TWO MULTIPLIER THEOREMS FOR $H^{\prime}\left(U^{2}\right)$

by DANIEL M. OBERLIN*
(Received 15th September 1977)

1. Introduction

Let $H^{1}\left(U^{2}\right)$ be the Hardy space of the bidisc as described in (3). Each function $f \in H^{1}\left(U^{2}\right)$ has a Taylor expansion of the form $f(z, w)=\Sigma_{n, m \geq 0} \hat{f}(n, m) z^{n} w^{m}$. For $0<p<\infty$, a doubly-indexed sequence $\left(\lambda_{n m}\right)_{n, m \geqslant 0}$ is said to be a multiplier of $H^{1}\left(U^{2}\right)$ into l^{p} if

$$
\sum_{n, m \geqslant 0}\left|\hat{f}(n, m) \lambda_{n m}\right|^{p}<\infty \quad \text { for each } f \in H^{1}\left(U^{2}\right)
$$

This paper is concerned with the cases $p=2$ and $p=1$. Theorem 1 characterises the multipliers of $H^{1}\left(U^{2}\right)$ into l^{2} and is an analogue in two variables of an old result of Hardy and Littlewood. Theorem 2 characterises the sequences $\left(a_{n}\right)_{n \geqslant 0}$ such that $\left(a_{n+m}\right)_{n, m \geqslant 0}$ is a multiplier of $H^{1}\left(U^{2}\right)$ into l^{\prime}. For the special class of multipliers which it describes, Theorem 2 goes substantially beyond the well known but ineffectual characterisation of the multipliers of $H^{1}(U)$ into I^{1}. (The one-dimensional results mentioned are given as Theorems 6.7 and 6.8 in (1). Their proofs depend on the well known factorisation properties of functions in $H^{1}(U)$, and so two-dimensional theorems can not be established by a mere repetition of the one-dimensional proofs.)

We mention that versions of our theorems can be formulated for the spaces $H^{\prime}\left(U^{n}\right)(n=3,4, \ldots)$, but for notational reasons we have contented ourselves with $H^{\prime}\left(U^{2}\right)$.

2. The theorems

We begin by establishing some notation. Let T be the unit circle in the complex plane, let m_{1} be normalised Lebesgue measure on T, and let m_{2} be the associated product measure on T^{2}. Fix $f \in H^{\prime}\left(U^{2}\right)$. It is well known that for ($m_{2^{-}}$) almost every $(z, w) \in T^{2}$ the limit $\lim _{r \rightarrow 1^{-}} f(r z, r w)$ exists. If we write $f(z, w)$ for this limit when it exists, then $f(z, w) \in L^{\prime}\left(T^{2}\right)\left(=L^{1}\left(T^{2}, m_{2}\right)\right)$. In fact, the set of such $f(z, w)$ so obtained is a closed subspace of $L^{1}\left(T^{2}\right)$, and so $H^{1}\left(U^{2}\right)$ is a Banach space under the norm

$$
f \rightarrow \int_{T^{2}}|f(z, w)| d m_{2}(z, w)=\|f\| .
$$

(Our notation identifies a function $f(z, w)$ in $H^{t}\left(U^{2}\right)$ with its boundary function on T^{2}.
*Partially supported by NSF Grant MCS76-02267-A01.

We will also follow this convention in the case of functions in $H^{1}(U)$ and their boundary functions on T.)

To state our theorems we will need the following terminology. Let $I_{-1}=\emptyset, I_{0}=\{0\}$, and $I_{k}=\left\{2^{k-1}, 2^{k-1}+1, \ldots, 2^{k}-1\right\}$ for $k=1,2, \ldots$ For $j, k \geqslant 0$, let $I_{j k}=I_{j} \times I_{k}$.

Theorem 1. For a doubly-indexed sequence $\lambda=\left(\lambda_{n m}\right)_{n, m \geqslant 0}$, the following are equivalent:
a) $\sup _{j, k \geqslant 0}\left(\sum_{(n, m) \in I_{i k}}\left|\lambda_{n m}\right|^{2}\right)<\infty ;$
b) λ is a multiplier of $H^{1}\left(U^{2}\right)$ into l^{2};
c) $\sum_{n=0}^{N} \sum_{m=0}^{M} n^{2} m^{2}\left|\lambda_{n m}\right|^{2}=O\left(N^{2} M^{2}\right)$.

Proof. a) \rightarrow b) It suffices to show that if $f \in H^{1}\left(U^{2}\right)$, then

$$
\sum_{j, k=0} \sup _{(n, m) \in l_{l i k}}|\hat{f}(n, m)|^{2}<\infty
$$

We will do this by exhibiting polynomials $p_{j k}=\Sigma_{n, m \geqslant 0} \hat{p}_{j k}(n, m) z^{n} w^{m}$ such that
i) $\hat{p}_{j k}(n, m)=\hat{f}(n, m)$ if $(n, m) \in I_{j k}$, and
ii) $\sum_{j, k=0}\left\|p_{j k}\right\|^{2}<\infty$.
(Recall that $|\hat{h}(n, m)| \leqslant\|h\|$ for any $h \in H^{1}\left(U^{2}\right)$ and any $n, m \geqslant 0$.)
Theorem 5 of (4) implies the existence of a constant C and of sequences of numbers $\left\{c_{j n}\right\}_{n \in I_{i-1}}(j=1,2, \ldots)$ and $\left\{d_{j_{n}}\right\}_{n \in I_{j+1}}(j=0,1,2, \ldots)$ such that the following holds: if, for $g(z)=\sum_{n \geqslant 0} \hat{g}(n) z^{n} \in H^{1}(U)$, we define

$$
\begin{aligned}
& S_{j} g(z)=\sum_{n \in I_{i-1}} c_{j n} \hat{g}(n) z^{n} \\
& \Delta_{j} g(z)=\sum_{n \in I_{i}} \hat{g}(n) z^{n} \\
& T_{i} g(z)=\sum_{n \in I_{i+1}} d_{j n} \hat{g}(n) z^{n}
\end{aligned}
$$

and if

$$
\tilde{\Delta}_{j} g(z)=S_{i} g(z)+\Delta_{i} g(z)+T_{i} g(z)
$$

then

$$
\int_{T}\left(\sum_{j=0}\left|\tilde{\Delta}_{j} g(z)\right|^{2}\right)^{1 / 2} d m_{1}(z) \leqslant C \int_{T}|g(z)| d m_{1}(z)
$$

An application of Minkowski's inequality (see, for example, p. 271 of (5)) thus yields

$$
\begin{equation*}
\left(\sum_{j \neq 0}\left[\int_{T}\left|\tilde{\Delta}_{j} g(z)\right| d m_{1}(z)\right]^{2}\right)^{1 / 2} \leqslant C \int_{T}|g(z)| d m_{1}(z) \tag{1}
\end{equation*}
$$

We will establish the existence of polynomials $p_{j k}$ satisfying i) and ii) by iterating (1).
Fix $f \in H^{\prime}\left(U^{2}\right)$ and write $f_{w}(z)=f(z, w)$. Using (1), Minkowski's inequality, and Fubini's theorem we get

$$
\begin{align*}
C\|f\| & =C \int_{T} \int_{T}\left|f_{w}(z)\right| d m_{1}(z) d m_{1}(w) \\
& \geqslant \int_{T}\left(\sum_{j=0}\left[\int_{T}\left|\tilde{\Delta}_{j} f_{w}(z)\right| d m_{1}(z)\right]^{2}\right)^{1 / 2} d m_{1}(w) \\
& \geqslant\left(\sum_{j=0}\left[\int_{T} \int_{T}\left|\tilde{\Delta}_{j} f_{w}(z)\right| d m_{1}(w) d m_{1}(z)\right]^{2}\right)^{1 / 2} \tag{2}
\end{align*}
$$

Now, writing $f_{j z}(w)=\tilde{\Delta}_{j} f_{w}(z)$, we obtain from (1) that

$$
C \int_{T}\left|f_{i z}(w)\right| d m_{1}(w) \geqslant\left(\sum_{k \geqslant 0}\left[\int_{T}\left|\tilde{\Delta}_{k} f_{j z}(w)\right| d m_{1}(w)\right]^{2}\right)^{1 / 2} .
$$

Another application of Minkowski's inequality gives

$$
C \int_{T} \int_{T}\left|f_{i z}(w)\right| d m_{1}(w) d m_{1}(z) \geqslant\left(\sum_{k>0}\left\|\tilde{\Delta}_{k} f_{i z}(w)\right\|^{2}\right)^{1 / 2}
$$

Combining this with (2), we have

$$
C^{2}\|f\| \geqslant\left(\sum_{j, k \geq 0}\left\|\tilde{\Delta}_{k} f_{i z}(w)\right\|^{2}\right)^{1 / 2}
$$

and so it suffices to take $p_{j k}(z, w)=\tilde{\Delta}_{k} f_{i z}(w)$. (It is easy to verify that $\hat{p}_{j k}(n, m)=\hat{f}(n, m)$ if $(n, m) \in I_{j k}$.)
b) \rightarrow c) The argument is analogous to the proof of the necessity of the condition given in Theorem 6.6 of (1). (Choose $f(z, w)=[(1-r z)(1-r w)]^{-2}, 0<r<1$.)
c) \rightarrow a) The proof is very easy and so is omitted.

As a corollary we state a two-dimensional version of a theorem of Paley and Rudin.

Corollary. For a set E of ordered pairs of nonnegative integers, the following are equivalent:
a) $\sup _{i, k \geq 0} \operatorname{card}\left(E \cap I_{j k}\right)<\infty$;
b) $\sum_{(n, m) \in E}|\hat{f}(n, m)|^{2}<\infty \quad$ for each $f \in H^{1}\left(U^{2}\right)$.

Theorem 2. For a sequence $\left(a_{n}\right)_{n \geqslant 0}$ of numbers, the following are equivalent:
a) $\sum_{n \in I_{j}}\left|a_{n}\right|=0\left(2^{-i}\right)$;
b) the doubly-indexed sequence $\left(a_{n+m}\right)_{n, m \geq 0}$ is a multiplier of $H^{1}\left(U^{2}\right)$ into l^{1};
c) there exists a function $h \in L^{\infty}\left(T^{2}\right)$ satisfying $\hat{h}(n, m)=$
$\int_{T^{2}} h(z, w) \bar{z}^{n} \bar{w}^{m} d m_{2}(z, w) \geqslant\left|a_{n+m}\right|$ for $n, m \geqslant 0 ;$
d) $\sum_{n=1}^{N} n^{2}\left|a_{n}\right|=O(N)$.

Proof. a) \rightarrow b) It suffices to show that if $f \in H^{1}\left(U^{2}\right)$, then

$$
\begin{equation*}
\sum_{j=0} 2^{-j} \sup _{n \in I_{i}} \sum_{l=0}^{n}|f(l, n-l)|<\infty . \tag{3}
\end{equation*}
$$

To establish (3) we will again use inequality (1). It follows from this inequality that there exists a constant C such that

$$
\begin{equation*}
\left(\sum_{j \neq 0} \sup _{n \in I_{j}}|\hat{g}(n)|^{2}\right)^{1 / 2} \leqslant C \int_{T}|g(z)| d m_{1}(z), g \in H^{1}(U) . \tag{4}
\end{equation*}
$$

Now fix a polynomial $f \in H^{1}\left(U^{2}\right)$ and, for $j=0,1, \ldots$, let $n_{i} \in I_{j}$ be such that

$$
\begin{equation*}
\sum_{l=0}^{n_{j}}\left|\hat{f}\left(l, n_{i}-l\right)\right|=\sup _{n \in I_{i}} \sum_{l=0}^{n}|\hat{f}(l, n-l)| . \tag{5}
\end{equation*}
$$

Applying (4) to the homogeneous expansion of f,

$$
f(\zeta z, \zeta w)=\sum_{n \geq 0} \zeta^{n} f_{n}(z, w)\left(f_{n}(z, w)=\sum_{l=0}^{n} \hat{f}(l, n-l) z^{l} w^{n-1}\right)
$$

we have

$$
\left(\sum_{j \geqslant 0}\left|f_{n_{i}}(z, w)\right|^{2}\right)^{1 / 2} \leqslant C \int_{T}|f(\zeta z, \zeta w)| d m_{1}(\zeta)
$$

and so

$$
\begin{equation*}
\int_{T^{2}}\left(\sum_{j \geq 0}\left|f_{n_{i}}(z, w)\right|^{2}\right)^{1 / 2} d m_{2}(z, w) \leqslant C \int_{T^{2}} \int_{T}|f(\zeta z, \zeta w)| d m_{1}(\zeta) d m_{2}(z, w)=C\|f\| . \tag{6}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\int_{T^{2}}\left(\sum_{j \geqslant 0}\left|f_{n_{j}}(z, w)\right|^{2}\right)^{1 / 2} d m_{2}(z, w) & =\int_{T^{2}}\left(\sum_{j=0}\left|\sum_{l=0}^{n_{j}} f\left(l, n_{j}-l\right) z^{l} w^{n_{j}-l}\right|^{2}\right)^{1 / 2} d m_{2}(z, w) \\
& =\int_{T} \int_{T}\left(\sum_{j \geq 0}\left|\sum_{l=0}^{n_{j}} \hat{f}\left(l, n_{j}-l\right)(z \bar{w})^{\prime}\right|^{2}\right)^{1 / 2} d m_{1}(z) d m_{1}(w) \\
& =\int_{T}\left(\sum_{j \geqslant 0}\left|\sum_{l=0}^{n_{j}} \hat{f}\left(l, n_{j}-l\right) z^{\prime}\right|^{2}\right)^{1 / 2} d m_{1}(z)
\end{aligned}
$$

Thus it follows from (6) that

$$
\int_{T}\left(\sum_{j \geq 0}\left|\sum_{l=0}^{n_{j}} \hat{f}\left(l, n_{j}-l\right) z^{z^{i}-1+l}\right|^{2}\right)^{1 / 2} d m_{1}(z) \leqslant C\|f\|
$$

Now let $r_{j}(t)$ be the j th Rademacher function ($j=0,1,2, \ldots$). The inequality above implies that

$$
\int_{T} \int_{0}^{1}\left|\sum_{j>0} r_{j}(t) \sum_{l=0}^{n_{j}} \hat{f}\left(l, n_{j}-l\right) z^{z^{i}-1+l}\right| d t d m_{1}(z) \leqslant C\|f\|
$$

With Fubini's theorem this shows that there exists a sequence $\epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \ldots$ with each $\epsilon_{j}= \pm 1$ such that

$$
\int_{T}\left|\sum_{j=0} \epsilon_{j} \sum_{i=0}^{n_{j}} \hat{f}\left(l, n_{j}-l\right) z^{z^{i}-1+1}\right| d m_{i}(z) \leqslant C\|f\|
$$

Combining this with Hardy's inequality, which states that

$$
\sum_{n=0}^{\infty}|\hat{g}(n)| /(n+1) \leqslant \pi \int_{T}|g(z)| d m_{1}(z), \quad g \in H^{\prime}(U)
$$

we have

$$
\sum_{j=0} \sum_{l=0}^{n_{i}}\left|\hat{f}\left(l, n_{j}-l\right)\right| /\left(2^{i}+l\right) \leqslant \pi C\|f\| .
$$

Since $n_{j} \leqslant 2^{i}-1$, we find that

$$
\sum_{j=0} 2^{-j} \sum_{l=0}^{n_{i}}\left|\hat{f}\left(l, n_{j}-l\right)\right| \leqslant 2 \pi C\|f\|
$$

and so, by (5),

$$
\sum_{i=0} 2^{-i} \sup _{n \in \in_{j}} \sum_{i=0}^{n}|\hat{f}(l, n-l)| \leqslant 2 \pi C\|\mid f\|
$$

for polynomial $f \in H^{1}\left(U^{2}\right)$. This implies (3) for all $f \in H^{1}\left(U^{2}\right)$.
b) \rightarrow c) If $\left(a_{n+m}\right)_{n, m \geqslant 0}$ is a multiplier of $H^{1}\left(U^{2}\right)$ into l^{1}, then $f \mapsto \Sigma_{n, m \geqslant 0} \hat{f}(n, m)\left|a_{n+m}\right|$ defines a continuous linear functional on $H^{1}\left(U^{2}\right)$. Thus it follows from the HahnBanach theorem that there exists $h \in L^{\infty}\left(T^{2}\right)$ with $\hat{h}(n, m)=\left|a_{n+m}\right|$ if $n, m \geqslant 0$.
c) \rightarrow d) For $0<r<1$ let $f_{r}(z, w)=[(1-r z)(1-r w)]^{-2}$. Then

$$
\hat{f}_{r}(n, m)=(n+1)(m+1) r^{n+m}
$$

and $\left\|f_{r}\right\|=O\left([1-r]^{-2}\right)$
Thus

$$
\begin{aligned}
\sum_{n \geq 0}\left|a_{n}\right| r^{n} \sum_{i=0}^{n}(l+1)(n-l+1) & =\sum_{p, q \geq 0}\left|a_{p+q}\right| \hat{f}_{r}(p, q) \\
& \leqslant \sum_{p, q \geq 0} \hat{h}(p, q) \hat{f}_{r}(p, q)=\int_{T^{2}} h(z, w) \overline{f_{r}(z, w)} d m_{2}(z, w) \\
& \leqslant\|h\|_{L^{c}\left(T^{2}\right)} \mid f_{r} \|=O\left([1-r]^{-2}\right)
\end{aligned}
$$

Choosing $r=1-(1 / N)$ this gives

$$
\sum_{n=0}^{N} n^{3}\left|a_{n}\right|=O\left(N^{2}\right)
$$

which is equivalent to d).
d) \rightarrow a) We omit the very easy proof.

Finally we remark that, by Corollary 15 of (2), the equivalence of b) and c) with a_{n+m} replaced by $\lambda_{n m}$ is equivalent to a positive answer to the question in item (b), p. 68 of (3).

REFERENCES

(1) P. L. Duren, Theory of H^{p} spaces (Academic Press, New York, 1970).
(2) D. M. Oberlin, The majorant problem for sequence spaces, Quart. J. Math. Oxford (2) 27 (1976), 227-240.
(3) W. Rudin, Function theory in polydiscs (Benjamin, New York, 1969).
(4) E. M. Stein, Classes H^{p}, multiplicateurs et fonctions de Littlewood-Paley, C.R. Acad. Sci. Paris (Sér. A) 263 (1966), 780-781.
(5) E. M. Stein, Singular integrals and differentiability properties of functions (Princeton University Press, Princeton, N.J., 1970).

Florida State University
Tallahassee
Florida 32306

