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We recall that w ∈ C+
p if there exist ε > 0 and C > 0 such that for any a < b < c

with c − b < b − a and any measurable set E ⊂ (a, b), the following holds

∫
E

w � C

( |E|
(c − b)

)ε ∫
R

(
M+χ(a,c)

)p
w < ∞.

This condition was introduced by Riveros and de la Torre [33] as a one-sided
counterpart of the Cp condition studied first by Muckenhoupt and Sawyer [30, 34].

In this paper we show that given 1 < p < q < ∞ if w ∈ C+
q then

‖M+f‖Lp(w) � ‖M�,+f‖Lp(w)

and conversely if such an inequality holds, then w ∈ C+
p . This result is the one-sided

counterpart of Yabuta’s main result in [37]. Combining this estimate with known
pointwise estimates for M�,+ in the literature we recover and extend the result for
maximal one-sided singular integrals due to Riveros and de la Torre [33] obtaining
counterparts a number of operators.

Keywords: Cp condition; weights; Coifman–Fefferman inequalities

2000 Mathematics Subject Classification: 42B20; 42B25

1. Introduction and main result

One-sided theory of weights was begun by Sawyer in [35] where he provided
the characterization of the two weighted inequalities for the one-sided maximal
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functions

M+f(x) = sup
h>0

1
h

∫ x+h

x

|f(y)|dy M−f(x) = sup
h>0

1
h

∫ x

x−h

|f(y)|dy.

In some sense it is a somehow curious fact that the results in [35] appeared more
than a decade later than the characterization of the one weight inequalities for the
maximal function due to Muckenhoupt [29] if one bears in mind that actually the
maximal operators studied by Hardy and Littlewood [10] were M+ and M−.

Since Sawyer’s work a number of papers such as [1, 7, 9, 20, 21, 23–26, 28,
31, 32] and even more that we will cite throughout this paper were devoted to
develop the one-sided theory. However, at this point, we believe it is worth men-
tioning some papers which have expanded the field of one-sided estimates in the last
years. Kinnunen and Saari [13, 14] studied parabolic Muckenhoupt conditions in
connection with PDEs and more recently Hytönen and Rosén devoted their work
[11] to causal sparse domination motivated by maximal regularity estimates for
elliptic PDEs, obtaining results related to one-sided weighted estimates for singular
integrals.

A well-known estimate in theory of weights that was settled by Coifman and
Fefferman, says that if w ∈ A∞ then, for every p ∈ (0,∞) we have that

‖Tf‖Lp(w) � cp,n,w‖Mf‖Lp(w) (1.1)

where T stands for any Calderón–Zygmund operator.
Although w ∈ A∞ is sufficient for (1.1) to hold, it turns out to not to be necessary.

Muckenhoupt [30] showed that if (1.1) holds for the Hilbert transform for p > 1
then there exist c, ε > 0 such that for every cube Q and every measurable subset
E ⊂ Q,

w(E) � c

( |E|
|Q|
)ε ∫

R

(MχQ)p
w,

namely w ∈ Cp. Later on, Sawyer [34] showed that if 1 < p < q < ∞ and w ∈ Cq,
then (1.1) holds.

Yabuta [37] provided a different approach to the question. He showed that if
1 < p < q < ∞ and w ∈ Cq

‖Mf‖Lp(w) � cp,n,w‖M �f‖Lp(w) (1.2)

and also that if such an inequality holds then w ∈ Cp. An alternative proof of this
estimate and a slight generalization of the Cp condition was studied by Lerner
in [15].

In the last years some advances have been made in the study of this kind of
questions. Lerner [16] fully characterized the weak type version of (1.1). Sawyer’s
result has been extended to the full range in [6] and also quantitative estimates
in terms of a suitable Cp constant and further operators, such as rough singular
integrals, have been explored in [4, 5].

In the one-sided setting we are aware of just one work in this direction in which
Riveros and de la Torre [33] introduced the one-sided version of the Cp condition,
which reads as follows. We say that w ∈ C+

p if there exist ε > 0 and C > 0 such
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that for any a < b < c with c − b < b − a and any measurable set E ⊂ (a, b), the
following holds ∫

E

w � C

( |E|
c − b

)ε ∫
R

(
M+χ(a,c)

)p
w. (1.3)

The main result in that work was the following one-sided counterpart of [34].

Theorem 1.1 [33, theorem 1]. Let 1 < p < q < ∞. If w ∈ C+
q and (T+)∗ is a

maximal Calderón–Zygmund one-sided singular integral, then∫
R

|(T+)∗f |pw � C

∫
R

(M+f)pw. (1.4)

Observe that in [33], additionally the authors assume that the integral in the
right-hand side of (1.3) is finite. Note that if the right-hand side of the condition
C+

q is not finite, then the same happens to
∫

R
(M+f)pw and hence the inequality

is trivial.
Note that the C+

p class is defined in terms of the one-sided maximal operator
M+. We will review the definitions of M+ and the remainder of the one-sided
operators studied in this paper in § 2. We would like to observe as well that the
assumption c − b < b − a can be dropped. Assume that b − a � c − b. Let ā < a
such that a − ā = c − a. Note, that then, b ∈ (ā, c), and c − b < b − ā. On the other
hand observe that M+χ(ā,c) � M+χ(a,c) and hence the C+

p condition would hold
just with a larger constant C but without the restriction c − b < b − a.

The purpose of this paper is to provide a one-sided counterpart of Yabuta’s
characterization (1.2) and to derive a number of new results relying upon it. The
precise statement of our theorem is the following.

Theorem 1.2. Let 1 < p < q < ∞. If f ∈ Lp0(R) for some 1 < p0 < ∞ and w ∈
C+

q then

‖M+f‖Lp(w) � ‖M �,+f‖Lp(w),

provided the left-hand side of the estimate is finite. Conversely if the preceding
estimate holds, then w ∈ C+

p .

We would like to note that the corresponding counterpart for T− operators holds
as well. However, here and throughout the remainder of this paper we will just deal
with the case of T+ operators.

Exploiting the approach in [6] we shall derive a number of consequences of this
result. Among them we will recover the result for one-sided Calderón–Zygmund
singular integrals due to de la Torre and Riveros that we stated above. We present
those results in § 3.

The remainder of the paper is organized as follows. We devote § 2 to gather some
results and definitions that will be useful throughout the remainder of the work.
In § 3 we present the applications of theorem 1.2, namely counterparts of (1.4) for
some other one-sided operators, and even for one-sided Calderón–Zygmund singular
integrals themselves. Section 4 is devoted to the proof of theorem 1.2. Additionally
we provide an appendix settling a suitable Cotlar inequality that we have not been
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able to find in the literature and that will be useful for us to recover and generalize
[33, theorem 1].

2. Preliminaries and definitions

We recall that the one-sided maximal function M+ is defined, as we noted in the
introduction, as

M+f(x) = sup
h>0

1
h

∫ x+h

x

|f |

and the sharp maximal function M �,+, that was introduced in [27], as

M �,+f(x) = sup
h>0

1
h

∫ x+h

x

(
f(y) − 1

h

∫ x+2h

x+h

f

)+

dy.

Another class of operators that we will be dealing with and that have already
appeared in the previous section are one-sided singular integral operators that were
introduced in [1]. We say that a function K ∈ L1

loc(R \ {0}) is a Calderón–Zygmund
kernel if the following properties hold.

(1) There exists a finite constant B1 such that∣∣∣∣∣
∫

ε<|x|<N

K(x) dx

∣∣∣∣∣ � B1

for all 0 < ε < N . Furthermore, limε→0+

∫
ε<|x|<N

K(x) dx exists.

(2) There exists a constant B2 such that

|K(x)| � B2

|x|
for all x �= 0.

(3) There exists a finite constant B3 such that

|K(x − y) − K(x)| � B3
|y|
|x|2 (2.1)

for all x and y with |x| > 2|y| > 0.

We say that T+ is a one-sided Calderón–Zygmund singular integral if

T+f(x) = lim
ε→0

∫ ∞

x+ε

K(x − y)f(y) dy (2.2)

where K is a Calderón-Zygmund kernel with support in R
−.

We would like to emphasize that this kind of operators are Calderón–Zygmund
operators, and hence they have all the usual properties of operators in that class,
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but with the extra feature that K is supported in R
−. Examples of such operators

are provided in [1].
Replacing (2.1) by some other smoothness conditions we obtain some more

operators. For instance, we may assume that there exist numbers cr, Cr > 0 such
that for any y ∈ R and R > cr|y|,

∞∑
m=1

2mR

(
1

2mR

∫
2mR<|x|�2m+1R

|K(x − y) − K(x)|r dx

) 1
r

� Cr (2.3)

if 1 � r < ∞ and
∞∑

m=1

2mR sup
2mR<|x|�2m+1R

|K(x − y) − K(x)| � C∞

if r = ∞. If K satisfies an Lr-Hörmander condition we say that K ∈ Hr. This yields
that we may define an operator T+ exactly as we did in (2.2), but with K satisfying
(2.3) instead of (2.1). We may go even further. Let us recall first the notion of Orlicz
average. Let A : [0,∞) → [0,∞) a Young function, namely a convex function such
that A(0) = 0, A(1) = 1 and limt→∞ A(t) = ∞. Given a measurable set E we define
the average of f over E with respect to A as

‖f‖A,E = inf
{

λ > 0 :
1
|E|

∫
E

A

( |f(x)|
λ

)
dx � 1

}
.

Relying upon that definition we may define the maximal function M+
A as follows

M+
A f(x) = sup

h>0
‖f‖A,[x,x+h].

It is also worth mentioning that we can define a function associated to A, that we
call A, which turns out to be a Young function as well and satisfies the following
inequalities

t � A
−1

(t)A−1(t) � 2t.

Furthermore it can be shown that if A1, A2, . . . , An are Young functions such that

A−1
1 (t) . . . A−1

n (t) � t

then
1
|E|

∫
E

|f1 · · · fn| � ‖f1‖A1,E · · · ‖fn‖An,E .

Coming back to the previous discussion, as we mentioned above, we may define a
class of kernels generalizing the Lr-Hörmander condition. Given a Young function
A we say that it satisfies an LA-Hörmander condition if there exist cA, CA � 1 such
that for any x ∈ R and R > cA|x|

∞∑
m=1

2mR‖(K(x − ·) − K(−·))χ2mR<|·|�2m+1R‖A,B(0,2m+1R) � CA. (2.4)

If K satisfies this condition we say that K ∈ HA. In order to be able to deal with
commutators we introduce another condition. We say that K ∈ HA,k if there exist
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cA,k, CA,k � 1 such that for any x ∈ R and R > cA,k|x|
∞∑

m=1

2mRmk‖(K(x − ·) − K(−·))χ2mR<|·|�2m+1R‖A,B(0,2m+1R) � CA,k.

In both cases, whether K ∈ HA or K ∈ HA,k, we may define a singular integral
operator exactly as we did in (2.2). Those classes of kernels were introduced and
studied in [17, 19].

We would like to end recalling that we may define a maximal version of any of
the singular integral operators that we have just presented in this section as follows

(T+)∗f(x) = sup
ε>0

∣∣T+
ε f(x)

∣∣ = sup
ε>0

∣∣∣∣
∫ ∞

ε+x

K(x − y)f(y) dy

∣∣∣∣ .
3. Corollaries of the main theorem

As we announced in the previous section we will derive a number of applications of
theorem 1.2. Our use of that theorem will rely upon the following lemma.

Lemma 3.1. Let 0 < p < ∞. If δ ∈ (0, p) then, if w ∈ C+
ρ with ρ > p

δ , we have that

‖M+
δ f‖Lp(w) � ‖M �,+

δ f‖Lp(w)

where M+
δ (f) = (M+(|f |δ)) 1

δ and M �,+
δ (f) = (M �,+(|f |δ)) 1

δ .

Proof. Observe that, since δ ∈ (0, p) we have that p
δ > 1. Taking that into account

and the fact that w ∈ C+
ρ we have by theorem 1.2 that

‖M+
δ f‖p

Lp(w) =
∫

R

M+(|f |δ) p
δ (x)w(x) dx

�
∫

R

M �,+(|f |δ) p
δ (x)w(x) dx

= ‖M �,+
δ f‖p

Lp(w)

and we are done. �

3.1. Singular integral operators, LA-Hörmander operators and their
commutators

In this section we present our results for singular integral operators,
LA-Hörmander operators and their commutators. We will provide some full
arguments here, that we shall omit for the remainder of the corollaries since they
will be analogous to the ones provided here.

We begin recalling that for one-sided Calderón–Zygmund singular integrals T+

it was shown in [22, lemma 1] that for 0 < δ < 1,

M �,+
δ (T+f) � M+f. (3.1)

Using that estimate we can derive the following result.
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Theorem 3.2. Let 0 < p < ∞ and ε > 0 and assume that w ∈ C+
max{p,1}+ε. Then

‖T+f‖Lp(w) � ‖M+f‖Lp(w).

Proof. Let δ ∈ (0, 1) such that 1 < p
δ < max{p, 1} + ε. For that choice of δ, taking

into account (3.1) and lemma 3.1 with ρ = max{p, 1} + ε, we have that

‖T+f‖Lp(w) � ‖M+
δ (T+f)‖Lp(w) � ‖M �,+

δ (T+f)‖Lp(w)

� ‖M+f‖Lp(w)

and we are done. �

Recall that the commutator of a linear operator T and a locally integrable
function b is defined as

[b, T ]f(x) = b(x)Tf(x) − T (bf)(x).

The iterated commutator T k
b consists precisely in iterating the commutator.

T k
b f(x) = [b, T k−1

b ]f(x)

where T 0
b f(x) = Tf(x). For the commutator and the iterated commutator of

b ∈ BMO and a Calderón–Zygmund one-sided singular integral T+ again in [22,
lemma 1], it was shown that for 0 < δ < γ < 1, we have that

M �,+
δ ((T+)k

bf)(x) �
k−1∑
j=0

‖b‖k−j
BMOM+

γ ((T+)j
b)f(x) + ‖b‖k

BMO(M+)k+1f(x). (3.2)

Relying upon that pointwise estimate we have the following theorem.

Theorem 3.3. Let 0 < p < ∞ and ε > 0 and assume that w ∈ C+
max{p,1}+ε. Then

‖(T+)k
bf‖Lp(w) � ‖b‖k

BMO‖(M+)k+1f‖Lp(w).

Proof. Observe that it suffices to show that for δ1 ∈ (0, 1) such that 1 < p
δ1

<
max{p, 1} + ε the following holds

‖M+
δ1

(T+)k
bf‖Lp(w) � ‖b‖k

BMO‖(M+)k+1f‖Lp(w). (3.3)

We proceed by induction. Assume first that k = 1. Let 0 < δ1 < δ2 < 1 such that
1 < p

δi
< max{p, 1} + ε. We have that, taking into account (3.2) and lemma 3.1,

‖M+
δ1

(T+)1bf‖Lp(w) �
∥∥∥M �,+

δ1

(
(T+)1bf

)∥∥∥
Lp(w)

� ‖b‖BMO‖M+
δ2

(T+f)‖Lp(w) + ‖b‖BMO‖(M+)2f‖Lp(w)

� ‖b‖BMO‖M+f‖Lp(w) + ‖b‖BMO‖(M+)2f‖Lp(w)

� ‖b‖BMO‖(M+)2f‖Lp(w)

where the estimate for ‖Mδ2(T
+f)‖Lp(w) follows by the same argument provided

in the proof of theorem 3.2.
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Assume now that (3.3) holds for 1, 2, . . . k − 1. Let 0 < δ1 < δ2 < 1 such that
1 < p

δi
< max{p, 1} + ε. Then, again by (3.2) and lemma 3.1,

‖M+
δ1

(T+)k
bf‖Lp(w) �

∥∥∥M �,+
δ1

(
(T+)k

bf
)∥∥∥

Lp(w)

�
k−1∑
j=0

‖b‖k−j
BMO‖M+

δ2
((T+)j

b)f(x)‖Lp(w)

+ ‖b‖k
BMO‖(M+)k+1f‖Lp(w).

�
k−1∑
j=0

‖b‖k
BMO‖(M+)jf(x)‖Lp(w) + ‖b‖k

BMO‖(M+)k+1f‖Lp(w)

� ‖b‖k
BMO‖(M+)k+1f‖Lp(w)

and we are done. �

With analogous arguments relying upon the corresponding pointwise sharp
inequality we may settle the following result. We recall that if Ā is a Young function
and T+ is an operator associated to a kernel K ∈ HĀ with support in (−∞, 0), then
as it was established in [17, p. 505]

M �,+
δ ((T+f)(x) � M+

A f(x)

and if, A and B are Young functions, C
−1

(t) = et
1
k with k a positive integer such

that A−1(t)B−1(t)C
−1

(t) � t for t � 1 and K ∈ HB ∩ HĀ,k then, for 0 < δ < γ < 1,

M �,+
δ ((T+)k

bf)(x) �
k−1∑
j=0

‖b‖k−j
BMOM+

γ ((T+)j
b)f(x) + ‖b‖k

BMOM+
A f(x). (3.4)

We remit the reader to [19, § 5.3].
Arguing as above, we have the following results.

Theorem 3.4. Let A be a Young function and assume that K ∈ HA. Let 0 < p < ∞
and ε > 0 and assume that w ∈ C+

max{p,1}+ε. Then

‖T+f‖Lp(w) � ‖M+
A f‖Lp(w).

Theorem 3.5. Let k be a positive integer and assume that A and B are Young
functions, and A−1(t)B−1(t)C

−1
(t) � t for t � 1 where C

−1
(t) = et

1
k . Assume

also that K ∈ HB ∩HĀ,k and that b ∈ BMO. Then, if 0 < p < ∞, ε > 0 and
w ∈ C+

max{p,1}+ε, we have that

‖(T+)k
bf‖Lp(w) � ‖b‖k

BMO‖M+
A f‖Lp(w).

We would like to end the section providing a result for maximal singular integral
operators.
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Theorem 3.6. Let A be a Young function and assume that K ∈ HA. Let 0 < p < ∞
and ε > 0 and assume that w ∈ C+

max{p,1}+ε. Then

‖(T+)∗f‖Lp(w) � ‖M+
A f‖Lp(w).

Before settling this result, observe that if K satisfies (2.1) in particular K ∈ H∞,
and consequently, the preceding result recovers the main result in [33].

Proof of theorem 3.6. Observe that by the Cotlar type inequality in theorem A.1,
we have that for any δ ∈ (0, 1).

‖(T+)∗f‖Lp(w) � ‖M+
δ (T+f)‖Lp(w) + ‖M+

A f‖Lp(w)

and hence it suffices to deal with the first term. An analogous argument to the one
provided to settle theorem 3.2, choosing a suitable δ, shows that

‖M+
δ (T+f)‖Lp(w) � ‖M+

A f‖Lp(w)

and we are done. �

3.2. The differential transform operator

Given {vj} ∈ �∞ we define

T+f(x) =
∑
j∈Z

vj(Djf(x) − Dj−1f(x)), Djf(x) =
1
2j

∫ x+2j

x

f(t) dt.

As the authors point out in [19] this operator, that was previously studied in [3,
12], arises when studying the rate of convergence of the averages Djf . Note that
Djf → f a.e. when j → −∞ and that Djf → 0 when j → ∞ for appropriate f .

Observe that T+ is a one-sided singular integral since T+f = K ∗ f for K
supported on (−∞, 0) and defined as

K(x) =
∑
j∈Z

vj

(
1
2j

χ(−2j ,0)(x) − 1
2j−1

χ(−2j−1,0)(x)
)

.

As it was stated in [19, remark 4.11], it is possible to show that K ∈ HA,k with

A(t) = exp
(

t
1

1+k

(log t)
1+ε
1+k

)
, and hence by (3.4) we have that if b ∈ BMO and k is a

non-negative integer, for 0 < δ < γ < 1,

M �,+
δ ((T+)k

bf)(x) �
k−1∑
j=0

‖b‖k−j
BMOM+

γ ((T+)j
b)f(x)

+ ‖b‖k
BMOM+

L(log L)1+k(log log L)1+εf(x).

where the first term is interpreted as 0 if k = 0. Then, arguing as in the preceding
section we have the following result.
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Theorem 3.7. Let k be a non-negative integer. Then, if 0 < p < ∞, ε > 0 and
w ∈ C+

max{p,1}+ε, we have that

‖(T+)k
bf‖Lp(w) � ‖b‖k

BMO‖M+
L(log L)1+k(log log L)1+εf‖Lp(w).

3.3. The one-sided discrete square function and its commutator

We recall that the one-sided discrete square function is defined as follows. If f is
locally integrable in R and s > 0 we consider the averages

Asf(x) =
1
s

∫ x+s

x

f(y) dy.

Hence the one-sided discrete square function of f is given by

S+f(x) =

(∑
n∈Z

|A2nf(x) − A2n−1f(x)|2
) 1

2

.

This operator was studied in [36] and [17]. In [18] the authors deal with the
following operator

O+f(x) =

(∑
n∈Z

sup
s∈[2n,2n+1)

|A2nf(x) − Asf(x)|2
) 1

2

,

which dominates pointwise S+f , and show [18, Eq. (3.1) in p. 581] that if 0 < δ < 1

M �,+
δ (O+f)(x) � M+

L log Lf(x).

This fact allows them to settle the corresponding Coifman–Fefferman estimate.
Here, arguing as we did to settle theorem 3.2, we have the following result.

Theorem 3.8. Let 0 < p < ∞ and ε > 0 and assume that w ∈ C+
max{p,1}+ε. Then

‖Gf‖Lp(w) � ‖M+
L log Lf‖Lp(w)

where G stands either for S+ or for O+.

Further assuming that b ∈ BMO the authors also study the commutators
associated to the operators above. In [18, lemma 4.6] it is shown that, for
0 < δ < γ < 1,

M �,+
δ ((O+)k

bf)(x) �
k−1∑
j=0

‖b‖k−j
BMOM+

γ ((O+)j
b)f(x) + M+

L(log L)1+kf(x).

As a consequence we can derive the following result.

Theorem 3.9. Let 0 < p < ∞ and ε > 0 and assume that w ∈ C+
max{p,1}+ε and that

b ∈ BMO. If k is a positive integer, then

‖Gk
bf‖Lp(w) � ‖b‖k

BMO‖M+
L(log L)1+kf‖Lp(w)

where G stands either for S+ or for O+.
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3.4. Riemann–Liouville and Weyl fractional integral operators and
their commutators

We recall that given 0 < α < 1 and locally integrable functions f and b, the Weyl
fractional integral and its commutators are defined as

I+
α f(x) =

∫ ∞

x

f(y)
(y − x)1−α

dy and

(I+
α )k

bf(x) =
∫ ∞

x

(b(x) − b(y))k f(y)
(y − x)1−α

dy

respectively. Analogously we define the Riemann–Liouville fractional integral and
its commutators as

I−α f(x) =
∫ x

−∞

f(y)
(x − y)1−α

dy and

(I−α )k
bf(x) =

∫ x

−∞
(b(x) − b(y))k f(y)

(x − y)1−α
dy.

In [2, lemma 4.1] it was shown that for every non-negative k, if b ∈ BMO and
0 < δ < γ < 1,

M �,+
δ ((I+

α )k
bf)(x) �

k−1∑
j=0

‖b‖k−j
BMOM+

γ ((I+
α )j

b)f(x) + ‖b‖k
BMOM+

(α),L(log L)kf(x)

where

M+
(α),L(log L)kf(x) = sup

h>0
hα‖f‖L(log L)k,(x,x+h)

and the first term in the right-hand side is interpreted as 0 if k = 0. Relying upon
that M �,+

δ estimate and arguing as in the proofs of theorems 3.2 and 3.3 it is possible
to settle the following result.

Theorem 3.10. Let k be a non-negative integer. Then, if 0 < p < ∞, ε > 0 and
w ∈ C+

max{p,1}+ε we have that

‖(I+
α )k

bf‖Lp(w) � ‖b‖k
BMO‖M+

(α),L(log L)k‖Lp(w).

4. Proof of theorem 1.2

4.1. Sufficiency

By a standard approximation argument it is enough to settle the result assuming
that f ∈ L∞

c .
To settle the sufficiency part in theorem 1.2 we need to borrow two lemmas

from [33]. The first one is the following.
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Lemma 4.1 [33, lemma 1]. Assume that w ∈ C+
q with 1 < q < ∞. Then, for any

δ > 0 there exists c(δ) such that for any disjoint family of intervals Jj contained in
I = (a, b) we have that∫

I

∑
j

(M+χJj
)qw � c(δ)w(I) + δ

∫
R

(M+χI)qw

and ∫
R

∑
j

(M+χJj
)qw �

∫
R

(M+χI)qw.

To state the next lemma we need to define a new operator, M+
p,q. Let f be an

non-negative measurable function. Let us consider

Ωk =
{
x ∈ R : f(x) > 2k

}
=
⋃
i

Ik
i

where Ik
i are the connected components of Ωk. Then

(M+
p,qf(x))p =

∑
i,k

2pk(M+(χIk
i
)(x))q.

Having this definition at our disposal we present the second lemma we borrow
from [33].

Lemma 4.2 [33, lemma 2]. Let 1 < p < q < ∞, w ∈ C+
q and f non-negative,

bounded and of compact support. Then∫
R

M+
p,q(M

+f)w �
∫

R

(M+f)pw.

Having those lemmas at our disposal we are in the position to settle theorem 1.2.

Proof of theorem 1.2. Let Ωk = {x : M+f(x) > 2 · 2k} =
⋃

j Jk
j where Jk

j are the
connected components of Ωk. Let us fix (a, b) = Jk

j . We partition (a, b) as follows.
Let x0 = a and choose xi+1 such that xi+1 − xi = b − xi+1 and let Ik

i = (xi, xi+1).
By the good-λ inequality established in [27, theorem 4], we have that

|Ek
i | =

∣∣{x ∈ Ik
i : M+f(x) > 2k+1,M+,�f(x) � γ2k

}∣∣ � Cγ|Ik
i+1| 0 < γ < 1.

From the C+
q condition it follows that

w(Ek
i ) � Cγε

∫
R

(
M+χIk

i ∪Ik
i+1

)q

w.

Summing on i and taking into account lemma 4.1 we have that

w
({

x ∈ Jk
j : M+f(x) > 2k+1,M �,+f(x) � γ2k

})
� Cγε

∑
i

∫
R

(
M+χIk

i ∪Ik
i+1

)q

w � Cγε

∫
R

(
M+χJk

j

)q

w.
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Now summing over all j,

w
({

x ∈ Ωk : M+f(x) > 2k+1,M+,�f(x) � γ2k
})

� Cγε
∑

j

∫
R

(
M+χJk

j

)q

w.

Having those estimates at our disposal we can argue as follows.∫
R

(M+f(x))pw(x) dx �
∑
k∈Z

2kpw(Ωk)

�
∑
k∈Z

2kpw
({

x ∈ Ωk : M+f(x) > 2k+1,M+,�f(x) � γ2k
})

+
∑
k∈Z

2kpw
({

x ∈ R : M+,�f(x) > γ2k
})

� Cγε
∑
k∈Z

2kp
∑

j

∫
R

(
M+χJk

j

)q

w +
∑
k∈Z

2kpw
({

x ∈ R : M+,�f(x) > γ2k
})

� Cγε

∫
R

M+
p,q(M

+f)(x)w(x) dx + cγ

∫
R

(M+,�f(x))pw(x) dx

� Cγε

∫
R

(M+f(x))pw(x)dx + cγ

∫
R

(M+,�f(x))pw(x) dx

where in the last step we have used lemma 4.2.
Observe that if

∫
R
(M+f(x))pw(x) dx < ∞, choosing γ small enough the desired

estimate follows. We end the proof observing that for f ∈ L∞
c∫

R

(
M+,�f(x)

)
pw(x) dx < ∞

implies ∫
R

(
M+f(x)

)
pw(x) dx < ∞.

Indeed, note that since f ∈ L∞
c we may assume that supp f ⊂ [a, b]. For x > b

we have that M+,�f(x) = M+f(x) = 0, and for x → −∞, M+f(x) � M+,�f(x) �
1
|x| . �

4.2. Necessity

The proof of the necessity will rely upon the following lemma, which is a one-
sided version of some of the results in [30], namely theorem 4.1, lemma 5.1 and the
proof of theorem 1.2 and of [34, lemma 1].

Lemma 4.3. If for every a < b < c with c − b < b − a and E ⊂ (a, b)

w(E) � 1[
1 + log+

(
|(b,c)|
|E|

)]p
∫

R

M+(χ(a,c))pw(x) dx (4.1)

then w ∈ C+
p .
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Before settling the lemma we show how to derive from it the necessity in
theorem 1.2.

Proof of the necessity in theorem 1.2. Assume that for a certain 1 < p < ∞ and a
weight w,

‖M+f‖Lp(w) � ‖M �,+f‖Lp(w).

Let I = (a, c) an interval. Let a < b < c. Assume that E is a measurable set
contained in (a, b). Let us define

f(x) = log+

( |(b, c)|
|E| M−(χE)(x)

)
+ χI(x)

= g(x) + χI(x).

Analogously as in [34, theorem A] and [37] we have that

1
|(a, c)|

∫
(a,c)

log+

( |(b, c)|
|E| M−(χE)

)
� 1 (4.2)

‖f‖BMO+ � 1 (4.3)

f(x) = log+

( |(b, c)|
|E|

)
+ 1 a.e. x ∈ E. (4.4)

where ‖f‖BMO+ = ‖M �,+f‖L∞ . Note (4.4) readily follows from the definition of f .
Assume by now that (4.2) and (4.3) hold as well. We shall show that this is the
case at the end of this proof. We continue as follows.

Observe that M−(χE) � |E|
dist(x,E) for x �∈ E. In particular, if x � c we have that

M−(χE)(x) � |E|
dist(x,E)

� |E|
x − b

� |E|
c − b

.

This yields g(x) = 0 if x � c. On the other hand, if x � a then also M−(χE)(x) = 0.
And consequently g(x) = 0. Hence supp f ⊂ (a, c). Now we observe that if x > c
we have that M+f(x) = 0 and M �,+f(x) = 0. If x < c we have two cases. If x ∈
(a − |I|, c) then, by (4.3)

M �,+f(x) � ‖f‖BMO+ � M+(χ(a,c))(x).

If x < a − |I| then M+χ(a,c)(x) = c−a
c−x and c − x � 2|I|, from which it follows that

a − x = c − x − |I| � c−x
2 . Hence, we have that by (4.2)

M �,+f(x) � M+f(x) � M+g(x) + M+(χ(a,c))(x)

�
∫ c

a
g(y) dy

a − x
+ M+(χ(a,c))(x)

� c − a

c − x

1
c − a

∫ c

a

g(y) dy + M+(χ(a,c))(x)

� c − a

c − x
+ M+(χ(a,c))(x) � M+(χ(a,c))(x).
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Gathering the estimates above we have that

M �,+f(x) � M+(χ(a,c))(x) x ∈ R.

Taking into account the preceding estimate and (4.4), we have that

w(E) =
1[

1 + log+
(

|(b,c)|
|E|

)]p
[
1 + log+

( |(b, c)|
|E|

)]p ∫
E

w(x) dx

=
1[

1 + log+
(

|(b,c)|
|E|

)]p
∫

E

|f(x)|pw(x) dx

� 1[
1 + log+

(
|(b,c)|
|E|

)]p
∫

R

(M+f(x))pw(x) dx

� 1[
1 + log+

(
|(b,c)|
|E|

)]p
∫

R

|M �,+f(x)|pw(x) dx

� 1[
1 + log+

(
|(b,c)|
|E|

)]p
∫

R

(M+χ(a,c))pw(x) dx

and we are done.
As we mentioned above, we are left with settling (4.2) and (4.3).
To establish (4.2), note that

1
|(a, c)|

∫
(a,c)

log+

( |(b, c)|
|E| M−(χE)

)
=

1
|(a, c)|

∫
(a,c)∩F

log
( |(b, c)|

|E| M−(χE)
)

where F =
{

|(b,c)|
|E| M−(χE) � 1

}
. If |(a, c) ∩ F | = 0 then there is nothing to show.

Hence we may assume that |(a, c) ∩ F | �= 0. Taking that into account we argue as
follows. Let δ ∈ (0, 1). Then

1
|(a, c)|

∫
(a,c)∩F

log
( |(b, c)|

|E| M−(χE)
)

=
1
δ

|(a, c) ∩ F |
|(a, c)|

1
|(a, c) ∩ F |

∫
(a,c)∩F

log

(( |(b, c)|
|E|

)δ

M−(χE)δ

)

� 1
δ

|(a, c) ∩ F |
|(a, c)| log

(
1

|(a, c) ∩ F |
∫

(a,c)∩F

( |(b, c)|
|E|

)δ

M−(χE)δ

)

=
|(a, c) ∩ F |
|(a, c)| log

⎛
⎝ |(b, c)|

|E|

(
1

|(a, c) ∩ F |
∫

(a,c)∩F

M−(χE)δ

) 1
δ

⎞
⎠
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� |(a, c) ∩ F |
|(a, c)| log

( |(b, c)|
|E| cδ

|E|
|(a, c) ∩ F |

)

=
|(a, c) ∩ F |
|(a, c)| log

( |(b, c)|
|(a, c) ∩ F |

)

� |(a, c) ∩ F |
|(a, c)| log

( |(a, c)|
|(a, c) ∩ F |

)
� 1

where in the third line we used Jensen’s inequality, in the fifth Kolmogorov’s
inequality and in the last one that log(t) � t for every t � 1.

Now we focus on (4.3). First we observe that

‖f‖BMO+ � ‖g‖BMO+ + ‖χI‖BMO+ � ‖g‖BMO+ + 3

so it suffices to provide a bound for ‖g‖BMO+ . It is not hard to check that

‖max {h1, h2} ‖BMO+ � max {‖h1‖BMO+ , ‖h2‖BMO+} .

Hence

‖g‖BMO+ =
∥∥∥∥max

{
log
( |(b, c)|

|E| M−(χE)
)

, 0
}∥∥∥∥

BMO+

�
∥∥∥∥log

( |(b, c)|
|E| M−(χE)

)∥∥∥∥
BMO+

Now we observe that∥∥∥∥log
( |(b, c)|

|E| M−(χE)
)∥∥∥∥

BMO+

=
∥∥∥∥log

( |(b, c)|
|E|

)
+ log

(
M−(χE)

)∥∥∥∥
BMO+

=
∥∥log

(
M−(χE)

)∥∥
BMO+

= 2
∥∥∥log

(
M−(χE)

1
2

)∥∥∥
BMO+

and since for every δ ∈ (0, 1) we have that M−(χE)(·)δ ∈ A+
1 with constant

depending just on δ, then using results in [27, § 2],∥∥∥log
(
M−(χE)

1
2

)∥∥∥
BMO+

� 1.

Combining the estimates above yields (4.3). This ends the proof. �

We devote the remainder of the section to settle lemma 4.3. First we will need
the following lemma.

Lemma 4.4. Let 1 < p < ∞. Assume that w is a weight such that∫
E

w � 1(
1 + log+

(
c−b
|E|
))p

∫ ∞

−∞

(
M+χ(a,c)

)p
w

for every a < b < c with c − b < b − a and where E is any measurable set contained
in (a, b). Then, for every family {Ik}n

k=1 of disjoint subintervals of an interval I, if
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we denote

Δ(x) =
n∑

k=1

M+(χIk
)p(x),

then ∫
R

Δw � 1(
1 + log

(
|I|∑n

k=1 |Ik|
))p−1

∫
R

(
M+χI

)p
w. (4.5)

Proof. Let I = (a, c) be an interval and {Ik} a family of disjoint subintervals of I.
First we note that

M+(χIk
)(x) = 0

for each x > c. Then we have that

∫
R

Δw =
∫ c

−∞
Δw =

∫ c

a′
Δw +

∫ a′

−∞
Δw.

where a′ = a − |I|. First we deal with the second term. Observe that if dk is the
right endpoint of Ik, then

∫ a′

−∞
Δw =

∫ a′

−∞

n∑
k=1

(
M+χIk

)p (x)w(x) dx �
∫ a′

−∞

n∑
k=1

( |Ik|
dk − x

)p

w(x) dx

�
∫ a′

−∞

(
n∑

k=1

|Ik|
dk − x

)p

w(x) dx �
∫ a′

−∞

(
n∑

k=1

|Ik|
c − x

)p

w(x) dx

�
∫ a

−∞

( |I|
c − x

)p

w(x) dx �
∫ c

−∞
(M+χI)pw(x) dx.

Now we deal with the first term. Let j be the least integer such that

log
(∑n

k=1 |Ik|
|I|

)
� j

and J the least integer such that for some D ∈ (0, 1) to be chosen later,

log
(

1
D

log
(

e|I|∑n
k=1 |Ik|

))
� J.

Note that since j � 0 and J > 0 we have that j < J . Let

Q = {Δ(x) � ej}
S = {ej < Δ(x) � eJ}
T = {Δ(x) > eJ}
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For Q we have that∫
(a′,c)∩Q

Δ(x)w(x) dx �
∫

(a′,c)∩Q

ejw(x) dx

= e

∫
(a′,c)∩Q

ej−1w(x) dx

� e

∫
(a′,c)∩Q

e
log

( ∑n
k=1 |Ik|

|I|

)
w(x) dx

� e

∑n
k=1 |Ik|
|I|

∫
(a′,c)

w(x) dx

and the right-hand side is bounded by the right-hand side of (4.5). We continue
with S. ∫

(a′,c)∩S

Δ(x)w(x) dx �
J−1∑
k=j

ek+1

∫
{Δ(x)>ek}∩(a′,c)

w(x) dx

=
J−1∑
k=j

ek+1w(Eek)

where

Eλ = {Δ(x) > λ} ∩ (a′, c).

To continue with the argument, we borrow ideas from [33, p. 406]. We begin noting
that there exists B > 1 and that we can choose the D ∈ (0, 1) above in such a way
that

|Eλ| � B e−Dλ|(a′, c)|.
At this point we use our hypothesis on the weight w. For that purpose we split (a′, c)
as follows. Let x0 = a′ and let us define recursively xi − xi−1 = c − xi. Associated
to the collection of intervals (xi, xi+1) we consider the sets

Ei
λ = Eλ ∩ (xi, xi+1).

Observe that for each i we may assume that the elements that we consider in the
sum Δ(x) are contained in (xi, c) (the remaining terms are zero). Hence we have
that

|Ei
λ| � B e−Dλ|(xi, c)| = 4B e−Dλ(xi+2 − xi+1).

Now we use the hypothesis for xi, xi+1, xi+2 and we have that

w(Ei
λ) � 1(

1 + log+
(

xi+2−xi+1

|Ei
λ|

))p

∫ ∞

−∞
(M+χ(xi,xi+2))

pw

� 1(
1 + log+

(
1

4B e−Dλ

))p
∫ ∞

−∞
(M+χ(xi,xi+2))

pw.
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Summing in i we have that it follows from the definition of the partition xi, which
leads to a geometric series, that

∑
i

∫ ∞

−∞

(
M+(χ(xi,xi+2))

)p
w � C

∫ ∞

−∞

(
M+χ(a′,c)

)p
w.

Hence,

w(Eλ) � 1(
1 + log+

(
1

4Be−Dλ

))p
∫ ∞

−∞

(
M+χ(a′,c)

)p
w

� 1(
1 + log+

(
1

4B e−Dλ

))p
∫ ∞

−∞

(
M+χ(a,c)

)p
w

and we have that

∫
(a′,c)∩S

Δ(x)w(x) dx �
J∑

k=j

ek+1w(Eek)

�
J∑

k=j

1(
1 + log+

(
eDek

4B

))p ek+1

∫ ∞

−∞

(
M+χ(a,c)

)p
w

and it suffices to estimate the sum. We proceed as follows.

J∑
k=j

1(
1 + log+

(
eDek

4B

))p ek+1

�
�log( 1

D log(4B))�∑
k=j

ek+1 +
J∑

k=�log( 1
D log(4B))�+1

1
(1 + Dek − log(4B))p ek+1

� ej (1 − elog( 1
D log(4B)))

1 − e
+

J∑
k=�log( 1

D log(4B))�+1

1(
Dek + 1 − Delog( 1

D log(4B))
)p ek+1

� ej
1
D log(4B) − 1

e − 1
+

J∑
k=�log( 1

D log(4B))�+1

e

cpDpek(p−1)

� ej−1 1
D

log(4B) + κe−J(p−1)

�
∑n

k=1 |Ik|
|I| + κ

1[
1
D log

(
e|I|∑n

k=1 |Ik|
)]p−1

and again this term is bounded by the right-hand side of (4.5).
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Finally, for T we have that

∫
T∩(a′,c)

Δ(x)w(x) dx �
∞∑

i=J

ei+1

∫
{Δ(x)>ei}∩(a′,c)

w(x) dx

�
∞∑

i=J

ei+1 1(
1 + log+

(
1

4Be−Dei

))p

∫ ∞

−∞

(
M+χ(a′,c)

)p
w

�
∞∑

i=J

1
ei(p−1)

∫ ∞

−∞

(
M+χ(a,c)

)p
w

� 1
eJ(p−1)

∫ ∞

−∞

(
M+χ(a,c)

)p
w

� 1[
log
(

e|I|∑n
k=1 |Ik|

)]p−1

∫ ∞

−∞

(
M+χ(a,c)

)p
w.

�

Armed with the preceding lemma we can finally settle lemma 4.3.

Proof of lemma 4.3. Let I = (a, c) be an interval. Let δ > 0 such that if
∑ |Ik| �

2δ|I| then ∫
R

Δw � 1
2

∫
R

(M+χI)pw. (4.6)

Now assume that a < b < c where c − b < b − a and let E ⊂ (a, b) be a measur-
able set. Let n be the least integer such that δn|(a, b)| < |E|. Now we let Ej =
{x : M+(χE)(x) > δj} for 1 � j � n. Let Jj

i be the component intervals of Ej and
Δj(x) =

∑
i M+(χJj

i
)(x)p. We claim that for 2 � j � n

∫
R

Δj−1(x)w(x) dx � 1
2

∫
R

Δj(x)w(x) dx.

Assume by now that the claim holds. Note that since χE(x) � Δ1(x) then

w(E) �
∫

R

Δ1(x)w(x) dx

and iterating the preceding inequality,∫
R

Δ1(x)w(x) dx � 1
2n−1

∫
R

Δn(x)w(x) dx

and consequently

w(E) � 2
1
2n

∫
R

Δn(x)w(x) dx.
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Note that by the definition of n, and taking into account that b − c < b − a,

δn|(a, b)| < |E| ⇐⇒ 1
2n(− log2 δ)

<
|E|

|(a, b)|

⇐⇒ 1
2n

<

( |E|
|(a, b)|

) 1
− log2 δ

�
( |E|
|(b, c)|

) 1
− log2 δ

so if we can show that∫
R

Δn(x)w(x) dx �
∫

R

(M+χ(a,c)(x))pw(x) dx (4.7)

then

w(E) � 2
( |E|
|(b, c)|

) 1
− log2 δ

∫
R

(M+χ(a,c))pw

and we would be done.
Let us settle (4.7). Observe that since

|E ∩ (a, b)|
|(a, b)| =

|E|
|(a, b)| > δn,

we have that a ∈ Jn
i for some component Jn

i of En. Let us call Jn
i = (a′, b′). Observe

that since a ∈ Jn
i then a′ < a. Observe that M+χE(a′) = δn and since (a′, b′) is a

component, for some ε > 0, we have that if x ∈ [a′ − ε, a′), then M+χE(x) � δn.
Note that since E ⊂ (a, b) and a > a′ this yields that for every x < a′ − ε

M+χE(x) � M+χE(a′ − ε) � δn.

This yields that all the connected components are contained in the interval (a′, b′′),
for some b′′ � b, since M+χE(x) = 0 for every x > b. Now, that by the weak type
(1, 1) of M+, combined with the definition of n,

∑
i

|Jn
i | =

∣∣{x ∈ R : M+χE(x) > δn
}∣∣ � 1

δn
|E|

=
1
δ

1
δn−1

|E|
|(a, b)| |(a, b)| � 1

δ
|(a, b)|.

Observe that since (a′, b′) is some component Jn
i in En then

a − a′ � b′ − a′ �
∑

i

|Jn
i | � 1

δ
|(a, b)|.

Consequently

b − a′ = b − a + a − a′

� b − a +
1
δ
(b − a) =

(
1 +

1
δ

)
(b − a).
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Since all the intervals Jn
i are contained in (a′, b), by (4.5) we have that∫

R

Δw � 1(
1 + log

(
|(a′,b)|∑

i |Jn
i |
))p−1

∫
R

M+(χ(a′,b))pw.

�
∫

R

(M+χ(a,b))pw �
∫

R

(M+χ(a,c))pw

We end the proof of (4.7) just noting that

M+(χ(a′′,b)) � M+(χ(a,c))

since taking into account that |(a′′, b)| � 1
δ ( 1

δ + 1)|(a, b)| yields that M+(χ(a′′,b)) �
M+(χ(a,b)).

Since as we have just shown (4.7) holds, we are left with settling the claim. We
argue as follows. Let H be a component of Ej . Note that, since H is a component

|H ∩ E|
|H| = δj . (4.8)

Our next step is to show that

H ∩ Ej−1 = {M+χH∩E > δj−1}. (4.9)

First, we observe that the components of Ej−1 are contained in the components
of Ej . Hence

H ∩ Ej−1 =
⋃

Ij−1
k

where the Ij−1
k are the components of Ej−1 contained in H. Then we have that if x ∈

H ∩ Ej−1 then x ∈ Ij−1
k = (α, β) for some k. Since x ∈ Ej−1, then M+(χE)(x) >

δj−1 and

1
|(x, β)|

∫ β

x

χE > δj−1.

Observe that (x, β) ⊂ Ij−1
k ⊂ H, so

1
|(x, β)|

∫ β

x

χE∩H > δj−1.

Consequently

M+χH∩E(x) > δj−1

and this yields {M+χH∩E > δj−1} ⊃ H ∩ Ej−1.
Now we prove the converse inclusion. Observe that if M+χH∩E(x) > δj−1 then

M+χE(x) � M+χH∩E(x) > δj−1

and consequently x ∈ Ej−1. Now we have to see that x ∈ H. Let us call H = (d, e).
Observe that M+χH∩E(x) = 0 for every x > e, and hence x �∈ {M+χH∩E > δj−1}.
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On the other hand, observe that since H is a component of Ej there exist some ε < 0
such that if x ∈ [d − ε, d] then M+χE(x) � δj . Relying upon this fact, note that
if x < d then we have that if x ∈ [d − ε, d], then M+χH∩E(x) � M+χE(x) � δj

and consequently x �∈ {M+χH∩E > δj−1} and if x < d − ε then, M+χH∩E(x) �
M+χH∩E(d − ε) � δj and also x �∈ {M+χH∩E > δj−1}. Hence

{M+χH∩E > δj−1} ⊂ H

and we are done.
The weak type (1, 1) of M+ combined with (4.9) yields

|H ∩ Ej−1| � δ1−j |E ∩ H|

and combining this with (4.8) we have that

|H ∩ Ej−1| � δ|H|.

If we denote

ΔH(x) =
∑

Ik∈H
(M+χIk

(x))p

where H is the set of component intervals in H ∩ Ej−1, we have that

∑
Ik∈H

|Ik| � |H ∩ Ej−1| � δ|H|.

By the definition of δ and (4.6) we have that

∫ ∞

−∞
ΔH(x)w(x) dx � 1

2

∫ ∞

−∞
M+(χH)pw(x) dx.

Adding those inequalities for all the components H of Ej gives

∫
R

Δj−1(x)w(x) � 1
2

∫
R

Δj(x)w(x) dx

for 2 � j � n as we wanted to show. This ends the proof of the theorem. �
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Appendix A. Cotlar type inequalities

Since we have not been able to find the following Cotlar type inequality in the
one-sided setting in the literature, we provide here a proof for reader’s convenience.

Theorem A.1. Let A be a Young function. Let T+ be a one-sided singular integral
operator with associated kernel K ∈ HĀ. Then

(T+)∗f(x) � M+
δ (T+f)(x) + M+

A f(x) δ ∈ (0, 1).

Observe that if T+ is a one-sided Calderón–Zygmund operator its associated
kernel is in particular a H∞ kernel and hence this result covers that case, with M+

A

replaced by M+.

Proof of theorem A.1. Observe that it suffices to show that for every ε > 0

|T+
ε f(0)| � M+

A f(0) + M+
δ (T+f)(0)

where

T+
ε f(0) =

∫ ∞

ε

K(0 − y)f(y) dy.

Observe that for x > 0 we can write

T+
ε f(0) = T+

ε f(0) − T+f(x) + T+f(x)

= T+
ε f(0) − T+f2(x) − T+f1(x) + T+f(x)

where f1(x) = f(x)χ(0,ε)(x) and f2(x) = f(x)χ(ε,∞)(x). Then we have that∣∣T+
ε f(0)

∣∣ � ∣∣T+f1(x)
∣∣+ ∣∣T+f(x)

∣∣+ ∣∣T+
ε f(0) − T+f2(x)

∣∣
and δ-averaging over x, if we call h = ε

2cA∣∣T+
ε f(0)

∣∣
�
(

1
h

∫ h

0

∣∣T+f1(x)
∣∣δ dx

) 1
δ

+

(
1
h

∫ h

0

∣∣T+f(x)
∣∣δ dx

) 1
δ

+

(
1
h

∫ h

0

∣∣T+
ε f(0) − T+f2(x)

∣∣δ)
1
δ

:= I + II + III.

For I, we observe that any Hörmander condition implies that K ∈ H1 and hence
by [8], we have that T+ is of weak type (1, 1). Then, by Kolmogorov inequality,

I � 1
h

∫
R

|f1(x)|dx =
2cA

ε

∫ ε

0

|f(x)| dx � 2cAM+f(0).

For II

II � M+
δ (T+f)(0),
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and it remains to deal with III. Observe that for x ∈
(
0, ε

2cA

)

T+f2(x) = lim
δ→0

∫ ∞

δ+x

K(x − y)f2(y) dy

=
∫ ∞

ε

K(x − y)f(y) dy = T+
ε f(x).

Bearing that in mind and since for every x ∈
(
0, ε

2cA

)
we have that x < ε

2cA
or

equivalently xcA < ε
2 , we have that∣∣T+

ε f(0) − T+f2(x)
∣∣

=
∣∣T+

ε f(0) − T+
ε f(x)

∣∣ = ∣∣∣∣
∫ ∞

ε

(K(−y) − K(x − y)) f(y) dy

∣∣∣∣
�
∫ ∞

ε

|K(−y) − K(x − y)| |f(y)|dy

�
∞∑

m=1

(
2m ε

2

) 1
(2m ε

2 )

∫ ∞

2m ε
2 <y�2m+1 ε

2

|K(−y) − K(x − y)| |f(y)|dy

�
∞∑

m=1

(
2m ε

2

)
‖(K(−·) − K(x − ·))χ2m ε

2 <y�2m+1 ε
2
‖Ā,(0,2m+1 ε

2 )‖f‖A,(0,2m+1 ε
2 )

� CAM+
A f(0),

and consequently

III � CAM+
A f(0).

This ends the proof. �
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