many researchers.
The pioneering work of Milner and Park (Milner 1980; Park 1981) on bisimulation has
resulted in a vast amount of follow-up notions and improvements. Milner himself has
proposed a powerful technique for modular reasoning about bisimilarity — bisimulation-
up-to — which allows the re-use of existing bisimulation proofs and the construction of
smaller relations to prove equivalence (Milner 1983). Sangiorgi (1998) has followed up
on Milner’s idea and proposed many enhancements to the theory of bisimulation-up-to
for labelled transition systems. The gain of using bisimulations-up-to lies in the fact that
they are smaller relations than usual bisimulations, thereby in many cases substantially
reducing the amount of work and thus making the method more efficient. Bisimulation
up to context is an example of an enhanced technique in which one can use the algebraic
structure (syntax) of processes. Other examples are the notions of bisimulation up to
union and bisimulation up to equivalence as well as combinations of any of these, which
enable compositional, succinct reasoning on equivalence, combining both inductive and
coinductive techniques.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1237

In fact, some of the most useful up-to techniques are based on combinations of other
enhancements. One of the difficulties in proving such up-to techniques to be sound is that
the combination of sound enhancements is not necessarily sound. The first systematic
study which addressed the issue of when such techniques can be safely combined is due to
Sangiorgi (1998). While this work focused on labelled transition systems, a more general,
abstract algebra of enhancements in terms of lattices and monotone functions has been
introduced by Pous and Sangiorgi (Pous 2007; Pous and Sangiorgi 2012). An important
feature there is the notion of compatible functions, defining a class of sound enhancements
that is closed under composition.

Enhancements of the bisimulation proof method are interesting not only for labelled
transition systems but also for other types of state-based systems; for example, recently an
efficient algorithm for checking equivalence of non-deterministic automata was introduced,
based on bisimulation up to congruence (Bonchi and Pous 2013). Other recent examples
are the application of a different kind of up-to techniques for deterministic automata
to proving language equivalence (Rot et al. 2013b), and up-to techniques for streams
to facilitate coinductive definitions in Coq (Endrullis et al. 2013). Orthogonally to
enhancements of the bisimulation proof method there is the theory of coalgebra in which
the notion of bisimulation is extended to other models of computation, including all kinds
of infinite data types, automata, and dynamical systems from a unifying perspective. By
generalizing the theory of bisimulation-up-to to coalgebras one can study these techniques
at a general level, with applications to many different types of state-based systems.

In the present paper, we establish the connection between coalgebraic bisimulation-up-
to and the algebra of enhancements by using the characterisation of bisimulation in terms
of monotone functions. This allows us to reason compositionally about the soundness of
enhancements at the level of coalgebras. By showing that an up-to-technique is compatible
one can now safely compose it with other compatible enhancements of coalgebraic
bisimulation. We show that the most important enhancements are compatible.

In general many important instances of bisimulation-up-to, such as bisimulation up
to equivalence and bisimulation up to bisimilarity, are not sound at the general level
of coalgebras. We address this problem by a restriction to coalgebras for functors
which preserve weak pullbacks; we prove the compatibility of such composition-based
enhancements by using the theory of relators (Rutten 1998; Trnkova 1980).

We show that bisimulation up to context is compatible whenever the system under
consideration is a so-called A-bialgebra for a distributive law 4 (see, e.g. Bartels (2004); Klin
(2011); Turi and Plotkin (1997)). Examples of such A-bialgebras include non-deterministic
and weighted automata but also operational models of specifications adhering to the
abstract GSOS format (Turi and Plotkin 1997), which generalizes the well-known GSOS
format (Bloom et al. 1995) for labelled transition systems. So even in the more classical
case of labelled transition systems this generalizes the result of Sangiorgi (1998), who
proved compatibility for the strictly less expressive De Simone format. Examples of
operations which are expressible in GSOS but not in De Simone are the Kleene star and
the priority operator (Aceto et al. 2001).

Most coalgebras considered in practice, such as labelled transition systems, stream
systems and (non)-deterministic automata, are modelled by type functors which preserve

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1238

weak pullbacks. However, there are important instances where this is not the case,
including certain weighted transition systems (Bonchi et al. 2012; Gumm and Schroder
2001; Klin 2009). In such cases one can consider behavioural equivalence, which is a weaker
notion of equivalence. To accommodate proofs of behavioural equivalence, in this paper
we additionally introduce a compositional theory of up-to techniques for behavioural
equivalence, most of which are sound independently of the type functor.

1.1. Related work

The first account of bisimulation-up-to at the level of coalgebras was given by Len-
isa (Lenisa 1999; Lenisa et al. 2000). In Lenisa (1999), Lenisa considers a set-theoretic
notion of coinduction and coinduction-up-to for abstract monotone operators, working in
the direction of Pous and Sangiorgi (2012), and defines coalgebraic bisimulation-up-to-T
for a monad T. However, in Lenisa (1999, page 22) the treatment of instances such as
bisimulation up to bisimilarity are explicitly mentioned as an open problem. Interestingly,
she conjectured that ‘the theory of functors and relators could shed some light on this
problem’ which is indeed precisely the successful approach taken in the present work.

The up-to-context technique for coalgebraic bisimulation was later derived as a special
case of so-called A-coinduction (Bartels 2004). However, (Bartels 2004, pages 126, 129)
mentions already that it would be ideal to combine the up-to-context technique with
other enhancements. Indeed, combining up-to-context with up-to-bisimilarity or up-to-
equivalence yields powerful proof techniques (see, e.g. Pous and Sangiorgi (2012) and this
paper for examples). In this paper, we strengthen the soundness result of Bartels (2004)
to compatibility of up-to-context, allowing for such combinations.

The recent paper (Zhou et al. 2010) introduces bisimulation-up-to where the notion of
bisimulation is based on a specification language for polynomial functors (which does
not include, for example, labelled transition systems). In contrast, we base our work
on the standard notion of bisimulation, and only need to restrict to weak pullback
preserving functors to obtain our soundness results. In the paper, (Luo 2006) coalgebraic
bisimulation-up-to techniques are studied based on relation lifting. There, a concrete
coalgebraic notion of compatibility, based on the notion of consistency proposed by
Sangiorgi (Sangiorgi 1998) is introduced, and it is used to prove soundness of bisimulation
up to context and of bisimulation up to bisimilarity (the latter is actually false in general,
as we show in this paper). However, in Luo (2006) combinations of enhancements are not
considered.

A new generalization of bisimulation-up-to to coalgebras was introduced by a subset
of the authors in Rot et al. (2013a). In the present paper, we take this generalization as
our starting point. The solution of Rot et al. (2013a) to the problem of unsoundness of
bisimulation up to bisimilarity was, similarly to the present paper, to restrict to functors
which preserve weak pullbacks. For such systems, bisimulation coincides with behavioural
equivalence, and for the latter, the problematic up-to techniques were shown to be sound.
In Rot et al. (2013a), the soundness of each of the enhancements and of their combinations
had to be shown separately. Indeed, the problem of compositionality of enhancements,
which we solve in this paper, was left as the main open problem.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1239

Recently, a more abstract view on up-to techniques was introduced (Bonchi et al. 2014),
in the setting of fibrations. The results there can be instantiated to obtain up-to techniques
for coinductive predicates other than bisimilarity.

1.2. Outline

In Section 2, we recall coalgebras and bisimulations. Then in Section 3, we introduce
bisimulation-up-to, together with the main instances and a number of examples. In
Section 4, we recall the algebra of enhancements; Section 5 then presents bisimulation-up-
to in terms of this theory. In Section 6, we prove compatibility results for the instances of
bisimulation-up-to introduced in Section 3. Section 7 contains a similar development of up-
to techniques for behavioural equivalence, and we present concluding remarks in Section 8.

1.3. Notation

Let Set be the category of sets and functions. Sets are denoted by capital letters X, Y, ...
and functions by lower case f,g,.... We write id for the identity function and g o f
for function composition, defined by (g o f)(x) = g(f(x)). We write f[S], for a function
f: X —> Y and aset S < X, to denote the image of S under f. Givensets X and Y, X XY
is the Cartesian product of X and Y (with the usual projection maps m; and 7), X7 is
the set of functions f: Y — X and P(X) is the set of subsets of X. These operations,
defined on sets, can analogously be defined on functions, yielding (bi-)functors. We write
2 for the two elements set 2 = {0,1}, o for the set of natural numbers and R for the set
of real numbers. By RX we denote the set of functions f: X — R with finite support, i.e.
such that f(x) # O for finitely many elements x. We will write the elements v of RX as a

w
formal sum v = f(x{)x; + - + f(xn)x,. RX carries a vector space structure where sum
and scalar product (denoted by + and) are defined pointwise: we call it the free vector
space generated by X.

We denote the category of sets and relations by Rel. Relations are denoted by capital
letters R, S,... We write A for the identity relation and R o S for relation composition,

defined as usual: Ro S = {(x,z) € X x Z | dy s.t. xRy and ySz}.

2. Coalgebra and bisimulation

We recall coalgebras and bisimulations, and make explicit the underlying notion of
progression, which we need in the sequel. A coalgebra for a functor F: Set — Set is a
pair (X, o) consisting of a set X and a function «: X — FX. A function f: X — Y is an
(F-coalgebra) homomorphism between (X,o) and (Y,f) if Ffoax=fof.

Definition 1. For a coalgebra o.: X — FX and relations R, S < X x X, we say R progresses
to S, denoted R > S, if there exists a y : R — FS making the following diagram commute:

g 2

X R X

ZJ« JV \L(x
FTL1 FT[Z

FX<——FS—FX

A bisimulation is a relation R such that R > R.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1240

Bisimulations are usually defined between two different systems, which however can be
reduced to bisimulations on a single system by using coproducts (c.f., Appendix A).
We use bisimulations on single systems for technical convenience and notational clarity.
Bisimilarity, denoted by ~, is defined as the largest bisimulation. Bisimulations can be
seen as a proof technique for bisimilarity: for any two states x,y € X, in order to prove
that x ~ y it suffices to exhibit a bisimulation R such that x R y.

Example 1. Deterministic automata on the alphabet A are coalgebras for the functor
FX =2 x X4, Indeed, a deterministic automaton is a pair (X, (0,t)), where X is a set
of states and (o,t): X — 2 x X“ is a function with two components: o, the output
function, determines if a state x is final (o(x) = 1) or not (o(x) = 0); and ¢, the transition
function, returns for each input letter a € A the next state. Bisimilarity coincides with
the standard notion of language equivalence, which can thus be proved by providing a
suitable bisimulation. Unfolding the definition, a relation R € X x X is a bisimulation
provided that for all (x,y) € R: o(x) = o(y) and, for all a € 4, (t(x)(a),t(y)(a)) € R. As an
example consider the automaton below, with final states y,z,v,w and transitions given by
the solid arrows. The relation given by the four dashed lines together with the dotted line

is a bisimulation.
a,b _ a,b _ b
Jl/ e Q @
|
[
v

X
[
[
[
[
[
u

Example 2. Labelled transition systems over a set of labels 4 are coalgebras for the
functor FX = P(A x X). An F-coalgebra (X, o) consists of a set of states X and a function
o: X — P(AxX) that maps each state x € X into a set of possible transitions (a, x'), where
a is the label and x’ is the arriving state. We write x 5 Xt (a,x") € a(x). Bisimilarity
and bisimulation instantiate to the classical notions by Milner and Park (Milner 1980;
Park 1981). A relation R < X x X is called a bisimulation provided that for all (x,y) € R:
. a . a .
if x — X’ then there exists a state y’ such that y —)’ and (x,)’) € R, and vice
versa.

Example 3. A weighted automaton with input alphabet A4 is a pair (X, (0,t)), where X is
a set of states, o: X — R is an output function associating to each state its output weight
and ¢: X — (RX)" is the transition relation that associates a weight to each transition.
We shall use the following notation: x “ y means that t(x)(a)(y) = r. Weight 0 means no
transition.

Every weighted automaton induces a coalgebra for the functor FX = R x X that is
defined as (RX, (0%, ¢*)) where R is the free vector space generated by X and o#: RX — R
and t*: RX — (RX)* are the linear extensions of o and t. For a detailed explanation
see Bonchi et al. (2012, Section 3).

For example, consider the weighted automaton (X, (o,t)) depicted below in Equation
(1), where we use x|r to denote o(x) = r and, as usual, arrows represent transitions. Part

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1241

of the infinite corresponding F-coalgebra is depicted in Equation (2). Note that now states
are vectors in RX and that transitions are only labelled by symbols in A: the vector v =
$yi+3y2 € RY goes with a into t#(3y1 4+ 5y2)(a) = 3t(y1)(a)+ 5t(y2)(a) = gy1+ jy2+ 3.

In Bonchi et al. (2012) it is shown that bisimilarity on (RZX, (0% t%)) coincides with
standard weighted language equivalence (Berstel and Reutenauer 1988; Salomaa and
Soittola 1978) which can therefore be proved by means of bisimulations. A relation
R = RY x R is a bisimulation provided that for all (v, w) € R: 0*(v) = 0%(w) and, for all

a € A, (t*(v)(a), t*(w)(a)) € R. For example, consider the weighted automaton below.

b X3l0 a,b,1 b y3l0 a,b,1
/ Tb,% / Tb,l
1 a,l .
x0l0 == xll ol yol0 == yil1 ot (1)
la,b,% la,%
1
x3)1 Da,b,l ®2 y2l1 D ab,1

The states xo and yo are weighted language equivalent. To formally prove it we exhibit a
bisimulation R € RX x RX such that (xo, o) € R. Note that this relation is infinite since
it must contain at least all the pairs given by the dotted lines below.

XO‘lO - xl‘ll - %X] + %)Qll ELEN %X] + %lel LN (2)

¥ol0 -5 1y + 4y 11 -G by 4 3y, 11 S Ly Ty 1%

In Section 3, we will show that there exists a finite bisimulation up to context proving
that x¢ and y(are bisimilar and therefore language equivalent.

Example 4. The notion of weighted automata from Example 3 can be generalized by
replacing the field of reals R with any commutative semiring S. As discussed in Bonchi
et al. (2012), the coalgebraic characterization can be easily extended by taking the free
semi-module S rather than the free vector space RX.

We now exhibit an example of a weighted automaton for the tropical semiring T =
(R U {c0}, min,o0,+,0). In this semiring, the addition operation is given by the function
min having oo as neutral element. The multiplication is given by the function 4 having 0
as neutral element.

The weighted automaton (X, (o,t)) below

a2
N P 1§ ul0) a2
a2 3)
a3
induces the coalgebra (TX, (0%, %)) which is partially depicted below.

x10 =% min(2 + y,3 4 2)|2 - min(4 + x,5+ y)|4 -5 - (4)

w0 — QU2 — G tu)d—s

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1242

The states x and u are weighted language equivalent. To prove it we would need an infinite
bisimulation, since it should relate all the pairs of states linked by the dotted lines in the
above figure. In Section 3, we will exhibit a finite bisimulation up to congruence proving
that x and u are language equivalent.

Example 5. We now consider stream systems (over the reals), which are coalgebras for
the functor FX = R x X. At first, we take the set R = {0 | 0: @ — R} of all streams
(infinite sequences) of elements of R and we define the initial value (—)o: R” — R and the
derivative (—) : R® — R® function as (¢)y = ¢(0), returning the first element or head of
the stream, and (¢)'(n) = o(n + 1), which returns the tail of the stream. The F-coalgebra
(R?®,{(=)o,(=))) is called final, which means that from any F-coalgebra there exists a
unique homomorphism into it Rutten (2000).

Then, we define operations on R” by means of behavioural differential equations (Rutten
2003), in which an operation is defined by specifying its initial value (—)¢ and its derivative
(—)'. These operations will become relevant in the examples in Section 3.

Differential equation Initial value Name
(c+1)=0+7 (6 + 1) = 00 + 79 sum
(0®1)=0"®14+0®7 (6®1)y =00 X 19 shuffle product
(Y == ®(@'®c7") (67")y =(s9)"! shuffle inverse

In the second column, the operations +, x and (—)~' on the right of the equations are
the standard operations on R. The inverse is only defined on streams ¢ for which g # 0.
With every real number r we associate a stream r = (r,0,0,0,...), and we abbreviate
(—1) ® 0 by —a. The set of terms T(R®) is defined by the grammar

t = G\E1+L‘2|t1®lz|tl—1

where o ranges over R”. We call a term well-formed if the inverse is never applied to a
subterm with initial value 0; this notion can be straightforwardly defined by induction. We
can turn the set T,,(R®) of well-formed terms into a stream system, that is, an F-coalgebra
S = (T, dR?), {(—)o.(—)')) by defining (=)o : T,{R*”) = R and (=) : T,/R”) — T\, {R®)
by induction on the structure of terms, using the above specification. For the base case,
o € R®, we just use the final coalgebra structure given above by the initial value and
derivative functions.

In Rutten (2003) it is shown that every term ¢ € T,{(R®) denotes a stream in R” and
that two terms t; and t, denote the same stream iff t; ~ t,. As a result, in order to prove
that two terms denote the same stream it is enough to exhibit a bisimulation relating
them. A relation R = T, AR“) x T,{(R®) is called a bisimulation provided that for all
(t1,t2) € R it holds that (t1)y = (t2)o and ((t1),(t2)') € R.

3. Bisimulation-up-to

The following definition generalizes the notion of bisimulation-up-to (Pous 2007; Pous
and Sangiorgi 2012; Sangiorgi 1998) from labelled transition systems to coalgebras.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1243

Definition 2. Let (X, o) be a coalgebra and f: P(X x X) —» P(X x X) be a function on
relations. A bisimulation up to f is a relation R such that R — f(R). We say that f is
sound if R < ~ for all R such that R > f(R).

If a function f is sound then giving a bisimulation up to f relating two states x and
y is enough to prove that x ~ y. We now exhibit some functions that we will prove to
be sound, under certain conditions, in Section 6. These conditions are satisfied in all the
examples presented in this section.

3.1. Up-to-equivalence

Consider the function e mapping a relation R to its equivalence closure e(R). A
bisimulation up to e is called a bisimulation up to equivalence. Similarly one can define
up-to-transitivity and up-to-symmetry.

Example 6. The relation R denoted by the four dashed lines in the automaton of Example 1
is not a bisimulation, since ((t(x)(b), t(u)(b)) = (y,w) ¢ R. However, R is a bisimulation up
to equivalence, since the pair (y,w) is in e(R). Hopcroft and Karp’s algorithm (Hopcroft
and Karp 1971) exploits this technique for checking equivalence of deterministic automata:
rather than exploring n® pairs of states (where n is the number of states), the algorithm
visits at most n pairs (that is the number of equivalence classes).

3.2. Up-to-union

For a fixed relation S < X x X consider the function ug(R) = RUS. We call a bisimulation
up to ug a bisimulation up to union with S. Intuitively the successor states may be related
either by R again or by S.

3.3. Up-to-union-and-equivalence

By composing the above functions e and ug we obtain a new interesting up-to technique.
If R is a bisimulation up to e o ug then we say R is a bisimulation up to S-union and
equivalence.

Example 7. Recall Example 5 and suppose that we want to prove that the stream
1 = (1,0,0,...) is the unit for the shuffle product ®, that is, ¢ ® 1 ~ 0. We make
use of the relation R = {(¢ ® 1,0) | ¢ € T,[(R®)}. For any ¢ € T,AR®), we have
(6 ® 1)) =00 X 190 =0¢. Further (6 ® 1) =’ ®1+0® 1 =0¢ ® 1+ ¢ ® 0; this element
is not in relation with ¢’, so R is not a bisimulation. However, given some basic laws of
stream calculus, in particular ¢ ® 0 ~ 0, 6 +0 ~ ¢ and the fact that ~ is a congruence,
we obtain

d®1+06®0~0d"®14+0~0 ®1R

so R is a bisimulation up to ~-union and equivalence and it proves that ¢ ® 1 ~ o.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1244

3.4. Up-to-bisimilarity

Consider the function b(R) =~oRo~ which composes a relation on both sides with
bisimilarity. A bisimulation up to b corresponds to the well-known concept of bisimulation
up to bisimilarity, in which derivatives (i.e. the arriving states) do not need to be related
directly but may be bisimilar to elements that are. Notice that every bisimulation up to
bisimilarity is also a bisimulation up to ~-union and equivalence. Since ~ is transitive on
stream systems, the relation R in Example 7 is also a bisimulation up to bisimilarity.

3.5. Up-to-context

When the state space of a coalgebra carries some kind of algebraic structure (as it is the
case, for instance, with process algebras and regular expressions) it can be interesting to
consider bisimulation up to context.

A T-algebra for an endofunctor T is a pair (X,) where X isasetand f: TX — X
is a function. For a T-algebra (X, f8), the contextual closure of a relation R = X X X is
defined as

cg(R) = (BoTny,foTny)[TR] = {(foTni(t),poTnot)) |t € TR}

Whenever f is clear from the context we simply write ¢(R). If R is a bisimulation up to ¢
then, we call R a bisimulation up to context.

Example 8. Given a signature X, i.e. a set of operations with associated arities, we
consider the free Ty-algebra pu: Ty Ty X — Ty X. Intuitively, TxX consists of all Z-terms
with variables in X. Now, given a relation R = Ty X X Ty X on these terms, the contextual
closure ¢(R) € Ty X x Tz X can be inductively characterized by the following rules, where
g is any operator of X with arity n.

sRt s;i ¢(R) t; i=1...n
sc(R)t 2(S1,...,5:) ¢(R) g(t1,...,tn)

This slightly differs from the definition in Pous and Sangiorgi (2012) where the contextual
closure is defined as

¢ (R) = {(C[s1,...84], Clt1,...t,]) | C a context and for all i: (s;,#;) € R}

(a context C is a term with n > 0 holes [-]; in it). In our case ¢’ can be obtained as cor,
i.e. by precomposing ¢ with the reflexive closure function r.

Example 9. Recall from Example 3 that every weighted automaton (X, (o,t)) induces
a coalgebra whose state space is the free vector space RZY, that is, an algebra for the

monad R;,. Given a relation R = RX x R¥ its contextual closure ¢(R) = RX x RX can be
inductively characterized by the following rules.

vRw — v1 ¢(R) wy vy ¢(R) wy ve(R)w reR
ve(R)w 0c(R)0 v +v2 ¢(R) wi +wy r-ve(R)yr-w

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1245

With the above characterization, it is easy to introduce bisimulation up to context for
weighted automata: a relation R € RX x RX is a bisimulation up to context provided that
for all (v,w) € R it holds that of(v) = og(w) and for all a € A4, (tf(v)(a), tg(w)(a)) € ¢(R).
As an example consider the weighted automaton in Equation (1). It is easy to see that
the relation R = {(xz, y2), (x3, ¥3), (x1, %yl + %yg), (X0, y0)} is a bisimulation up to context:

consider (x1,3y1 + 1y2) (the other pairs are trivial) and observe that

a b
Xy —— %xl + %XQ Xy —— %X3 + %Xz
R o(R) R ¢(R)

%yl + %yz = ih + %J& %Jﬁ + %yz > %yz + %yz

It is worth noting that the above bisimulation up to context is finite, while one would
need an infinite bisimulation to prove the equivalence of x¢ and yj.

Example 10 (Rot et al. 2013b). The set P(A") of all languages forms a deterministic
automaton as follows: the set of states is precisely the set of languages P(A") itself; a
state L € P(A") is accepting, i.e. o(L) = 1, if and only if the empty word ¢ is in L, and
for every a € A, the next state after an a-transition is given by the language derivative
t(L)(a) = {w | aw € L}. One can readily show that the language accepted by a state L
is precisely L itself, and so whenever two languages L and K are bisimilar, they are in
fact equal. The operations of language union +, composition - and Kleene star *, defined
as usual, define an algebra on P(A*). We have the following properties of derivatives of

these operations due to Brzozowski; we formulate this in terms of languages (e.g. Conway
(1971, page 41)):

t(0)(a) = 0(0)=0
t(1)(a) = o(1) =1

1 ifb=a
(b)a) {0 otherwise olb) =0
t(L+ K)(a) = t(L)(a) + t(K)(a) o(L+K)=o0(L)Vo(K)
t(L-K)(a) =t(L)(a) - K 4 [o(L)] - t(K)(a) o(L-K)=o(L) A o(K)
t(L*)(a) = t(L)(a) - L* o(L*) =1

for any languages L, K. Here, 0 denotes the empty language and 1 the language {¢}. Given
b € 2 we define [b] € P(A") as [0] =0 and [1] = 1.

Arden’s rule states that if L = KL + M for some languages L,K and M, and K does
not contain the empty word, then L = K*M. In order to prove its validity coinductively,
let L,K,M be languages such that ¢ ¢ K and L = KL + M, and let R = {(L,K"M)}.
Then o(K) = 0 since by assumption ¢ ¢ K, so

o(L)=0o(KL+ M) = (o(K)ANo(L))Vo(M)=(0Ao(L))V o(M)
=o(M)=1AN0o(M)=0oK")No(M)=o(K"M)

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1246

and for any a € A4:

t(L)(a) = (KL + M)(a) = t(K)(a) - L + [o(K)] - t(L)(a) + t(M)(a)
= tK)a)- L+ t(M)a) ¢(R) t(K)a) KM+ t(M)a) = t(K"M)(a)

So R is a bisimulation up to context, where the contextual closure is taken with respect
to the operators of union and composition.

3.6. Up-to-congruence

By composing the functions e, ¢ and r described above, we obtain another interesting up
to technique. A bisimulation up to eo cor is called a bisimulation up to congruence. A
recently introduced algorithm (Bonchi and Pous 2013), for checking the equivalence of
non-deterministic automata, exploits this technique. The bisimulations up to congruence
built by this algorithm can be exponentially smaller than bisimulation up to context. This
is due to the use of transitivity.

Example 11. Recall from Example 4 the tropical semiring T. Given a relation R <
TX x TX, its congruence closure can be inductively characterized by the following rules.

(0] >

vRw — v ecr(R) w u ecr(R) v ecr(R) w

vecr(R)w vecr(R)v wecr(R) v uecr(R) w

vy ecr(R) wy v ¢(R) wy v ecr(R) w r € RU {0}

min(vy,v2) ecr(R) min(wy, ws) r+vecr(R)r+w

For an example of bisimulation up to congruence consider the weighted automaton

depicted in Equation (3) and the relation R = {(x,u), (min(2+y,3+z),24u)}. To prove that

R is a bisimulation up to congruence we only have to show that (min(4+x,5+y),44u) €
ecr(R):

min(4 + x,5 4+ y) ecr(R) min(4 +u, 5+ y) ((x,u) € R)

ecr(R) min(min(44+y,54+z2),5+y) ((min(2+y,3+1z2),2+u) € R)

= 24 min(2+y,3+4+z)
ecr(R) 4 +u ((min(2+4+y,3+1z2),24u) € R)

Note that R is not a bisimulation up to context, since (min(4 + x,5 + y),4 + u) ¢ ¢(R).
Here transitivity is really needed.

3.7. Up-to-union-context-and-equivalence

A bisimulation up to eocoug is called a bisimulation up to S-union, context and equivalence.
This is an important extension of bisimulation up to context because the equivalence
closure allows us to relate derivatives of R using ¢(RUS) in ‘multiple steps,” similar to the
case of up-to-congruence.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1247

Example 12. Recall the operations of shuffle product and inverse from Example 5 and
suppose that we want to prove that the inverse operation is really the inverse of shuffle
product, that is, s ® 6! ~ 1 for all ¢ € T,,(R®) such that ¢y # 0. Suppose we are given
that ® is associative and commutative (so ¢ ® T ~ 1 ® g, etc.) and that ¢ + (—ag) ~ 0 (note
that these assumptions actually hold in general (Rutten 2003)). Let

R={(c®c 1) |de€T,AR"),a0#0}.

We can now establish that R is a bisimulation up to ~-union, context and equivalence.
First consider the initial values:

(@0)o=00x (" ")o=00x(00) =1=1
Next, we relate the derivatives by e(c(R U ~)):

(c®cY=d®c'+5@(')
=d®c'+0®(—d'®(c ' ®c)
(e(~) (@ ®c)+ (—(d®cH@(®c"))
(RU~) (@07)+ (—(c'®c)®1)
t(c(~)) 0 =1

where t(c(~)) denotes the transitive closure of c¢(~); in the above we apply multiple
substitutions of terms for bisimilar terms. Since t(c(~)) < e(c(RU ~)) and ¢(RU~) <
e(c(R U ~)) we may conclude that R is a bisimulation up to ~-union, context, and
equivalence. Notice that R is not a bisimulation; establishing that it is a bisimulation-up-
to is much easier than finding a bisimulation which contains R.

In the above, rather than ¢(R U ~) we could have used c(r(R)). Moreover, since in this
example ~ = t(c(~)), the above is also an example of bisimulation up to context, reflexivity
and bisimilarity, that is, a bisimulation up to b o ¢ o r. (Any bisimulation up to context,
reflexivity and bisimilarity is also a bisimulation up to ~-union, context and equivalence.)

4. An algebra of enhancements

The above examples illustrate the large range of enhancements available for bisimilarity,
and the need to combine such enhancements. For instance, up-to-union is rarely used
on its own: it needs to be combined with up-to-equivalence or up-to-context. However,
the soundness of such a combination does not necessarily follow from the soundness
of its basic constituents, and it can be hard to prove it from scratch. This calls for a
theory of enhancements which would allow one to freely combine them. Such a theory
was developed at the rather abstract level of complete lattices (Pous 2007; Pous and
Sangiorgi 2012). We rephrase it here at the level of binary relations, for the sake of clarity.
We instantiate it in the following sections to obtain our general theory of coalgebraic
bisimulations and behavioural equivalences up-to.

Let b be a monotone function on binary relations. By the Knaster—Tarski theorem
b has a greatest fixpoint, denoted by gfp(b), which is also the greatest post-fixpoint:

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1248

afp(b) = U{R | R = b(R)}. The intuition is that by choosing b in an appropriate way,
gfp(b) will be the desired notion of bisimilarity. This motivates the following terminology:
— A b-simulation is a relation R such that R = b(R).
— b-similarity is the greatest b-simulation, i.e. gfp(b).

The bisimulation proof method can now be rephrased as follows: to prove that
some states x,y are b-similar it suffices to exhibit a b-simulation R such that x R y.
Enhancements of the bisimulation proof method allow one to weaken the requirement
that R is a b-simulation: rather than checking R = b(R), we would like to check R < b(S)
for a relation S which is possibly larger than R. The key idea consists in using a function
f to obtain this larger relation out of R: S = f(R).

Definition 3. Let f be a function on binary relations.

— A b-simulation up to f is a relation R such that R = b(f(R)).

— f is b-sound if all b-simulations up to f are contained in b-similarity.
— f is b-compatible if it is monotone and fob S bo f.

The notion of b-compatible function is introduced to get around the fact that b-sound
functions cannot easily be composed: b-compatible functions are b-sound and they enjoy
nice compositionality properties:

Theorem 1. All h-compatible functions are b-sound.

Proof. Suppose that R is a b-simulation up to f, ie. that R < b(f(R)). Using
compatibility of f and by a simple induction on n, we get VYn, f"(R) < b(f"*'(R)).
Therefore, we have

U@ = [Jb(r"(R) < b (U f”(R)> :

(The second inclusion holds by monotonicity of b.) In other words, f“(R) = |, f"(R) is
a b-simulation. This latter relation trivially contains R, by taking n = 0, so that we can
conclude that R is contained in b-similarity. L]

Proposition 1. The following functions are b-compatible:
1. id — the identity function;
2. consg — the constant-to-S function, for any b-simulation S;
3. f o g for any b-compatible functions f and g;
4.| JF for any set F of b-compatible functions.

The last two items allow one to freely combine b-compatible functions using functional
composition and pointwise union. There is a third way of combining two functions f, g on
relations, using relational composition: f e g(R) = f(R) o g(R). This composition operator
does not always preserve b-compatible functions; the following lemma gives a sufficient
condition:

Proposition 2. If b satisfies the following condition:

for all relations R,S, b(R)ob(S) = b(RoS) , ()

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1249

then f e g is b-compatible for all b-compatible functions f and g.

We show in the following section that for all functors F there exists a function ¢ such
that the F-bisimulations are the ¢-simulations. Any such function is monotone and the
property (T) holds iff the functor F preserves weak pullbacks.

We conclude this section with two lemmas which will be useful in the sequel: the first
one gives an alternative characterization of h-compatible functions; the second one shows
that b-similarity is closed under any b-compatible function.

Lemma 1. A monotone function f is b-compatible iff for all relations R,S, R = b(S)
implies f(R) = b(f(S)).
Lemma 2. For all b-compatible functions f, f(gfp(b)) = gfp(b).

5. Bisimulation and ¢-simulation

In this section, we show how to characterize bisimulation and bisimulation-up-to in terms
of monotone functions. This allows us to study bisimulation-up-to, as introduced in
Section 3, in terms of the abstract framework of Section 4.

Let (X,a) be an F-coalgebra. We define an endofunction ¢, on the complete lattice
of relations on X ordered by inclusion (P(X x X),<) as follows, based on relation
lifting (Hermida and Jacobs 1998; Rutten 1998):

@(R) = {(x,y) | (2(x),) € F(z{)~" o F(n3)}
={(x,y) | 3z € FR s.t. F(n{)(z) = a(x) and F(zX)(z) = a(y)}
We write ¢ instead of ¢, if « is clear from the context.

Example 13. We describe ¢ for several concrete types of systems.

1. For deterministic automata, ¢ corresponds to the classical functional exploited by the
Hopcroft minimization algorithm:

@(R) = {(x,y) | o(x) = o(y) and, for all a € A, (1(x)(a),(y)(a)) € R}

2. In the case of labelled transition systems, ¢ corresponds to the well-known functional
of bisimilarity (e.g. Sangiorgi (2012)):

@(R) = {(x,y) | if x 5 X' then there exists)’ s.t. y — y" and x'Ry’, and
if y 5 y' then there exists x’ s.t. x — x’ and x'Ry’}

3. For stream systems, i.e. coalgebras for the functor FX = R x X, ¢ instantiates to
@(R) = {(x,y) | xo = yo and x'Ry’"}.

Notice that ¢ can be characterized as a pullback (e.g. Staton (2011)):

¢(R) —— F(nf)~" o F(nf)

XxX —3FX xFX

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1250

Lemma 3. For any coalgebra (X, a): ¢, is monotone.

The following lemma establishes the connection of the above monotone functions to
bisimulation and bisimulation-up-to.

Lemma 4. For any coalgebra (X, «) and for any relations R,S < X X X :

R < ¢,(S) iff R > S.

Proof. Follows easily from the second characterization of ¢ as given above.]
From the above lemma we directly obtain the following known result (Rutten 1998):
Corollary 1. For any coalgebra (X, «): R is a bisimulation iff R < ¢,(R).

In other words, a @-simulation (Section 4) is the same as a bisimulation. Thus, the
greatest fixpoint of ¢ is precisely ~. Lemma 4 also establishes a tight connection between
bisimulation-up-to and ¢-simulation-up-to.

Corollary 2. Let f: P(X x X) — P(X x X) be monotone. For any coalgebra (X,):

1. R € X x X is a bisimulation up to f iff it is a ¢,-simulation up to f;
2.1If f is @,-compatible (Definition 3), then f is sound (Definition 2).

Proof.

1. Follows directly from Lemma 4: R < ¢(f(R)) iff R > f(R).
2. Suppose R > f(R); then R < ¢(f(R)) by (1). If f is ¢-compatible, then by Theorem 1
it is ¢-sound. So R < gfp(¢p) =~.

U

Via the above results we can apply the general theory of Section 4 to reason about
coalgebraic bisimulation-up-to.

6. Compatibility

In this section, we study the ¢-compatibility of the instances of bisimulation-up-to
introduced in Section 3. By proving the compatibility of a function f we obtain the
soundness of bisimulation up to f and we can compose it to other compatible functions,
knowing that the result is again compatible.

Theorem 2. Let (X,x) be a coalgebra for a functor F. The following functions are
@,-compatible:

1. r — the reflexive closure;
2. s — the symmetric closure;
3. us — union with S (for a bisimulation S);

If F preserves weak pullbacks, then the following are ¢,-compatible:

4.t — the transitive closure;
5. e — the equivalence closure;

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1251

6. b — bisimilarity;
7. e ous — S-union and equivalence (for a bisimulation S).

The functions exploiting the contextual closure ¢ will be considered later (Section 6.1).
We will prove the above theorem below. But first, notice that for the compatibility of
several functions we require the functor to preserve weak pullbacks. Indeed, bisimulation
up to bisimilarity and bisimulation up to equivalence are not sound in general, and
consequently not compatible either. This is illustrated by the following example, which is
strongly inspired by an example from Aczel and Mendler (1989).

Example 14. Define the functor F: Set — Set as
FX = {(x1,x2,x3) € X | [{x1,x2,x3}| <2}
F(f)(x1,x2,x3) = (f(x1), f (x2), f(x3))

Consider the F-coalgebra with states X = {0, 1,2, 0, T} and transition structure

0 (0,1,0) 0 (0,0,0) 2 (2,22
1—(0,0,1) T+ (1,1,1)

Then 0 + 1. To see this, note that in order for the pair (0,1) to be contained in a
bisimulation R, there must be a transition structure on this relation which maps (0, 1)
to ((0,0),(1,0),(0,1)). But this triple cannot be in FR, because it contains three different
elements. However, it is easy to show that 0 ~ 2 and 1 ~ 2: the relation {(0,2),(1,2)} is a
bisimulation.

Now consider the relation S = {((), 1,2, 2)}. S is not a bisimulation, since for that there
should be a function from S to FS mapping the elements as follows:

0,1) = ((0,1),(0,1),(0, 1)) (2.2)=((2,2),(2,2),(2,2))

and neither ((0, 1), (0, 1), (0, 1)) nor ((2,2),(2,2),(2,2)) are contained in FS. However, since
0~282~1(and 2 ~ S ~ 2), they are contained in F(~ S ~); so S is a bisimulation
up to bisimilarity. Thus if up-to-bisimilarity is sound, then S = ~ so 0 ~ 1, which is a
contradiction.

Below we will show that if the functor preserves weak pullbacks then ¢-compatible
functions are closed under the operation e (defined in Section 4), which allows to prove
items 4,5,6 and 7. In order to proceed we recall some fundamental results relating
preservation of weak pullbacks to composition of relations.

Theorem 3. Let F: Set — Set be a functor. The following are equivalent:
1. F preserves weak pullbacks.
2. F': Rel - Rel, defined as
FX=FX
FR=F(z{)™" o F(n5)
is a functor (i.e. F preserves composition).
3. The composition of two F-bisimulations is again a bisimulation.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1252

The equivalence of (1) and (2) is due to Trnkova Trnkové (1980). Notice that ¢ is in fact
defined in terms of the action of F on relations: ¢,(R) = {(x,) | («(x),«(y)) € FR} (Rutten
1998). Rutten (2000) established the implication from (1) to (3). The reverse implication
is due to Gumm and Schrdder (2000). Their result is based on bisimulations on two
coalgebras (X, o) and (Y,) but for our notion of bisimulation (restricted to one coalgebra)
the implication still holds, as we show in Appendix A.

Using Theorem 3 we show that preservation of weak pullbacks coincides precisely
with the property (f) of Section 4. Then by Proposition 2 we obtain that ¢-compatible
functions are closed under e in the case of a functor which preserves weak pullbacks.

Proposition 3. F preserves weak pullbacks iff for any F-coalgebra (X,«), ¢, satisfies (1),
i.e. for all relations R, S : @,(R) o ¢,(S) S @u(R o S).

Proof. Suppose F preserves weak pullbacks. Let (X, «) be an F-coalgebra, R,S <€ X x X
relations, and (x,z) € @,(R) o @,(S), so there is some y such that (x,y) € ¢,(R) and
(7.2) € @4(S). Then (x(x),«(y)) € F(R) and (a(y), %(2)) € F(S), s0 (a(x), o(z)) € F(R)o F(S).
But by assumption and Theorem 3 F is functorial, so F(R)oF(S) = F(RoS). Consequently
(x,z) € g (R o S) as desired.

Conversely, suppose that (f) holds; then by Proposition 2, compatible functions
are closed under e. Let R, S be bisimulations, so cong and cong are compatible by
Proposition 1. By assumption cong e cons is compatible, so by Lemma 1 we have
RoS < ¢(RoS). Now by Corollary 1, Ro S is a bisimulation. From Theorem 3 we
conclude that F preserves weak pullbacks. L]

The inverse function is compatible as well, which will be useful to prove compatibility
of the equivalence closure:

Proposition 4. For any coalgebra (X, «): the inverse map i(R) = R~! is ¢,-compatible.

(F(n$)™' o F(n$). But n¥ = 7§ " and 7§ = 7', so (a(y),x(x)) € (F(z$ ') ~' o F(n$
Consequently

Proof. Suppose R < ¢(S), and let (x,y) € R7!, so (y,x) € R. Then (a(y),(x)) e
).

(2(x), () € (F(z3) ' o F(x})™ = (F(z}) o F(n3)
so X,y € (S7!). By Lemma 1, i is ¢-compatible.]

We proceed with the proof of Theorem 2. Below we use the general compatibility results
of Proposition 1 without further reference.

1. The identity relation A is a bisimulation (Rutten 2000) and thus, by Proposition 1, conp
is compatible and thus r = id U conp is compatible.

2. The inverse function is compatible by Proposition 4. Compatibility of s = id Ui then
follows directly.

3. us = id U cong is compatible for a bisimulation S, since cong is compatible.

4. First, we define (—)" as (—)! = id and (—)"*! = ide(—)". We prove that for all n > 1, (—)"
is compatible, by induction on n. For the base case, notice that id is compatible. Now
suppose (—)" is compatible. Then, by Proposition 3 and Proposition 2, (—)"! = ide(—)"

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1253

is also compatible. Now notice that ¢t = J,-,(—)"; so the function ¢ is the (infinite)
union of compatible functions, and consequently by Proposition 1 it is compatible.

5.e =tosor is compatible, since r, s, and t are compatible.

6. con.. is compatible since ~ is a bisimulation. By Proposition 3 and Proposition 2, the
function b = con. e id e con.. is compatible.

7. e o ug is compatible since e and ug are compatible.

6.1. Bisimulation up to context

In order to define the contextual closure ¢, we need a T-algebra f: TX — X on the
states of an F-coalgebra (X, a). For compatibility of ¢ one might expect that it is enough
to know that bisimilarity is a congruence with respect to this algebra; however, it is
known that this is not even enough for soundness of bisimulation up to context (Pous
and Sangiorgi 2012). As we will show below, in order to prove that ¢ is compatible, it is
sufficient to assume that (X, 5, o) is a A-bialgebra for some distributive law between T and
F: a natural transformation 4: TF = FT. We refer to Klin (2011) for a nice overview on
A-bialgebras and report their formal definition below.

Definition 4. Let T, F be endofunctors on Set.

— An (F, T)-bialgebra is a triple (X, f,o) where X is a set, (X,f) is a T-algebra and
(X,) is an F-coalgebra.

— Given a natural transformation A: TF = FT we say (X,f,a) is a A-bialgebra if
aoff=FfolyxoTo.

For example, the coalgebra (RX, (0%, %)) induced by a weighted automaton (Example 3)

is a A-bialgebra, where 4 is a certain distributive law of the (underlying functor of the) free
vector space monad R, over the functor FX = R x X“. Other important examples include
certain types of process algebras and stream coalgebras induced by behavioural differential
equations as well as regular expressions, but these examples involve a technicality treated
in Section 6.2.

Theorem 4. Let (X,f,x) be a A-bialgebra for A: TF = FT. The contextual closure
function cp is @,-compatible. If F preserves weak pullbacks then the following are ¢,-
compatible as well:

1.eocp or — congruence;
2.eocp oug — context, S-union and equivalence;
3. b ocpor — context, reflexivity and bisimilarity.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1254

Proof. We prove compatibility of c; then items 1,2 and 3 follow directly from Theorem 2
and Proposition 1. Suppose R = ¢(S) for some R and S. Consider the following diagram:

B Trf TR B
X TX TR TX X
lTrx lTV ch(
TFn‘f TFn‘;
x TFX<—TFS——TFX 4

Fp FTn$ FTns B

1 2

F
FX<—FTX<—FTS——FTX —FX

The existence of y and commutativity of the upper squares follow from Lemma 4 and an
application of T. The lower squares commute by naturality. Finally, the outer rectangles
commute since (X, §,) is a A-bialgebra.

Let fr: TR — ¢(R) be the corestriction of (8o TnR,fo Tak): TR - X x X to its
range, so that fr[TR] = ¢(R). Let fs: TS — ¢(S) be defined analogously, and take fz!
to be any right inverse of fr. Then the following diagram commutes:

¢(R)

(R) <(R)
i fRTlfRI &
TrR TR
X TX TR > TX X
J{x l/lgoTy lz
FRB FTn} FTn3 FpB

FX FTX FTS FTX FX
Fr JN%

Fc(S)

So ¢(R) progresses to ¢(S), and consequently ¢(R) < ¢(c(S)) by Lemma 4. By Lemma 1
we conclude that ¢ is g-compatible.]

Remark 1. The greatest bisimulation on a A-bialgebra is closed under the algebraic
operations. This was first shown by Turi and Plotkin (1997) under the assumption that
F preserves weak pullbacks; Bartels (2004) showed that this assumption is not necessary.
We obtain the same result as a direct consequence of the above theorem and Lemma 2.

6.2. Coalgebras for copointed functors

As was first shown by Turi and Plotkin (1997) one can obtain process algebras whose
operational rules conform to the GSOS format (Bloom et al. 1995) as A-bialgebras. Every
GSOS specification over some signature X induces an operational model

T=T= & i Ts@& —— Pi(A x Tz &)

on closed terms, where f is the initial algebra and o is a transition structure induced by
the specification. However, in several concrete cases there is no natural transformation

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1255

A such that (T @, B,o) is a A-bialgebra. Instead, one needs to consider the bialgebra
(Ts D, B, (a,id)); (o, id) now is a coalgebra for the so-called cofree copointed endofunctor
Pr(A x 1d) x Id (see, e.g. Klin (2011)). Analogously, any (non-partial)" specification
of operations on streams in terms of behavioural differential equations (Rutten 2003)
corresponds to a natural transformation involving not the functor FX = R x X but
the functor F x Id. Yet another example is given by the coalgebraic characterization of
context-free grammars as in Winter et al. (2011); as discussed in Bonsangue et al. (2013),
this construction involves a bialgebra which is a A-bialgebra when the coalgebra is paired
with the identity function.

All of the above are examples of bialgebras (X, f,«) such that (X, f,(a,id)) is a A-
bialgebra. In such cases one wants to consider bisimulation(-up-to) on the coalgebra
« and not on (o,id). However, while Theorem 4 gives us ¢, ;s-compatibility of the
contextual closure cg, it does not provide ¢,-compatibility. For the convenience of the
reader, we recall a counterexample from Pous and Sangiorgi (2012).

Example 15 (Pous and Sangiorgi 2012). Consider the following specification of the prefix
and the replication operation on labelled transition systems:

a
X —> X

a a ,
ax — x Ix —=Ix | x

together with the standard definition of the parallel operator x | y, and the constant 0. This
specification is in the GSOS format, and since the variable x occurs on the right-hand side
in the rule for replication, the use of a copointed functor is necessary (e.g. Klin (2011)).
While this is arguably not the best way to specify replication in the context of CCS (Pous
and Sangiorgi 2012) it suffices for our purposes. This specification induces a coalgebra on
closed terms. Now consider the relations R = {(la.b, la.c)} and S = {((a.b) | b,(la.c) | ¢)}
(where b and ¢ abbreviate b.0 and c.0 respectively). Then R progresses to S, but ¢(R) does
not progress to ¢(S). For example, (d.!a.b,d.!a.c) € ¢(R) but la.b is not related to la.c by
¢(S). Thus, by Lemma 1 the contextual closure ¢ is not ¢,-compatible.

The solution of Pous and Sangiorgi (2012) is to define a different function ¢’ as
@'(R) = @(R)NR.

But ¢}, = ¢(,;s (a nice exercise in relation lifting), so in our framework this function arises
naturally from the fact that one needs to consider a coalgebra for the cofree copointed
functor in order to obtain compatibility.

In terms of progressions, we have R = ¢/(S) if and only if R progresses to S and
R = S. Thus if R progresses to f(R) for a function satisfying R = f(R), then R < ¢'(f(R)).
But notice that for most functions f considered in Theorem 2 and Theorem 4 we have
R < f(R)—an exception is the constant-to function. For the context closure function, a
sufficient condition is that the functor T is pointed, i.e. there is a natural transformation
n:1d= T, and f is an algebra for this pointed functor, meaning that f o 5 = id. In fact,

 The partial specification of Example 5 can be completed by fixing the initial value of 0~! to some arbitrary
constant.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1256

in all the examples considered in this paper, T has a stronger property: is the underlying
functor of a monad.

7. Behavioural equivalence-up-to

Whenever the functor F does not preserve weak pullbacks (as it is the case, for instance,
with certain types of weighted transition systems (Bonchi et al. 2012; Gumm and Schréder
2001; Klin 2009)) one can consider behavioural equivalence, rather than bisimilarity.

Definition 5. For a coalgebra o: X — FX and relations R, S < X x X, we say R progresses
to S (with respect to behavioural equivalence), denoted R ~ S, if the following diagram
commutes:

T o F
R—3X — 5 FX — F(X/e(S))
where ¢ is the quotient map of ¢(S). If R ~ R then R is called a behavioural equivalence.

Equivalently, R progresses to S if Fq o « factors through the quotient map of e(R).
In particular, R is a behavioural equivalence iff the quotient map of R is a coalgebra
homomorphism.

The largest behavioural equivalence is denoted by ~. An equivalent definition of = is:
x =~ y iff there exists some homomorphism f from (X,) to some coalgebra (Y, f) such
that f(s) = f(¢t) (Gumm 1999).

The relation R of Example 6 is a behavioural equivalence: note that, intuitively,
behavioural equivalences are implicitly ‘up-to-equivalence,” since the arriving states can
be related by e(R). Note also that in Aczel and Mendler (1989) behavioural equivalences
are called pre-congruences.

Definition 6. If R ~ f(R) for a function f: P(X X X) —» P(X x X) then we say R is a
behavioural equivalence up to f. We say that f is sound (w.r.t. behavioural equivalence) if
R < =~ for all R such that R~ f(R).

We proceed with a similar development as for bisimulation-up-to: first, we characterize
behavioural equivalence as a fixed point of a monotone function, as done already in Aczel
and Mendler (1989). Define the function y, : P(X x X) - P(X x X) as

Wu(R) = {(x,y) | Fgoa(x) = Fqoa(y)}

i.e. as the kernel of Fq oo, where ¢: X — X/e(R) is the quotient map of e(R). Notice
that we can also define g as the coequalizer of R and its projection maps, and y, as the
pullback of Fq o o along itself.

Lemma 5. For any coalgebra (X, a): v, is monotone.

The correspondence between progression and functions i is given by the following
lemma:

Lemma 6. For any coalgebra (X,) and for any relations R,S <€ X x X:

Rcyp(S)if R~ S.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1257

Consequently, behavioural equivalence up to any w-compatible function is sound.
Unfortunately, the property (1) does not hold for v, that is, in general it does not hold
that 9(R) o p(S) < p(R o S). This is shown by the following example:

Example 16. Consider the identity functor FX = X and the F-coalgebra with states {x, y}
and transitions x — x and y — y. Let R = {(x,y)}. Then p(&) = {(x,x),(y,y)} and
W(R) = {(x,x), (5,). (x, 1), (¥, x)}. Now p(R) o p(&) = {(x,x),(»,), (x,), (y,x)}, whereas
w(Ro &) =y(J) = {(x,x),(y.¥)}. So p(R) o p(LF) is not included in y(R o).

This motivates to prove the compatibility of the equivalence closure e directly, which is
in fact quite easy in the case of behavioural equivalence.

Theorem 5. Let (X,) be any coalgebra. The following are ,-compatible:

1. r — the reflexive closure;
2. e — the equivalence closure;
3. us — union with S (for a behavioural equivalence S);

Proof. Ttems 1 and 3 are analogous to the case of gp-compatibility in Theorem 2. We
proceed with the compatibility of the equivalence closure. First, notice that eoyp = y since
p(R) is an equivalence relation for any relation R. Second, since e(R) = e(e(R)) for any
R, the quotient maps in the definition of y(R) and yp(e(R)) are equal, so p(R) = p(e(R)).
Thuseop =p =poe. U]

Notice that the y-compatibility of the equivalence closure does not require any assump-
tions on the functor.

In order to proceed recall that a monad is a triple (T, u,n) where T is an endofunctor,
u: TT =T and n: Id = T are natural transformations such that yo Ty =id=ponT
and pouT = po Tu. A (T,un)-algebra is T-algebra (X,) such that f ony = id and
Boux =poTp.

For the compatibility of context closure a A-bialgebra is required, similar to the case
of bisimulation in Theorem 4. However, in the case of behavioural equivalence, we
require an algebra for a monad, although / is still only required to be a distributive law
between functors, that is, a plain natural transformation. Further, in the proof we need
to assume preservation of reflexive coequalizers’, which is a non-trivial condition in Set;
see (Adamek er al. 2000, page 538) for a counterexample. It is sufficient to restrict to
finitary monads, that is, monads where the underlying functor preserves filtered colimits.
For a free monad over a signature, this means that each operation has finite arity (but
there may be infinitely many operations). Other examples include the free vector space
monad and the finite powerset monad.

Lemma 7. If (T,n,u) is a finitary Set monad then it preserves reflexive coequalizers.

T A reflexive coequalizer is a coequalizer of a reflexive pair, that is, a pair of functions f,g: X — Y such that
there is a function h: Y — X with foh=goh =id.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1258

Now we are ready to prove compatibility of up-to-context. However, notice that the above
results depend on the relations being reflexive; thus we will directly prove compatibility
of ¢ or instead of c.

Theorem 6. Let (X, f,a) be a A-bialgebra for a distributive law A: TF = FT (between
functors), where f§ is an algebra for a finitary monad (T,#,). The following are y,-
compatible:

1. ¢ o r — contextual closure;

2.eocpor — congruence;

3.eocgoroug — context, S-union, reflexivity and equivalence;
4.b o cg or — context, reflexivity and bisimilarity.

Proof. We only need to prove yp-compatibility of cg o r. Suppose R < y,(S) for some
relations R, S < X x X. By Theorem 5, r is yp,-compatible, so r(R) < y, o r(S). Further
r(S) = cp or(S), using the fact that we have a pointed functor (T,#). Therefore

r(R) S pyo0cpor(S). (5)

Let g: X — X’ be the quotient map of eocgor(S) and its projections, or, equivalently, the
coequalizer of the two composite arrows f§ o Ty, § o Tn, in the bottom of the diagram
below:

TTn,TTn, TS T
TT(r(S) —— = 5 TTX / TX T X (6)
|
|
Hr(s) Hx B B

|

Tn,Tn +

T((S) — =™ Ty / b% d X’

The left square commutes (for Ty and T, separately) by naturality, and the middle since
p is an algebra for the monad. Since T is finitary, it preserves reflexive coequalizers, so
Tq is a coequalizer. The map f’ making the right square commute arises by its universal
property.

Now consider the following diagram:

Tm T TFq
Tr(R) —=TX ——TFX —— TFX'

Tn,
J//lx Jix’
FT

B FTX —5 FTX'
i
o Fq
X FX FX'

The top horizontal paths commute by Equation (5) and functoriality. The rectangle
commutes by the assumption that (X, ff,«) is a A-bialgebra. The upper square commutes
by naturality of 4, and the lower square by Equation (6) and functoriality. Thus we have

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1259
FqooaofoTn =FqoaofoTr,, and consequently
n F
cp(r(R) —= X —5 FX — FX’
2

commutes, which means cg or(R) ~ cg or(S). Thus cgor(R) S yp,0cgor(S) by Lemma 6,
and by Lemma 1 now cg or is yp,-compatible. U]

For compatibility of the contextual closure function for coalgebras which are (part of)
A-bialgebras when paired with the identity function, we can perform a similar development
as in Section 6.2, by defining y/'(R) = w(R) N R.

Example 17. For an example of behavioural equivalence up-to, we consider the ‘general
process algebra with transitions costs’ (GPA) from Buchholz and Kemper (2001). GPA
processes are defined for a given set of labels A and a semiring S which, for this example,
we fix to be the semiring of reals R. The operational semantics of GPA is expressed in
terms of weighted transition systems which are coalgebras for the functor (R})* where
R, : Set — Set is defined as follows:

— For each set X, RX is the set of functions from X to R with finite support (see the
Notation paragraph in the introduction).
— For each function h: X — Y, R : RX — RY is the function mapping each ¢ € RY

w

into ¢" € R} defined, for all y € Y, by
o' = > o)

x'eh=1(y)

In a nutshell, a weighted transition system is a weighted automaton without output in
the states. Formally, it is a pair (X,t) where X is a set of states and t: X — (RX)* is the
transition relation that associates a weight to each transition. We use the same notation
of weighted automata: x = y means that t(x)(a)(y) =r and r # 0.

As shown in Section 2.3 of Bonchi et al. (2012), the functor (R)* does not preserve
weak pullbacks and therefore bisimulations up-to cannot be used in this context. However,
thanks to Theorems 5 and 6 we can use behavioural equivalence up-to. First observe that,
by instantiating the definition of 1 above to an (R,)"*-coalgebra (X,t), one obtains the
function y, : P(X x X) — P(X x X) defined for all relations R = X x X as

PR = {(x1,x2) [Va € A,y € X, > t(x1)(@()) = D t(x)(@)(y)}
V'ebIr Veblr

where [y]r denotes the equivalence class of y w.r.t. R. With this explicit definition, it is easy
to see that our notion of behavioural equivalence coincides with the one of bisimulation
in Buchholz and Kemper (2001).

In order to illustrate our example is enough to consider a small fragment of GPA. The
set P of basic GPA processes is defined by

p:=0[p+pl(ar)p

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1260

where a € A, r € R. The operational semantics of basic GPA processes is given by the
coalgebra t: P — (RP)* defined for all @ € A and p’ € P as follows:

t0)(@)(p’) = 0

t((a,r).p)d)p) =
(@r)p)Xa)) {0 otherwise

t(p1 + p2)(d)(p") = t(p1)(@)(p") + t(p2)(a')(p")
Equivalently, it is described by the following rules:

r ifa=d,p=yp

r#0 pi>p r#0 PSP r#0
a,r a,s a,s
(a,r).p —p pr+p—p pi+p—p

where s = t(p1)(a)(p’) + t(p2)(a)(p’). For instance, the operational semantics of (a,1).0 +
(a,—1).(a,0).0 is depicted below.

a,l
(a,1).0 + (a,—1).(a,0).0

oo

(a,0).0
Since 0 =~ (a,0).0, we have that (a,1).0 4 (a,—1).(a,0).0 = 0. More generally, it holds that
forallae A,r € R, p; and p, € P,
if py = p, then 0 = (a,r).p; + (a, —7).p>. (7
We are going to prove Equation (7) by means of behavioural equivalence up to union
with ~ (Theorem 5). To this end, consider the relation
R = {(09 (aa V)-pl + (aa _r)'pZ) ‘ pr= PZ}

and note that R is not a behavioural equivalence by taking p; = 0 and p, = (4,0).0
(namely, R & y,(R)). However, R is a behavioural equivalence up to u~: to see that
R < v, (RU =), fix p = (a,r).p1 + (a,—r).p> and observe that for all processes ¢ € P

S ()@ =0=" > «p)a)y).
V'€lalru~ V'€lqlru~

The leftmost equality comes from the semantics of the process 0. For the rightmost, we
have that either ¢ # p; or ¢ = p;. In the first case, the above rightmost equivalence is
obvious. In the second case,

> @) = tp)a)(p1) + tp)a)(p) =r —r =0

V'€lglru~

since p1 € [qlru~ and ps € [q]ru~.

8. Conclusions

Coalgebraic bisimulation-up-to enhances the proof method for bisimilarity, allowing for
smaller proofs and equational reasoning on bisimulation equivalence for a large class

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1261

of state-based systems and calculi. We presented a compositional framework for up-to-
techniques and showed the compatibility (and thus the soundness) of the more common
techniques: any novel compatible enhancements could be combined with these as well,
without the necessity of re-proving soundness.

While showing this we also obtained interesting side results, such as Proposition 3, which
provides a novel characterization of weak pullback preservation. This result is based on
a definition of relational lifting for weak pullback preserving functors. We leave as future
work the study of either a more broadly applicable notion of bisimulation, as in Gorin
and Schroder (2013), or a more general definition of relation lifting, which applies to
arbitrary functors on Set, as in Marti and Venema (2012). While in our work relators
must preserve binary composition, in Levy (2011) a framework has been developed which
only laxly preserves composition. The combination of this theory with our framework
would allow for a study of up-to-techniques for simulations, rather than bisimulations.

The research of the first author was carried out at Leiden University and CWI, and was
funded by the Netherlands Organisation for Scientific Research (NWO), CoRE project,
dossier number: 612.063.920. The first author is supported by the LABEX MILYON
(ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements
d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency
(ANR). The second and the fourth author acknowledge support by project ANR 12IS0
2001 PACE.

Appendix A. Bisimulations on different systems

The validity of the implication (3) = (1) of Theorem 3 is shown in Gumm and Schroder
(2000), based on the standard notion of bisimulation on different systems: given F-
coalgebras (X,ox) and (Y,ay) a relation R = X x Y is a bisimulation if there exists a
transition structure y: R — FR such that the following diagram commutes:

T T2

X R Y

FX< —FR—(—FY
T (%)

The notion of bisimulation which we adopted in this paper is based on single systems,
i.e. where (X,ox) = (Y,ay). We proceed to show that in Set, if bisimulations on single
systems are closed under composition, then bisimulations on different systems are closed
under composition as well; this proves that the implication from (3) to (1) of Theorem 3
holds in our setting as well.

We denote a coproduct by X + Y and the associated injections by iy and iy.

Proposition 5. Let (X,ax) and (Y,ay) be F-coalgebras (F is a Set endofunctor) and

R = X x Y a relation. Then R is a bisimulation on X and Y iff (iy x iy)[R] is a
bisimulation on X + Y.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1262

Proof. Let R< X x Y. The cases X = (J or Y = (¥ are trivial, so we may assume
X+ and Y + . Let (X 4+ Y,0x.y) be the coproduct coalgebra (Rutten 2000). So in
the diagram below, the outer two squares commute. Suppose R is a bisimulation on X
and Y ; then there exists a y such that the middle squares of the diagram below commute:

ix 1 b1%3 iy

X+Y X R — Y X+Y
llxﬂ’ Jix J{’/ “Yl l“XH,
Fi Frn Frn Fi
FX+Y)¢—— X+~ FR—>3FY ——F(X+Y)

which means the entire diagram commutes and (ix X iy)(R) is a bisimulation on X + Y.

Conversely suppose ((ixy X iy)[R],y) is a bisimulation on X + Y for some relation
R = X x Y ;so in the above diagram, the outer rectangles commute (i.e. ayry oiy o1y =
Fix o Fry oy and similarly for Y). Now since iy is mono, X is nonempty, and F is
a Set functor, Fiy is mono as well (see, e.g. Rutten (2000)). Further Fix o ay o 1y =
ax+y oix omy = Fiy o Fry oy, and since Fix is mono we may conclude ax oy = Fryoy.
Similarly we derive oy o my = Frmp oy. So R is a bisimulation on X and Y.]

Proposition 6. Let (X,ay) and (Y,ay) be F-coalgebras, and R < X x X a relation. Then
R is a bisimulation on X iff (ixy X iy)[R] is a bisimulation on X + Y.

Proof. Similar to that of Proposition 5. L]
From the above two propositions, one can deduce the following:

Corollary 3. Let F be a Set endofunctor. Suppose F-bisimulations on single systems (i.c.
of type R < X x X) are closed under composition. Then F-bisimulations on different
coalgebras (i.e. of type R < X X Y) are closed under composition as well.

Proof. The outline of the proof is as follows. Let R < X x Y and S € Y x Z be
bisimulations. Then by applying first Proposition 5 and then Proposition 6, we can turn
both into bisimulations on X +Y +Z. The composition of these two then is a bisimulation
by assumption; and applying Propositions 6 and 5 in the other direction again, we obtain
that Ro S is a bisimulation on X and Z. L]

References

Aceto, L., Fokkink, W. and Verhoef, C. (2001). Structural operational semantics. In: Handbook of
Process Algebra, Elsevier Science, 197-292.

Aczel, P. and Mendler, N. (1989). A final coalgebra theorem. In: Category Theory and Computer
Science, LNCS, volume 389, Springer, 357-365.

Adamek, J., Koubek, V. and Velebil, J. (2000). A duality between infinitary varieties and algebraic
theories. Commentationes Mathematicae Universitatis Carolinae 41 (3) 529-542.

Bartels, F. (2004). On Generalised Coinduction and Probabilistic Specification Formats. Ph.D. thesis,
CWI, Amsterdam.

Berstel, J. and Reutenauer, C. (1988). Rational Series and Their Languages, Springer.

Bloom, B., Istrail, S. and Meyer, A. (1995). Bisimulation can’t be traced. Journal of ACM 42 (1)
232-268.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

Enhanced coalgebraic bisimulation 1263

Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J. and Silva, A. (2012). A coalgebraic perspective
on linear weighted automata. Information and Computation 211 77-105.

Bonchi, F., Petrisan, D., Pous, D. and Rot, J. (2014). Coinduction up-to in a fibrational setting. In:
Henzinger, T.A. and Miller, D. (eds.) CSL-LICS 2014, ACM, 20.

Bonchi, F. and Pous, D. (2013). Checking NFA equivalence with bisimulations up to congruence.
In: Giacobazzi, R. and Cousot, R. (eds.) POPL, ACM, 457-468.

Bonsangue, M.M., Hansen, H.H., Kurz, A. and Rot, J. (2013). Presenting distributive laws. In:
Heckel, R. and Milius, S. (eds.) CALCO. Lecture Notes in Computer Science 8089, Springer,
Berlin, 95-109.

Buchholz, P. and Kemper, P. (2001). Quantifying the dynamic behavior of process algebras. In:
de Alfaro, L. and Gilmore, S. (eds.) PAPM-PROBMIV. Lecture Notes in Computer Science,
Springer, Berlin, 184-199.

Conway, J. (1971). Regular Algebra and Finite Machines, Chapman and Hall.

Endrullis, J., Hendriks, D. and Bodin, M. (2013). Circular coinduction in Coq using bisimulation-
up-to techniques. In: Blazy, S., Paulin-Mohring, C. and Pichardie, D. (eds.) ITP 2013. LNCS
7998, Springer, Berlin, 354-369.

Gorin, D. and Schroder, L. (2013). Simulations and bisimulations for coalgebraic modal logics.
In: Heckel, R. and Milius, S. (eds.) Proceedings of the 5th International Conference on Algebra
and Coalgebra in Computer Science (CALCO 2013). Lecture Notes in Computer Science 8089,
Springer, Berlin, 253-266.

Gumm, H. (1999). Elements of the general theory of coalgebras. In: LUATCS 99, Rand Afrikaans
University, South Africa.

Gumm, H. and Schroder, T. (2000). Coalgebraic structure from weak limit preserving functors.
Electronic Notes in Theoretical Computer Science 33 111-131.

Gumm, H.P. and Schroder, T. (2001). Monoid-labeled transition systems. Electronic Notes in
Theoretical Computer Science 44 (1) 185-204.

Hermida, C. and Jacobs, B. (1998). Structural induction and coinduction in a fibrational setting.
Information and Computation 145 (2) 107-152.

Hopcroft, J. and Karp, R. (1971). A linear algorithm for testing equivalence of finite automata.
Technical Report 114, Cornell Univ.

Klin, B. (2009). Structural operational semantics for weighted transition systems. In: Palsberg, J.
(eds.) Semantics and Algebraic Specification. Lecture Notes in Computer Science 5700, Springer,
Berlin, 121-139.

Klin, B. (2011). Bialgebras for structural operational semantics: An introduction. 7CS 412 (38)
5043-5069.

Lenisa, M. (1999). From set-theoretic coinduction to coalgebraic coinduction: Some results, some
problems. ENTCS 19 2-22.

Lenisa, M., Power, J. and Watanabe, H. (2000). Distributivity for endofunctors, pointed and co-
pointed endofunctors, monads and comonads. ENTCS 33 230-260.

Levy, P.B. (2011). Similarity quotients as final coalgebras. In: Hofmann, M. (eds.) FOSSACS 2011.
Lecture Notes in Computer Science 6604, Springer, Berlin, 27-41.

Luo, L. (2006). An effective coalgebraic bisimulation proof method. Electronic Notes in Theoretical
Computer Science 164 (1) 105-119.

Marti, J. and Venema, Y. (2012). Lax extensions of coalgebra functors. In: Pattinson, D. and
Schroder, L. (eds.) 11th International Workshop on Coalgebraic Methods in Computer Science
(CMCS 2012). Lecture Notes in Computer Science, Springer, Berlin, 7399 150-169.

Milner, R. (1980). A Calculus of Communicating Systems, Lecture Notes in Computer Science,
volume 92, Springer.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten and A. Silva 1264

Milner, R. (1983). Calculi for synchrony and asynchrony. 7CS 25 (3) 267-310.

Park, D. (1981). Concurrency and automata on infinite sequences. In: Deussen, P. (eds.) Theoretical
Computer Science. Lecture Notes in Computer Science 104, Springer, Berlin, 167-183.

Pous, D. (2007). Complete lattices and up-to techniques. In: Proceedings of the APLAS. Springer
Lecture Notes in Computer Science 4807 351-366.

Pous, D. and Sangiorgi, D. (2012). Enhancements of the bisimulation proof method. In: Advanced
Topics in Bisimulation and Coinduction, Cambridge University Press, 233-289.

Rot, J., Bonsangue, M. and Rutten, J. (2013a). Coalgebraic bisimulation-up-to. In: van Emde Boas,
P, Groen, F, Italiano, G., Nawrocki, J. and Sack, H. (eds.) SOFSEM. Springer Lecture Notes in
Computer Science 7741 369-381.

Rot, J.,, Bonsangue, M. and Rutten, J. (2013b). Coinductive proof techniques for language
equivalence. In: Dediu, A.-H., Martin-Vide, C. and Truthe, B. (eds.) LATA. Lecture Notes in
Computer Science 7810, Springer, Berlin, 480-492.

Rutten, J. (1998). Relators and metric bisimulations. ENTCS 11 252-258.

Rutten, J. (2000). Universal coalgebra: A theory of systems. TCS 249 (1) 3-80.

Rutten, J. (2003). Behavioural differential equations: A coinductive calculus of streams, automata,
and power series. 7CS 308 (1-3) 1-53.

Salomaa, A. and Soittola, M. (1978). Automata-Theoretic Aspects of Formal Power Series, Texts and
Monographs on Computer Science, Springer.

Sangiorgi, D. (1998). On the bisimulation proof method. Mathematical Structures in Computer
Science 8 (5) 447-479.

Sangiorgi, D. (2012). An introduction to Bisimulation and Coinduction, Cambridge University Press.

Staton, S. (2011). Relating coalgebraic notions of bisimulation. LMCS 7 (1).

Trnkova, V. (1980). General theory of relational automata. Fundamenta Informaticae 3 (2) 189-234.

Turi, D. and Plotkin, G. (1997). Towards a mathematical operational semantics. In: LICS, IEEE
Computer Society, 280-291.

Winter, J., Bonsangue, M.M. and Rutten, J.J.M.M. (2011). Context-free languages, coalgebraically.
In: Corradini, A., Klin, B. and Cirstea, C. (eds.) CALCO. Lecture Notes in Computer Science
6859, Springer, Berlin, 359-376.

Zhou, X., Li, Y, Li, W,, Qiao, H. and Shu, Z. (2010). Bisimulation proof methods in a path-based
specification language for polynomial coalgebras. In: APLAS. Lecture Notes in Computer Science
6461, Springer, Berlin, 239-254.

https://doi.org/10.1017/50960129515000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000523

