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Abstract

In 1844, Joseph Liouville proved the existence of transcendental numbers. He introduced the set L of
numbers, now known as Liouville numbers, and showed that they are all transcendental. It is known thatL
has cardinality c, the cardinality of the continuum, and is a dense Gδ subset of the set R of all real numbers.
In 1962, Erdős proved that every real number is the sum of two Liouville numbers. In this paper, a set W of
complex numbers is said to have the Erdős property if every real number is the sum of two numbers in W.
The set W is said to be an Erdős–Liouville set if it is a dense subset of L and has the Erdős property. Each
subset of R is assigned its subspace topology, where R has the euclidean topology. It is proved here that: (i)
there exist 2c Erdős–Liouville sets no two of which are homeomorphic; (ii) there exist c Erdős–Liouville
sets each of which is homeomorphic toLwith its subspace topology and homeomorphic to the space of all
irrational numbers; (iii) each Erdős–Liouville set L homeomorphic to L contains another Erdős–Liouville
set L′ homeomorphic to L. Therefore, there is no minimal Erdős–Liouville set homeomorphic to L.

2020 Mathematics subject classification: primary 28C99; secondary 11J99.
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1. Introduction

It has been known for over 175 years that every Liouville number is transcendental
and for 120 years that the set L of Liouville numbers is uncountable. Notwithstanding
this, the set L is known to have Lebesgue measure zero. So in this sense, L is very
small. Therefore, it is surprising that each real number equals the sum of two Liouville
numbers. It is reasonable to ask if L is the smallest set, in some sense, with this
property. In this paper, it is proved that there is an uncountable number of sets smaller
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thanLwhich have this property. Indeed, there are 2c such subsets ofL no two of which
are homeomorphic as subspaces of R.

2. Preliminaries

REMARK 2.1. In 1844, Joseph Liouville proved the existence of transcendental
numbers [2, 3]. He introduced the set L of real numbers, now known as Liouville
numbers, and showed that they are all transcendental. A real number x is said to be
a Liouville number if for every positive integer n, there exists a pair of integers (p, q)
with q > 1 such that

0 <
∣∣∣∣∣x −

p
q

∣∣∣∣∣ <
1
qn .

This definition of a Liouville number can be reformulated as follows. For a given irra-
tional x, let pk/qk = pk(x)/qk(x), where qk(x) > 0, denote the sequence of convergents
of the continued fraction expansion of x; then for every n ∈ N, there are infinitely
many k such that qk+1 > qn

k . A more restrictive class of Liouville numbers is obtained
by requiring this inequality to hold for every k > N = N(n) ∈ N. Such numbers are
called strong Liouville numbers.

In 1962, Erdős [8] proved that every real number is the sum of two Liouville
numbers (and also the product of two Liouville numbers). He gave two proofs. One
was a constructive proof. The other proof used the fact that the set L of all Liouville
numbers is a dense Gδ-set in R and showed that every dense Gδ-set in R has this
property.

DEFINITION 2.2. A set W of complex numbers is said to have the Erdős property if
every real number is a sum of two numbers in W.

REMARK 2.3. Recall that if A and B are subsets of the set C of all complex numbers,
then the sum-set is defined to be A + B = {a + b : a ∈ A, b ∈ B}. So the subset W of C
has the Erdős property if the sum-set W +W contains the set R. (See [4, 13].)

REMARK 2.4. By the theorem proved by Erdős mentioned above, the set L of all
Liouville numbers has the Erdős property.

REMARK 2.5. If W is a set with the Erdős property, then every set containing W also
has the Erdős property.

DEFINITION 2.6. A set W is said to be an Erdős–Liouville set if it has the Erdős
property and is a dense subset of the set L of Liouville numbers.

REMARK 2.7. It is not immediately obvious that there exist any Erdős–Liouville sets
other than the setL itself. It is known that some sets of positive Lebesgue measure have
the Erdős property, but they are not subsets ofL as the setL is known to have measure
zero. (See, for example, [5].) According to Petruska, [12], Erdős asked if the set of
strong Liouville numbers has the Erdős property. However, Petruska [12] proved that
it does not. He did this by showing that the sum of two strong Liouville numbers is
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either a Liouville number or a rational number. Hence, the sum of two strong Liouville
numbers cannot equal any irrational number other than a Liouville number. However,
it is proved in [7], in the text following Corollary 1.4 and in Section 3, that there
does exist another Erdős–Liouville set. In [10], the set of ultra-Liouville numbers is
introduced and it is shown that this set is a dense Gδ-subset of L which is therefore an
Erdős–Liouville set.

REMARK 2.8. In the literature, there are various strengthenings of the Erdős result on
Liouville numbers. We mention explicitly [1, 14, 15]. The paper [9] shows that the set
of Liouville numbers has a property stronger than the Erdős property. Though we do
not study such properties, we record here that the c Erdős–Liouville sets we produce
in Theorem 4.6 also possess this stronger property, while Theorem 3.6 and the proof
of Theorem 4.6 show that there are only c dense Gδ subsets of R. The relevant theorem
from [9] describing this stronger property is the following result.

THEOREM 2.9. Let G be a dense Gδ-subset of R, I an interval in R with nonempty inte-
rior, and f a continuous function from I to R which is nowhere locally constant. (This
means that f is not constant on any nonempty open subinterval of I.) Then there exists
an x ∈ G ∩ I such that f (x) ∈ G. Indeed, there is an uncountable number of such x.

If we put f (x) = r − x, for r, x ∈ R and I = R, we see that f satisfies the conditions
of the theorem and thus G has the Erdős property. However, as observed in [9], if we
put I = (0,

√
r) and f (x) =

√
r − x2, we see that for every Erdős–Liouville set G, every

positive real number is the sum of two squares of numbers in G. Also, the argument
in [9, pages 63–64] with L1 = {exp(α) : α ∈ L} leads to the observation that L1 ∩ L is
an Erdős–Liouville set. Although it was not explicitly mentioned in [9], it follows by
induction that if Ln = Ln−1 ∩ L, for n ∈ N, n > 1, then each Ln is an Erdős–Liouville
set. However, we do not know if the sets Ln are distinct from each other and distinct
from L.

PROPOSITION 2.10. Let S be a set of real numbers such that W1 ⊃ S ⊃ W2, where W1
and W2 are Erdős–Liouville sets. Then S is an Erdős–Liouville set.

PROOF. As S ⊃ W2, by Remark 2.5, it has the Erdős property. Also as W2 is dense in R,
so too is S. Finally, as S ⊂ W1, it is a subset of L. Therefore, S is an Erdős–Liouville
set. �

3. Some topology

Before proving the existence of an uncountable number of Erdős–Liouville sets, we
need to record some topology, some of which was laid bare in [5, 6, 11].

DEFINITION 3.1. A topological space X is said to be topologically complete (or com-
pletely metrisable) if the topology of X is the same as the topology induced by a
complete metric on X.

Of course, every complete metric space is topologically complete.
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We denote by P the set of all irrational real numbers with the topology it inherits as
a subspace of the euclidean space R.

A beautiful characterisation of the topological space P is given in [16, Theorem
1.9.8].

THEOREM 3.2. The space of all irrational real numbers P is topologically the unique
nonempty, separable, metrisable, topologically complete, nowhere locally compact,
and zero-dimensional space. �

This has a Corollary 3.3, [16, Corollary 1.9.9], which is often proved using
continued fractions.

COROLLARY 3.3. The space P is homeomorphic to the Tychonoff product Nℵ0 of a
countably infinite number of homeomorphic copies of the discrete space N of positive
integers. Hence, P × P is homeomorphic to P. Indeed, P is homeomorphic to Pℵ0 .

REMARK 3.4. Recall that a subset X of a topological space Y is said to be a Gδ-set if
it is a countable intersection of open sets in Y while X is said to be an Fσ-set if it is
a countable union of closed sets in Y. Obviously, a subset X of a topological space Y
is a Gδ-set if and only if its complement is an Fσ-set. We see immediately that in a
metric space such as R, the set T of all transcendental real numbers is a Gδ-set as its
complement is the countably infinite set A of all real algebraic numbers.

Now we connect the notion of Gδ-set in R to the property of being topologically
complete.

THEOREM 3.5 [16, Theorem A.63]. A subset of a separable metric topologically
complete space is a Gδ-set in that space if and only if it is topologically complete.

Using Theorems 3.2, 3.5 and Corollary 3.3, we obtain the following result.

THEOREM 3.6. Every Gδ subset of the set P of all irrational real numbers is
homeomorphic to P and to Nℵ0 . In particular, the space T of all real transcendental
numbers and the space L of all Liouville numbers, with their subspace topologies
from R, are both homeomorphic to P and to Nℵ0 .

These results and a similar one [16, Theorem 1.9.6] characterising the space Q
of all rational numbers with its euclidean topology, are used in [6, 11] to describe
transcendental groups and topological transcendental fields.

4. The existence of 2c Erdős–Liouville sets

THEOREM 4.1. Let X be a topological space homeomorphic to P. Then X has a dense
Gδ-set Y which is homeomorphic to P such that the cardinality of the set X \ Y is c, the
cardinality of the continuum.

PROOF. Consider the topological space T of all real transcendental numbers and the
topological spaceL of all Liouville numbers. We saw in Corollary 2.6 and Remark 2.1

https://doi.org/10.1017/S0004972722001009 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001009


288 T. P. Chalebgwa and S. A. Morris [5]

that L is a dense Gδ-set, and T and L are homeomorphic to P. Further, the cardinality
of the set T \ L is c. As the properties of being a dense Gδ-set and having cardinality
c are preserved by homeomorphisms, the theorem is proved. �

By Theorem 4.1 and Remark 2.1, we have the following corollary.

COROLLARY 4.2. The space L of all Liouville numbers has a dense Gδ-set L1
homeomorphic to L. Further, L1 is an Erdős–Liouville set.

THEOREM 4.3. If L is any Erdős–Liouville set homeomorphic to P, then it has a proper
subset L1 which is an Erdős–Liouville set homeomorphic to P. Therefore, there is no
minimal Erdős–Liouville set homeomorphic to P. �

Our next theorem follows immediately from Corollary 4.2 and Theorem 4.1.

THEOREM 4.4. There exist Erdős–Liouville sets L1, L2, . . . , Ln, . . . , for n ∈ N, such
that

L ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Ln ⊃ · · ·
with each Ln \ Ln+1 having cardinality c and each Ln+1 a Gδ-set in Ln which is
homeomorphic to P. �

THEOREM 4.5. There exist 2c Erdős–Liouville sets no two of which are homeomor-
phic.

PROOF. First, we note that there are precisely 2c subsets of the set L of all Liouville
numbers as L has cardinality c. So the cardinality of the set of Erdős–Liouville sets is
not greater than 2c.

Using the notation of Theorem 4.4, let W be any subset of L \ L1. As L1 is an
Erdős–Liouville set and L1 ⊂ L, Remark 2.5 implies that L1 ∪W is an Erdős–Liouville
set. As there are 2c subsets W of the set L \ L1, it follows that there are 2c distinct
Erdős–Liouville sets. So it remains to show only that amongst these, there are 2c no
two of which are homeomorphic.

By the Laverentieff theorem, [16, Theorem A8.5], there are at most c subspaces
of R which are homeomorphic. As there are 2c distinct Erdős–Liouville sets, it
follows that there are 2c Erdős–Liouville sets no two of which are homeomorphic, as
required. �

THEOREM 4.6. There exist c Erdős–Liouville sets each of which is homeomorphic to
L with its subspace topology. So each is homeomorphic to P.

PROOF. Using the notation of Theorem 4.4, L ⊃ L1, and the set L \ L1 has cardinal-
ity c. Let S = {s1, s2, . . . , sn, . . .} be any countably infinite subset of L \ L1. As L \ L1
has cardinality c, there are c distinct such subsets S. Then, L \ S =

⋂∞
i=1(L \ {si}).

Observing that L ⊃ L \ S ⊃ L1, Proposition 2.10 implies that each L \ S is an
Erdős–Liouville set.

Noting that L is a Gδ-set in R, and each L \ {si} is an open set in L, it follows that
L \ S is a Gδ-set. By Theorem 3.6, each of the c sets L \ S is therefore homeomorphic
to L and P. �
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