TWO MULTIPLIER THEOREMS FOR $H'(U^2)$

by DANIEL M. OBERLIN* (Received 15th September 1977)

1. Introduction

Let $H^1(U^2)$ be the Hardy space of the bidisc as described in (3). Each function $f \in H^1(U^2)$ has a Taylor expansion of the form $f(z, w) = \sum_{n,m \ge 0} \hat{f}(n, m) z^n w^m$. For $0 , a doubly-indexed sequence <math>(\lambda_{nm})_{n,m \ge 0}$ is said to be a multiplier of $H^1(U^2)$ into l^p if

$$\sum_{n,m\geq 0} |\hat{f}(n,m)\lambda_{nm}|^{p} < \infty \quad \text{for each } f \in H^{1}(U^{2}).$$

This paper is concerned with the cases p = 2 and p = 1. Theorem 1 characterises the multipliers of $H^1(U^2)$ into l^2 and is an analogue in two variables of an old result of Hardy and Littlewood. Theorem 2 characterises the sequences $(a_n)_{n \ge 0}$ such that $(a_{n+m})_{n,m \ge 0}$ is a multiplier of $H^1(U^2)$ into l^1 . For the special class of multipliers which it describes, Theorem 2 goes substantially beyond the well known but ineffectual characterisation of the multipliers of $H^1(U)$ into l^1 . (The one-dimensional results mentioned are given as Theorems 6.7 and 6.8 in (1). Their proofs depend on the well known factorisation properties of functions in $H^1(U)$, and so two-dimensional theorems can not be established by a mere repetition of the one-dimensional proofs.)

We mention that versions of our theorems can be formulated for the spaces $H^{1}(U^{n})$ (n = 3, 4, ...), but for notational reasons we have contented ourselves with $H^{1}(U^{2})$.

2. The theorems

We begin by establishing some notation. Let T be the unit circle in the complex plane, let m_1 be normalised Lebesgue measure on T, and let m_2 be the associated product measure on T^2 . Fix $f \in H^1(U^2)$. It is well known that for (m_2) almost every $(z, w) \in T^2$ the limit $\lim_{r \to 1^-} f(rz, rw)$ exists. If we write f(z, w) for this limit when it exists, then $f(z, w) \in L^1(T^2) (= L^1(T^2, m_2))$. In fact, the set of such f(z, w) so obtained is a closed subspace of $L^1(T^2)$, and so $H^1(U^2)$ is a Banach space under the norm

$$f \to \int_{T^2} |f(z, w)| \, dm_2(z, w) = ||f||.$$

(Our notation identifies a function f(z, w) in $H^{1}(U^{2})$ with its boundary function on T^{2} .

*Partially supported by NSF Grant MCS76-02267-A01.

D. M. OBERLIN

We will also follow this convention in the case of functions in $H^{1}(U)$ and their boundary functions on T.)

To state our theorems we will need the following terminology. Let $I_{-1} = \emptyset$, $I_0 = \{0\}$, and $I_k = \{2^{k-1}, 2^{k-1} + 1, \dots, 2^k - 1\}$ for $k = 1, 2, \dots$ For $j, k \ge 0$, let $I_{jk} = I_j \times I_k$.

Theorem 1. For a doubly-indexed sequence $\lambda = (\lambda_{nm})_{n,m \ge 0}$, the following are equivalent:

a)
$$\sup_{j,k\ge 0}\left(\sum_{(n,m)\in I_{jk}}|\lambda_{nm}|^2\right)<\infty;$$

b) λ is a multiplier of $H^1(U^2)$ into l^2 ;

c)
$$\sum_{n=0}^{N} \sum_{m=0}^{M} n^2 m^2 |\lambda_{nm}|^2 = O(N^2 M^2).$$

Proof. a) \rightarrow b) It suffices to show that if $f \in H^1(U^2)$, then

$$\sum_{j,k\geq 0} \sup_{(n,m)\in I_{jk}} |\hat{f}(n,m)|^2 < \infty$$

We will do this by exhibiting polynomials $p_{jk} = \sum_{n,m \ge 0} \hat{p}_{jk}(n,m) z^n w^m$ such that

- i) $\hat{p}_{jk}(n, m) = \hat{f}(n, m)$ if $(n, m) \in I_{jk}$, and
- ii) $\sum_{i,k\geq 0} \|p_{jk}\|^2 < \infty.$

(Recall that $|\hat{h}(n, m)| \leq ||h||$ for any $h \in H^1(U^2)$ and any $n, m \geq 0$.)

Theorem 5 of (4) implies the existence of a constant C and of sequences of numbers $\{c_{jn}\}_{n \in I_{j-1}}$ (j = 1, 2, ...) and $\{d_{jn}\}_{n \in I_{j+1}}$ (j = 0, 1, 2, ...) such that the following holds: if, for $g(z) = \sum_{n \ge 0} \hat{g}(n) z^n \in H^1(U)$, we define

$$S_{jg}(z) = \sum_{n \in I_{j-1}} c_{jn} \hat{g}(n) z^{n}$$
$$\Delta_{jg}(z) = \sum_{n \in I_{j}} \hat{g}(n) z^{n}$$
$$T_{jg}(z) = \sum_{n \in I_{j+1}} d_{jn} \hat{g}(n) z^{n},$$

and if

$$\dot{\Delta}_{j}g(z) = S_{j}g(z) + \Delta_{j}g(z) + T_{j}g(z),$$

then

$$\int_T \left(\sum_{j\geq 0} |\tilde{\Delta}_j g(z)|^2\right)^{1/2} dm_1(z) \leq C \int_T |g(z)| dm_1(z).$$

An application of Minkowski's inequality (see, for example, p. 271 of (5)) thus yields

$$\left(\sum_{j\geq 0} \left[\int_{T} |\tilde{\Delta}_{jg}(z)| \, dm_{1}(z)\right]^{2}\right)^{1/2} \leq C \int_{T} |g(z)| \, dm_{1}(z). \tag{1}$$

We will establish the existence of polynomials p_{jk} satisfying i) and ii) by iterating (1).

Fix $f \in H^1(U^2)$ and write $f_w(z) = f(z, w)$. Using (1), Minkowski's inequality, and Fubini's theorem we get

$$C||f|| = C \int_{T} \int_{T} |f_{w}(z)| dm_{1}(z) dm_{1}(w)$$

$$\geq \int_{T} \left(\sum_{j \ge 0} \left[\int_{T} |\tilde{\Delta}_{j} f_{w}(z)| dm_{1}(z) \right]^{2} \right)^{1/2} dm_{1}(w)$$

$$\geq \left(\sum_{j \ge 0} \left[\int_{T} \int_{T} |\tilde{\Delta}_{j} f_{w}(z)| dm_{1}(w) dm_{1}(z) \right]^{2} \right)^{1/2}.$$
(2)

45

Now, writing $f_{jz}(w) = \tilde{\Delta}_j f_w(z)$, we obtain from (1) that

$$C\int_{T}|f_{jz}(w)|\,dm_{1}(w) \geq \left(\sum_{k\geq 0}\left[\int_{T}|\tilde{\Delta}_{k}f_{jz}(w)|\,dm_{1}(w)\right]^{2}\right)^{1/2}.$$

Another application of Minkowski's inequality gives

$$C \int_{T} \int_{T} |f_{jz}(w)| \, dm_1(w) \, dm_1(z) \geq \left(\sum_{k\geq 0} \|\tilde{\Delta}_k f_{jz}(w)\|^2\right)^{1/2}.$$

Combining this with (2), we have

$$C^2 \|f\| \ge \left(\sum_{j,k\ge 0} \|\tilde{\Delta}_k f_{jz}(w)\|^2\right)^{1/2}$$

and so it suffices to take $p_{jk}(z, w) = \tilde{\Delta}_k f_{jz}(w)$. (It is easy to verify that $\hat{p}_{jk}(n, m) = \hat{f}(n, m)$ if $(n, m) \in I_{jk}$.)

b) \rightarrow c) The argument is analogous to the proof of the necessity of the condition given in Theorem 6.6 of (1). (Choose $f(z, w) = [(1 - rz)(1 - rw)]^{-2}$, 0 < r < 1.)

c) \rightarrow a) The proof is very easy and so is omitted.

As a corollary we state a two-dimensional version of a theorem of Paley and Rudin.

Corollary. For a set E of ordered pairs of nonnegative integers, the following are equivalent:

- a) $\sup_{j,k\geq 0} \operatorname{card}(E \cap I_{jk}) < \infty;$
- b) $\sum_{(n,m)\in E} |\hat{f}(n,m)|^2 < \infty$ for each $f \in H^1(U^2)$.

Theorem 2. For a sequence $(a_n)_{n\geq 0}$ of numbers, the following are equivalent:

a)
$$\sum_{n \in I_j} |a_n| = 0(2^{-i});$$

b) the doubly-indexed sequence $(a_{n+m})_{n,m \neq 0}$ is a multiplier of $H^1(U^2)$ into l^1 ;
c) there exists a function $h \in L^{\infty}(T^2)$ satisfying $\hat{h}(n, m) =$

 $\int_{T^2} h(z,w) \bar{z}^n \bar{w}^m dm_2(z,w) \ge |a_{n+m}| \text{ for } n, m \ge 0;$

d)
$$\sum_{n=1}^{N} n^2 |a_n| = O(N).$$

Proof. a) \rightarrow b) It suffices to show that if $f \in H^1(U^2)$, then

$$\sum_{j\geq 0} 2^{-j} \sup_{n\in I_j} \sum_{l=0}^n |f(l, n-l)| < \infty.$$
(3)

D. M. OBERLIN

To establish (3) we will again use inequality (1). It follows from this inequality that there exists a constant C such that

$$\left(\sum_{j\ge 0} \sup_{n\in I_j} |\hat{g}(n)|^2\right)^{1/2} \le C \int_T |g(z)| \, dm_1(z), \, g \in H^1(U). \tag{4}$$

Now fix a polynomial $f \in H^1(U^2)$ and, for $j = 0, 1, ..., let n_j \in I_j$ be such that

$$\sum_{l=0}^{n_j} |\hat{f}(l, n_j - l)| = \sup_{n \in I_j} \sum_{l=0}^n |\hat{f}(l, n - l)|.$$
(5)

Applying (4) to the homogeneous expansion of f,

$$f(\zeta z, \zeta w) = \sum_{n\geq 0} \zeta^n f_n(z, w) \left(f_n(z, w) = \sum_{l=0}^n \widehat{f}(l, n-l) z^l w^{n-l} \right),$$

we have

$$\left(\sum_{j\geq 0}|f_{n_j}(z,w)|^2\right)^{1/2} \leq C \int_T |f(\zeta z,\zeta w)| \, dm_1(\zeta),$$

and so

$$\int_{T^2} \left(\sum_{j \ge 0} |f_{n_j}(z, w)|^2 \right)^{1/2} dm_2(z, w) \le C \int_{T^2} \int_T |f(\zeta z, \zeta w)| dm_1(\zeta) dm_2(z, w) = C ||f||.$$
(6)

On the other hand,

$$\begin{split} \int_{T^2} \left(\sum_{j \ge 0} |f_{n_j}(z, w)|^2 \right)^{1/2} dm_2(z, w) &= \int_{T^2} \left(\sum_{j \ge 0} \left| \sum_{l=0}^{n_j} f(l, n_j - l) z^l w^{n_j - l} \right|^2 \right)^{1/2} dm_2(z, w) \\ &= \int_T \int_T \left(\sum_{j \ge 0} \left| \sum_{l=0}^{n_j} \hat{f}(l, n_j - l) (z \bar{w})^l \right|^2 \right)^{1/2} dm_1(z) dm_1(w) \\ &= \int_T \left(\sum_{j \ge 0} \left| \sum_{l=0}^{n_j} \hat{f}(l, n_j - l) z^l \right|^2 \right)^{1/2} dm_1(z). \end{split}$$

Thus it follows from (6) that

$$\int_{T} \left(\sum_{j \ge 0} \left| \sum_{l=0}^{n_{j}} \hat{f}(l, n_{j} - l) z^{2^{l} - 1 + l} \right|^{2} \right)^{1/2} dm_{1}(z) \le C \|f\|.$$

Now let $r_i(t)$ be the *j*th Rademacher function (j = 0, 1, 2, ...). The inequality above implies that

$$\int_T \int_0^1 \left| \sum_{j \ge 0} r_j(t) \sum_{l=0}^{n_j} \hat{f}(l, n_j - l) z^{2^{j-1+l}} \right| dt dm_1(z) \le C ||f||.$$

With Fubini's theorem this shows that there exists a sequence $\epsilon_0, \epsilon_1, \epsilon_2, \ldots$ with each $\epsilon_j = \pm 1$ such that

$$\int_{T} \left| \sum_{j \ge 0} \epsilon_{j} \sum_{l=0}^{n_{j}} \hat{f}(l, n_{j} - l) z^{2^{l} - 1 + l} \right| dm_{1}(z) \leq C ||f||.$$

Combining this with Hardy's inequality, which states that

$$\sum_{n=0}^{\infty} |\hat{g}(n)|/(n+1) \leq \pi \int_{T} |g(z)| \, dm_{1}(z), \quad g \in H^{1}(U),$$

46

we have

$$\sum_{j\geq 0} \sum_{l=0}^{n_j} |\hat{f}(l, n_j - l)| / (2^j + l) \le \pi C ||f||$$

Since $n_i \leq 2^i - 1$, we find that

$$\sum_{j \ge 0} 2^{-j} \sum_{l=0}^{n_j} |\hat{f}(l, n_j - l)| \le 2\pi C \|f\|$$

and so, by (5),

$$\sum_{j\geq 0} 2^{-j} \sup_{n\in I_j} \sum_{l=0}^n |\hat{f}(l, n-l)| \leq 2\pi C \|f\|$$

for polynomial $f \in H^1(U^2)$. This implies (3) for all $f \in H^1(U^2)$.

b) \rightarrow c) If $(a_{n+m})_{n,m \ge 0}$ is a multiplier of $H^1(U^2)$ into l^1 , then $f \mapsto \sum_{n,m \ge 0} \hat{f}(n,m)|a_{n+m}|$ defines a continuous linear functional on $H^1(U^2)$. Thus it follows from the Hahn-Banach theorem that there exists $h \in L^{\infty}(T^2)$ with $\hat{h}(n,m) = |a_{n+m}|$ if $n, m \ge 0$.

c) \rightarrow d) For 0 < r < 1 let $f_r(z, w) = [(1 - rz)(1 - rw)]^{-2}$. Then

$$f_r(n, m) = (n + 1)(m + 1)r^{n+m}$$

and $||f_r|| = O([1 - r]^{-2})$ Thus

$$\sum_{n\geq 0} |a_n| r^n \sum_{l=0}^n (l+1)(n-l+1) = \sum_{p,q\geq 0} |a_{p+q}| \hat{f}_r(p,q)$$

$$\leq \sum_{p,q\geq 0} \hat{h}(p,q) \hat{f}_r(p,q) = \int_{T^2} h(z,w) \overline{f_r(z,w)} \, dm_2(z,w)$$

$$\leq ||h||_{L^{\infty}(T^2)} ||f_r|| = O([1-r]^{-2}).$$

Choosing r = 1 - (1/N) this gives

$$\sum_{n=0}^{N} n^{3} |a_{n}| = O(N^{2}),$$

which is equivalent to d).

d) \rightarrow a) We omit the very easy proof.

Finally we remark that, by Corollary 15 of (2), the equivalence of b) and c) with a_{n+m} replaced by λ_{nm} is equivalent to a positive answer to the question in item (b), p. 68 of (3).

REFERENCES

(1) P. L. DUREN, Theory of H^p spaces (Academic Press, New York, 1970).

(2) D. M. OBERLIN, The majorant problem for sequence spaces, Quart. J. Math. Oxford (2) 27 (1976), 227-240.

(3) W. RUDIN, Function theory in polydiscs (Benjamin, New York, 1969).

(4) E. M. STEIN, Classes H^{p} , multiplicateurs et fonctions de Littlewood-Paley, C.R. Acad. Sci. Paris (Sér. A) 263 (1966), 780-781.

(5) E. M. STEIN, Singular integrals and differentiability properties of functions (Princeton University Press, Princeton, N.J., 1970).

FLORIDA STATE UNIVERSITY TALLAHASSEE FLORIDA 32306