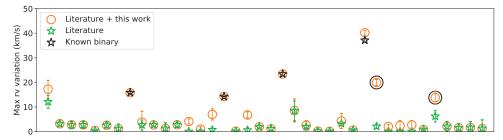
Binarity in CEMP-no stars

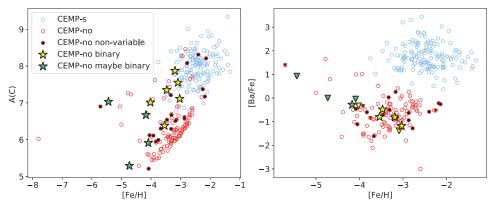
Anke Arentsen¹, Else Starkenburg¹, Matthew D. Shetrone², Alan W. McConnachie³, Éric Depagne⁴ and Kim A. Venn⁵

¹Leibniz-Institut für Astrophysik Potsdam (AIP), Potsdam, Germany
²McDonald Observatory, The University of Texas at Austin, Austin, USA
³NRC Herzberg Institute of Astrophysics, Victoria, Canada
⁴Southern African Large Telescope/SAAO, Cape Town, South Africa
⁵Department of Physics and Astronomy, University of Victoria, Victoria, Canada

Abstract. We monitor a sample of CEMP-no stars using the CFHT and SALT telescopes to gain additional knowledge about the possible binarity of these stars. This information is valuable for each individual star, and additionally it could be used to further constrain their binary fraction. We find two new CEMP-no binaries and four additional CEMP-no stars that show some indication of radial velocity variations, resulting in a CEMP-no binary fraction of $\sim 20\%$.


Keywords. stars: chemically peculiar – stars: binaries – techniques: radial velocities

1. Introduction


It is well-known that with lower metallicity the fraction of stars that are enhanced in carbon increases (e.g. Lee et al. 2013). A sub-sample of the carbon-enhanced metalpoor stars, the CEMP-s stars, is thought to form through binary transfer. These stars have enhanced carbon relative to iron and additionally show an enhancement in s-process elements (usually produced in AGB stars). Radial velocity monitoring of these stars has confirmed their binarity in almost all cases (Starkenburg et al. 2014, Hansen et al. 2016a), supporting this formation mechanism. The CEMP-no stars are not enhanced in s-process elements and are clearly chemically distinct from the CEMP-s stars. They are not often found in binary systems (Starkenburg et al. 2014, Hansen et al. 2016b), and are thought to represent the original composition of the ISM out of which they formed. This makes them very useful stars to study processes in the early Milky Way.

2. Results

We have monitored a sample of CEMP-no stars for variations in radial velocity with the Canada-France-Hawaii Telescope (CFHT) and the Southern African Large Telescope (SALT). We present the radial velocity variations of the stars in our sample in Figure 1, where we show what our radial velocity measurements add to the current literature in this preliminary data analysis. We highlight two stars, which with the addition of our new data show large radial velocity variations and are most likely in a binary system. Additionally, we find four stars that show radial velocity variations > 5 km s⁻¹, which might also be binaries but we need more data to confirm. In Figure 2 we plot the sample of monitored CEMP-no stars (from Hansen et al. 2016b and this work) on the [Fe/H] vs. A(C) and [Fe/H] vs. [Ba/Fe] planes, with respect to a large compilation of CEMP stars from Yoon et al. (2016). We highlight the binaries and potential binaries, and conclude that they do not lie in a specific place in these diagrams. The s-process enrichment in CEMP-no binaries is low, even for CEMP-no stars, indicating that they are most probably in non-interacting binary systems.

Figure 1. Radial velocity variation in individual CEMP-no stars. We show the complete sample of CEMP-no stars that have multiple radial velocity measurements, which consists of the samples from Starkenburg *et al.* (2014), Hansen *et al.* (2016b) and this work Arentsen *et al.* (in prep.). The two circled stars indicate our newly discovered CEMP-no binaries.

Figure 2. [Fe/H] versus A(C) (left) and [Ba/Fe] (right) for the full sample of CEMP stars as compiled in Yoon *et al.* (2016). The complete CEMP-no radial velocity sample with its (potential) binaries is indicated. Four of the binaries are described in Hansen *et al.* (2016b) and two of them are new, as are the potential binaries. Upper limits are indicated by triangles.

3. Summary

We find two new CEMP-no binaries in our radial velocity monitoring sample, which increases the sample of known CEMP-no binary stars by 50%. The fraction of CEMP-no stars that are in binaries stays around 20% (as in Hansen *et al.* 2016b). To better constrain the binarity properties of the CEMP-no population as a whole, a larger sample and more systematic measurements are needed.

References

Arentsen, A., Starkenburg, E., Shetrone, M. D., et al. in prep.

Hansen, T. T., Andersen, J., Nordström, B., et al. 2016a, A&A, 586, A3

Hansen, T. T., Andersen, J., Nordström, B., et al. 2016b, A&A, 586, A160

Lee, Y. S., Beers, T. C., Masseron, T., et al. 2013, AJ, 146, 132

Starkenburg, E., Shetrone, M. D., McConnachie, A. W., & Venn, K. A. 2014, MNRAS, 441, 1217

Yoon, J., Beers, T. C., Placco, V. M., et al. 2016, ApJ, 833, 20