MEROMORPHIC PRODUCTS DETERMINING NEAR-FIELDS

PETER FUCHS and C. J. MAXSON

(Received 13 August 1987)

Communicated by B. J. Gardner

Abstract

In this paper we continue our investigations of a construction method for subnear-rings of M(G) proposed by H. Wielandt. For a meromorphic product $H, H \subseteq G^k$, G finite, we obtain necessary and sufficient conditions for M(G, k, H) to be a near-field.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 12 K 05, 16 A 76; secondary 20 E 10.

1. Introduction

Let G be a group written additively and k a positive integer, $k \ge 2$. R. Remak has pointed out in [4] and [5] that one can construct subgroups of the direct power G^k as follows. For $j \in \{1, 2, ..., k\}$, let B_j be a subgroup of G, \bar{B}_j a normal subgroup of B_j such that $B_j/\bar{B}_j \cong B_{j+1}/\bar{B}_{j+1}$ with isomorphisms $\sigma_j, j \in \{1, ..., k-1\}$. Let α be an ordinal, $\{b_{i\eta}|\eta < \alpha\}$ a set of coset representatives of \bar{B}_1 in B_1 where $b_{10} = 0$ and define a subset $H \subseteq G^k$ by

$$H = \bigcup_{\eta < \alpha} \left[(b_{1\eta} + \bar{B}_1) \times \prod_{j=1}^{k-1} (\sigma_j \circ \sigma_{j-1} \circ \cdots \circ \sigma_1 (b_{1\eta} + \bar{B}_1)) \right].$$

Then *H* is called a *k*-fold meromorphic product and will be denoted by $H = B_1/\bar{B}_1 \times_{\sigma_1} B_2/\bar{B}_2 \times_{\sigma_2} \cdots \times_{\sigma_{k-1}} B_k/\bar{B}_k$. It is straightforward to verify that *H* is a subgroup of G^k . However, only for k = 2 can every subgroup of G^k be obtained as a meromorphic product. Let $M(G) = \{f: G \to G\}$ act

^{© 1989} Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

on G^k componentwise. For any subgroup H of G^k we define $M(G, k, H) = \{f \in M(G) | f(H) \subseteq H\}$. These M(G, k, H) are subnear-rings of M(G) with identity id: $G \to G$, id(x) = x, for all $x \in G$.

For k = 2 it was shown in [1] that whenever M(G, 2, H) is a near-field then it must be a field and H is of the form $G/\{0\} \times G/\{0\}$. This result does not hold for $k \ge 3$. However, in this paper we show that every finite near-field arises from a meromorphic product of the form $B_1/\{0\} \times \cdots \times B_k/\{0\}$. More generally, for an arbitrary meromorphic product H, we obtain necessary and sufficient conditions for M(G, k, H) to be a near-field. For a subset S of G we let $S^* = S \setminus \{0\}$.

2. Characterization results

We first show that any finite near-field arises from a meromorphic product.

THEOREM 2.1. Let N be a zero-symmetric finite near-field. Then there exists a group G, a positive integer k and a subgroup H of G^k where

$$H = B_1 / \{0\} \underset{\sim}{\times}_{\sigma_1} B_2 / \{0\} \underset{\sim}{\times}_{\sigma_2} \cdots \underset{\sigma_{k-1}}{\times} B_k / \{0\}$$

such that N = M(G, k, H).

4

PROOF. Let G be a finite group such that N is a subnear-field of M(G). If $G^* = \{x_1, x_2, \dots, x_k\}$ then we know $Nx_i \cong Nx_j$ as N-subgroups via $\sigma_{ij}: nx_i \mapsto nx_j, i, j \in \{1, 2, \dots, k\}$. Let

$$H = Nx_1 \underset{\sim}{\times}_{\sigma_{12}} Nx_2 \underset{\sigma_{23}}{\times} \cdots \underset{\sigma_{k-1k}}{\times} Nx_k.$$

Clearly $N \subseteq M(G, k, H)$. On the other hand, for $(x_1, x_2, \ldots, x_k) \in H$ and $m \in M(G, k, H), m(x_1, \ldots, x_k) = (m(x_1), \ldots, m(x_k)) \in H$. Now $m(x_1) \in Nx_1$ so $m(x_1) = f(x_1)$ for some $f \in N$. But the only k-tuple in H with $f(x_1)$ as first component is $(f(x_1), f(x_2), \ldots, f(x_k))$. Hence $f(x_i) = m(x_i)$ for all $x_i \in G^*$ and so $m = f \in N$.

We have shown that every finite near-field can be represented using a meromorphic product without quotients, that is, by using a meromorphic product of the form $B_1/\{0\}\times\cdots\times B_k/\{0\}$. Conversely one would like to characterize those meromorphic products without question that determine near-fields. In fact we consider the more general situation of meromorphic products with quotients, $H = B_1/B_1\times\cdots\times B_k/B_k$ and determine, in terms of properties of H, when M(G, k, H) is a near-field. The "without quotients" case then follows as a corollary. Throughout this section all structures are finite. We first fix some notation and give some definitions. Let $H = B_1/\bar{B}_1 \underset{\sigma_1}{\times} \cdots \underset{\sigma_{k-1}}{\times} B_k/\bar{B}_k$ with $B_1/\bar{B}_1 = \{0 + \bar{B}_1, b_1 + \bar{B}_1, b_2 + \bar{B}_1, \dots, b_n + \bar{B}_1\}$. For $j \in \{1, 2, \dots, k\}$ we call B_j/\bar{B}_j the *j*th column of H. Let $L_0 = \{\bar{B}_1, \bar{B}_2, \dots, \bar{B}_k\}$ and

$$L_{i} = \{b_{i} + \bar{B}_{1}, \sigma_{1}(b_{i} + \bar{B}_{1}), \sigma_{2} \circ \sigma_{1}(b_{i} + \bar{B}_{1}), \dots, \sigma_{k-1} \circ \cdots \circ \sigma_{1}(b_{i} + \bar{B}_{1})\},\$$

$$i \in \{1, 2, \dots, n\},\$$

and call each L_i a line. Further we let $\mathscr{L} = \{L_0, L_1, \ldots, L_n\}$ and $\mathscr{L}^* = \mathscr{L} \setminus \{L_0\}$. For $L \in \mathscr{L}$ and $j \in \{1, 2, \ldots, k\}$ let L^j denote the coset in L which is in the *j*th column of H. For $0 \neq x \in B_1 \cup \cdots \cup B_k$, say $x \in B_i$, denote by $L_{x,i}$ the unique line L such that $x \in \bigcup L$. Further, for $0 \neq x \in B_1 \cup \cdots \cup B_k$ let $C(x) = \{i \in \{1, 2, \ldots, k\} | x \in B_i\}$ and $P(x) = \{(i, j) \in \{1, 2, \ldots, n\} \times \{1, 2, \ldots, k\} | x \in L_i^j\}$. Thus C(x) denotes the columns of H in which x appears and P(x) gives the coordinates of the cosets which contain x in the array of lines and columns.

For $L_i, L_j \in \mathscr{L}^*$ we write $L_i \sim L_j$ if there exists $\{i_1, \ldots, i_m\} \subseteq \{1, 2, \ldots, n\}$ and $x, x_{i_1}, \ldots, x_{i_{m-1}}, y \in B_1 \cup \cdots \cup B_k$ such that $x \in \bigcup L_i \cap \bigcup L_{i_1}, x_{i_1} \in \bigcup L_{i_1} \cap \bigcup L_{i_2}, \ldots, x_{i_{m-1}} \in \bigcup L_{i_{m-1}} \cap \bigcup L_{i_m}$ and $y \in \bigcup L_{i_m} \cap \bigcup L_j$. It is straightforward to verify that \sim is an equivalence relation on \mathscr{L}^* . We call the equivalence classes *connected components* and say \mathscr{L}^* is connected when \mathscr{L}^* is a connected component.

When \mathscr{L}^* is connected, one can find (after possibly reordering \mathscr{L}^*) a set $\{x_1, \ldots, x_m\}$ such that $\{l|(l, j) \in P(x_i) \text{ for some } j, 1 \leq j \leq k\} = \{l|l_{i-1} \leq l \leq l_i\}$ for $i \in \{1, 2, \ldots, m\}$, where $l_0 = 1$ and $l_m = n$. We call $\{x_1, \ldots, x_m\}$ a set of generators. For $l_{i-1} \leq l_i \leq l_i$, let $\{j_1^l, \ldots, j_{k_i}^l\}$ denote the columns $j \in \{1, 2, \ldots, k\}$ such that $x_i \in L_l^j$. From this we note that $L_{x_i, j_1^l} = L_{x_i, j_2^l} = \cdots = L_{x_i, j_k^l}$.

A sequence $A = (a_1, a_2, ..., a_m)$ where $a_j \in \bigcup_{i=1}^k B_i$ is a good sequence for $x_i \in \{x_1, ..., x_m\}$ if

(a)
$$C(a_k) = C(x_k), k \in \{1, 2, ..., m\},$$

(b) $\forall k \in \{1, 2, ..., m\}, \forall j \in \{1, 2, ..., k\}, x_k \in \bar{B}_j \text{ implies } a_k \in \bar{B}_j,$
(c) $\exists l, l_{i-1} \leq l \leq l_i \text{ and } p \in \{j_1^l, ..., j_{k_j}^l\} \text{ such that } a_i \in \bar{B}_p^*,$
(d) $\forall k, j \in \{1, 2, ..., m\}, \forall k_1 \in C(x_k), \forall k_2 \in C(x_j)$
 $L_{x_k, k_1} = L_{x_j, k_2} \Rightarrow L_{a_k, k_1} = L_{a_j, k_2}.$

From $L_{x_i,j_1^l} = \cdots = L_{x_i,j_{k'}^l}$ and part (d) of the definition of good sequence we obtain $L_{a_i,j_1^l} = \cdots = L_{a_i,j_{k_l}^l}$. We give one further definition, and then we present our main characterization result. Let $x_i \in \{x_1, \ldots, x_m\}$ and let $A = (a_1, a_2, \ldots, a_m)$ be a good sequence for x_i . For $x \in G^*$ define

$$A(x) = \bigcap_{\substack{(l,j) \in P(x) \\ 1 \le l \le l_1}} L^j_{a_1, j_1^l} \cap \dots \cap \bigcap_{\substack{(l,j) \in P(x) \\ l_{m-1} \le l \le l_m}} L^j_{a_m, j_1^l}$$

THEOREM 2.2. Let $H = B_1/\bar{B}_1 \underset{\sigma_1}{\times} \cdots \underset{\sigma_{k-1}}{\times} B_k/\bar{B}_k$. Then N = M(G, k, H) is a near-field if and only if

- (1) N is 0-symmetric,
- (2) $\forall 0 \neq x \in B_1 \cup \cdots \cup B_k$, $\bigcap_{i \in C(x)} \overline{B}_i = \{0\}$,
- $(3) \bigcup_{i=1}^n \bigcup L_i = G^*,$
- (4) \mathscr{L}^* is connected with a set of generators $\{x_1, \ldots, x_m\}$,
- (5) $\forall_i \in \{1, 2, \dots, m\}$, for all good sequences $A = (a_1, \dots, a_m)$ for x_i ,
 - $\exists x \in G^*, A(x) = \emptyset \text{ or } \exists j \in \{1, 2, \dots, k\}, \exists x \in \overline{B}_j^*, A(x) \cap \overline{B}_j = \emptyset.$

PROOF. We first show that the conditions are necessary. If N is not 0-symmetric then it is known (see [3]) that $N \cong M_C(Z_2)$. But this is impossible in our situation since the identity map is in N. Suppose now $\bigcap_{i \in C(x_0)} \tilde{B}_i \neq \{0\}$ for some $0 \neq x_0 \in B_1 \cup \cdots \cup B_k$, say $0 \neq b \in \bigcap_{i \in C(x_0)} \tilde{B}_i$. Define $f: G \to G$ by $f(x_0) = x_0 + b$ and f(y) = y for $y \neq x_0$. Then $f \in N$, a contradiction to N being a near-field. If $\bigcup_{i=1}^n \bigcup L_i \subsetneq G^*$, define $g: G \to G$ by $g(x) = x, x \in \bigcup_{i=1}^n \bigcup L_i$ and g(y) = 0, otherwise. Again, $g \in N$, a contradiction.

If \mathscr{L}^* is not connected let C_1 and C_2 be distinct connected components. Define $h: G \to G$ by h(0) = 0, h(x) = 0 for those x such that there exists $L \in C_1$ with $x \in \bigcup L$ and h(y) = y otherwise. Once again a contradiction is obtained since $h \in N$.

To show that property (5) is necessary let $i \in \{1, 2, ..., m\}$ and let $A = (a_1, ..., a_m)$ be a good sequence for x_i such that $A(x) \neq \emptyset$, for each $x \in G^*$ and $A(x) \cap \overline{B}_j \neq \emptyset$ for all $j \in \{1, 2, ..., k\}$ and all $x \in \overline{B}_j^*$. Define a function $f: G \to G$ by

$$f(x_k) = a_k, \qquad k = 1, 2, \dots, m;$$

$$f(x) = y_x \in A(x) \cap \bar{B}_j, \qquad x \in \bar{B}_j^* \setminus \{x_1, \dots, x_m\}, \qquad j = 1, 2, \dots, k;$$

$$f(0) = 0;$$

$$f(x) = y_x \in A(x), \qquad \text{otherwise.}$$

We first show $f \in N$. Let $l \in \{1, 2, ..., n\}$, say $l_{i-1} \leq l \leq l_i$. Let $y_1, y_2 \in L_l$, say $y_1 \in L_l^{i_1}, y_2 \in L_l^{i_2}$. We must show $L_{f(y_1),i_1} = L_{f(y_2),i_2}$. However, since $f(y_i) \in A(y_i), i = 1, 2$, we have $f(y_1) \in L_{a_i,j_1^l}^{i_1}, f(y_2) \in L_{a_i,j_1^l}^{i_2}$ and so $L_{f(y_1),i_1} = L_{a_i,j_1^l} = L_{f(y_2),i_2}$ as required. From this we obtain $f(L_l) \subseteq L_{f(y_1),i_1}$.

368

Now, since $f(L_0) \subseteq L_0$ by definition, we have $f \in N$. From property (c) of the definition of good sequence there is some line $L_i \in \mathscr{L}^*$ such that $f(L_i) \subseteq L_0$ so f cannot be invertible, contrary to N being a near-field.

For the converse let $f \in N$ and suppose that f(x) = 0 for some $x \in G^*$. We show f must be zero map. Consequently N has no divisors of zero and thus, since a finite near-ring without divisors of zero is a near-field, we have the result.

Let $x \in \bigcup L_l$ for some l, say $l_{i-1} \leq l \leq l_i$. Since $x_i \in L_l^j$ for $j \in \{j_1^l, \ldots, j_{k_l}^l\}$, $f(x_i) \in B_j$. If $f(x_i) \neq 0$, then $f(x_1) = b_1, \ldots, f(x_i) = b_i, \ldots$, $f(x_m) = b_m$ defines a good sequence for x_i . But in this case we have $f(x) \in A(x)$ for $x \in G^*$ and $f(x) \in A(x) \cap B_j$ for $x \in B_j^*$, $j \in \{1, 2, \ldots, k\}$, contradicting property (5). Thus $f(x_i) = 0$. But then $f(L_l) \subseteq L_0$ for all $l_{i-1} \leq l \leq l_i$. If 1 < i < m then $x_{i-1} \in L_{l_{i-1}}$ and $x_{i+1} \in L_{l_i}$. Again using property (5), by repeating the same argument, we have $f(L_l) \subseteq L_0$ for all $l, l_{i-2} \leq l \leq l_{i+1}$. Continuing in this manner we obtain $f(L_l) \subseteq L_0$ for all $l \in \{1, 2, \ldots, n\}$. But then $f(x) \in \bigcap_{i \in C(x)} B_i$ for all $x \in G^*$. From property (2), f = 0.

In the "without quotients" situation, that is, when $\bar{B}_j = \{0\}$ for all $j \in \{1, \ldots, k\}$, properties (2) and (5) are automatically fulfilled and here we have $\bigcap_{l=1}^{n} \bigcup L_l = (\bigcup_{j=1}^{k} B_j)$. Thus we have the following.

COROLLARY 2.3. Let $H = B_1/\{0\} \underset{\sim}{\times}_{\sigma_1} \cdots \underset{\sigma_{k-1}}{\times} B_k/\{0\}$. Then N = M(G, k, H) is a near-field if and only if (1) N is 0-symmetric, (2) $\bigcup_{i=1}^k B_i = G$,

(3) \mathcal{L}^* is connected.

We conclude the paper with an example which shows that the conditions of the above theorem need not hold. This meromorphic product fulfills (1)-(4) but not (5) and therefore determines a near-ring which is not a near-field.

EXAMPLE 2.4. Let $G = (\mathbb{Z}_2)^4$ with the usual basis $\{e_1, e_2, e_3, e_4\}$. Let $B_1 = G, \bar{B}_1 = \langle e_1 + e_2, e_3 + e_4 \rangle, B_2 = G, \bar{B}_2 = \langle e_1, e_2 + e_4 \rangle, B_3 = \langle e_1, e_2, e_4 \rangle, B_3 = \langle e_1 \rangle, B_4 = \langle e_1, e_3, e_2 + e_4 \rangle, \bar{B}_4 = \langle e_1 + e_2 + e_3 + e_4 \rangle, B_5 = \langle e_1, e_3 + e_4 \rangle, B_5 = \{0\}, B_6 = \langle e_1, e_2 + e_3 \rangle$ and $\bar{B}_6 = \{0\}$. The following scheme determines a meromorphic product:

$$e_{1} + B_{1} \mapsto e_{1} + e_{2} + B_{2} \mapsto e_{2} + B_{3} \mapsto e_{1} + B_{4} \mapsto e_{3} + e_{4} + B_{5} \mapsto e_{1} + B_{6},$$

$$e_{1} + e_{4} + B_{1} \mapsto e_{4} + B_{2} \mapsto e_{4} + B_{3} \mapsto e_{1} + e_{3} + B_{4}$$

$$\mapsto e_{1} + e_{3} + e_{4} + B_{5} \mapsto e_{2} + e_{3} + B_{6}.$$

Using $x_1 = e_1 + e_3 + e_4$, $x_2 = e_4$ and $A = (e_3 + e_4, e_1 + e_2)$ as a good sequence for x_1 , one defines a function in M(G, 6, H) which is not invertible.

References

- P. Fuchs and C. J. Maxson, 'Near-fields associated with invariant linear k-relations', Proc. Amer. Math. Soc. 103 (1988), 729-736.
- [2] J. D. P. Meldrum, Near-rings and their links with groups (Research Notes in Math. 134, Pitman, London, 1986).
- [3] G. F. Pilz, Near-rings (2nd ed., North-Holland, Amsterdam, 1983).
- [4] R. Remak, 'Über die Darstellung der endlichen Gruppen als Untergruppen direkter Produkte', J. Reine Angew. Math. 163 (1930), 1-44.
- [5] R. Remak, 'Über Untergruppen direkter Produkte von drei Faktoren', J. Reine Angew. Math. 166 (1932), 65-100.
- [6] H. Wielandt, Permutation groups through invariant relations and invariant functions (Lecture notes, Ohio State University, Columbus, 1969).

Department of Mathematics Texas A & M University College Station, Texas 77843 U.S.A.