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1. Introduction

Let H\U2) be the Hardy space of the bidisc as described in (3). Each function
fGH\U2) has a Taylor expansion of the form f(z, w) = 2n.m>of(n,m)znwm. For
0 < p < ° ° , a doubly-indexed sequence (Anm)nm30 is said to be a multiplier of H'(U2)
into /" if

2 |/(fi,wi)Anm|"<oo for each fGHl(U2).
n.maO

This paper is concerned with the cases p = 2 and p = 1. Theorem 1 characterises the
multipliers of H'(U2) into I2 and is an analogue in two variables of an old result of
Hardy and Littlewood. Theorem 2 characterises the sequences (an)ns0 such that
(an+m)n,ms:o is a multiplier of Hl(U2) into /'. For the special class of multipliers which it
describes, Theorem 2 goes substantially beyond the well known but ineffectual
characterisation of the multipliers of H\U) into /'. (The one-dimensional results
mentioned are given as Theorems 6.7 and 6.8 in (1). Their proofs depend on the well
known factorisation properties of functions in H\U), and so two-dimensional
theorems can not be established by a mere repetition of the one-dimensional proofs.)

We mention that versions of our theorems can be formulated for the spaces
//'(£/") (n = 3,4,...), but for notational reasons we have contented ourselves with
H\U2).

2. The theorems

We begin by establishing some notation. Let T be the unit circle in the complex
plane, let m\ be normalised Lebesgue measure on T, and let m2 be the associated
product measure on T2. Fix / G H\U2). It is well known that for (mr) almost every
(z, w)G T2 the limit limr^r/(rz, rw) exists. If we write /(z, w) for this limit when it
exists, then f(z, w) G L'(T2) (= L\T2, m2)). In fact, the set of such f(z, w) so obtained
is a closed subspace of L\T2), and so H\U2) is a Banach space under the norm

(Our notation identifies a function /(z, w) in H\U2) with its boundary function on T2.
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We will also follow this convention in the case of functions in H\U) and their
boundary functions on T.)

To state our theorems we will need the following terminology. Let I.t = 0, Io = {0},
and Ik = {2'-', 2*"1 + 1 , . . . . 2* - 1} for * = 1,2,.... For /, It s* 0, let /,* = /, x Ik.

Theorem 1. For a doubly-indexed sequence A = (\nm)n,m&o, the following are
equivalent:

a) sup( 2 e ; |Anm|2)<°°;

b) A is a multiplier of H\U2) into I2;

!i | |
n=0 m=0

Proof. a)->b) It suffices to show that if / G H\U2), then

sup |/(n,m)|2<a>.
)G/

We will do this by exhibiting polynomials pjk = 1n,ms^Pik(n, m)z"wm such that

i) pjk(n, m) = /(«, m) if (n, m) G /Jt, and

ii) £ I
/.TSo

(Recall that \ti(n, m)\ =s ||/i|| for any /i e H\U2) and any n, m 3=0.)
Theorem 5 of (4) implies the existence of a constant C and of sequences of

numbers {c/n}nE/j_, (7=1,2 , . . . ) and {din}ne,ltl (j = 0, 1,2,...) such that the following
holds: if, for g(z) = ZnsOg(n)zn G H\U), we define

= V c/ng(«)zn

and if

then

fT ( g dm ,(z)« C jT \g(z)\ dm ,(z).

An application of Minkowski's inequality (see, for example, p. 271 of (5)) thus yields

f (1)
We will establish the existence of polynomials pjk satisfying i) and ii) by iterating (1).

Fix /Gif '(C/2) and write fw(z) = f(z,w). Using (1), Minkowski's inequality, and
Fubini's theorem we get
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C||/||=cf f
& /r (?o [/r
^ ( Z f f i \^ifM)\dml(w)dml(z)]2)'2. (2)

\j»o UT JT J /

Now, writing /,2(M>) = Ajfw(z), we obtain from (1) that

C ̂  |/,z(n>)| dm,(w) s* ( g [|T |A*fe( ] )

Another application of Minkowski's inequality gives

C jT jT |//2(w)| dmx{w) dmx{z) ( g 2)

Combining this with (2), we have

and so it suffices to take pjk(z, w) = &Jjz(w). (It is easy to verify that pjk(n, m) = f(n, m) if
(n,m)Elik.)

b)-»c) The argument is analogous to the proof of the necessity of the condition
given in Theorem 6.6 of (1). (Choose f(z, w) = [(1 - rz)(l - rw)Y2, 0 < r < 1.)

c)-»a) The proof is very easy and so is omitted.

As a corollary we state a two-dimensional version of a theorem of Paley and
Rudin.

Corollary. For a set E of ordered pairs of nonnegative integers, the following are
equivalent:

a) sup card(£ n Lk) < a>;
k0

b) 2 \f(n,m)\2<oo for each fGH\U2).

(n,m)6E

Theorem 2. For a sequence (an)ns0 of numbers, the following are equivalent:

a) 2 k | = 0(2-'');
b) the doubly-indexed sequence ( a n + m ) n , m s 0 is a multiplier of H\U2) into / ' ;
c) there exists a function h G L°°(T2) satisfying h(n, m) =
h(z, w)z"wm dm2(z, w) & |an+m| for n,m^0;

Proof. a)-»b) It suffices to show that if / G H\U2), then

2 2"'sup i | / ( / ,«- / ) | < oo. (3)
/2=0 n6/j (=0
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To establish (3) we will again use inequality (1). It follows from this inequality that
there exists a constant C such that

m

) *c\\
/X> itE/j / JT

\ U2)Now fix a polynomial / G H ( £/ ) and, for j = 0 , 1 , . . . , let n;: G i, be such that

2 I/C ", - 01 = sup 2 |/(/, « - /)|.
7^0 nelj 1=0

Applying (4) to the homogeneous expansion of / ,

fiZz, Z*>) = 2 Z'fniz, w) (fn(z, w) = 2 /(/, n - Dz'w"-'),
nsO \ /=0 /

we have

and so

(4)

(5)

L

( 2 \f*,(z, w)\2) « C |/(fz, fw)| </m,(f),
\/>o / Jr

dm2(z, w)*sC\ I 1/(̂ 2, £H>)| drriiiZ) dm2(z, w) =
Jr2 Jr

(6)

On the other hand,

( 2 l/-y(z. » )̂|2) dm2(z, w) = JTi ( g 12 /(/. n, - l)z'wT>
V 2

j dm2(z, w)

)

Thus it follows from (6) that

Now let rj(t) be the jth Rademacher function 0=0 ,1 ,2 , . . . ) - The inequality above
implies that

JT JO
2^i
j"*0 /=O

With Fubini's theorem this shows that there exists a sequence e0, e,, e2,... with each
€j = ± 1 such that

f 2 * 2 /( ' . «/ ~ Oz2*-1*11 dm.U) « CJ|/||.
JT j»O 1=0 I

Combining this with Hardy's inequality, which states that

2 \i(n)\l(n + 1) « 7T f |g(z)| dm,{z), g G H'(l/) ,
n=0 JT
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we have

2 £ 1/C ", - /)|/(2' + /) « 7rC\\f\\.

Since n, «2 ' - l ,we find that

/O 0

and so, by (5),
2 2"' sup 2 |/(Z, n - /)| « 2«-C|lf II

for polynomial / EH\U2). This implies (3) for all / G H\U2).
b)->c) If (,an+m)n,ms0 is a multiplier of H'(U2) into /', then /•-»• Sn-ms0/(«, w)|an+m|

defines a continuous linear functional on H\U2). Thus it follows from the Hahn-
Banach theorem that there exists /i G V(T2) with /i(n, m) = |an+m| if n, m 3=0.

c)->d) For 0 < r < l let /r(z, tv) = [(1 - rz)(l - nv)]"2. Then

/r(n, m) = (n

and | | / r | |=O([ l - r r 2 )
Thus

2 , 9) = f h{z, w)fr(z, w) dm2(z, w)
JT2

\\h\\^T4\fr\\=Oai-r]-2).

Choosing r = 1 - (1/N) this gives

which is equivalent to d).
d) -> a) We omit the very easy proof.
Finally we remark that, by Corollary 15 of (2), the equivalence of b) and c) with

an+m replaced by Anm is equivalent to a positive answer to the question in item (b), p.
68 of (3).
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