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COVERINGS OF GROUPS BY ABELIAN SUBGROUPS 

V. FABER, R. LAVER AND R. McKENZIE 

Paul Erdôs has suggested an investigation of infinite groups from the point 
of view of the parti t ion relations of set theory. In particular, he suggested tha t 
given a group G, one considers the graph T with vertex set G whose edges are 
the pairs {g, h) which do not commute. A subset X C G is a complete subgraph 
of r if and only if no two elements of X commute, X is independent in T if and 
only if it is a commutat ive subset of G, and the chromatic number of T, denoted 
by x ( r ) , is the smallest number of abelian subgroups needed to cover G (we 
write x(G) for x ( L ) ) . 

In this setting, Erdôs asked several natural questions. Let P(G) be the 
smallest cardinal K such tha t T has no complete subgraphs of cardinality K. 
Is P(G) S Ko if and only if x(G) < Ko? We answer this affirmatively in 
Theorem 3. If K is an infinite cardinal, does P(G) ^ K+ imply tha t x(G) S -K? 
With G.C.H. we answer this negatively in Example 1. 

R. Baer has proved tha t x(G) < Ko if and only if \G/Z(G)\ < Ko, where 
Z(G) is the center of G (see [11]). His proof uses a theorem of B. H. Neumann 
[10] which only works for Ko- In Theorem 1, we show tha t x(G) < K if and 
only if \G/Z(G)\ < K for all strong limit cardinals K. In the corollary to Lemma 
5 we show tha t x{G) ^ K implies tha t 

[G:Z(G)] ^ 222* for a l l* . 

Some of the results of this paper were announced in [5]. 

Notation. Let G be a group. If S C G, then C(S) = CG(S) = {g Ç G \ gs = 
sg for all 5 Ç S} ; Z(G) = CG(G)\ (S) is the group generated by 5 . G is FC if 
for all g Ç G, [G: C(g)] < Ko; if K is a cardinal, G is KC if for all g g G, [G: C(G)] 
< K. (This is a change from the notation used in the first author ' s previous 
papers, where G was defined to be KC if for all g G C(g)] ^ K. The present 
definition is the correct generalization of FC and is more workable.) If g, h £ G 
let gh = h-'gh; if S QG, S° = {s°\s £S}] let [g, h] = g~lh~lgh = g - y . 
Fur ther notation can be found in [15]. 

A cardinal K is cofinal with a cardinal X if K is the sum of X smaller cardinals. 
The cofinality of K, denoted by cf (K), is the first cardinal cofinal with K; K is 
singular if cf (K) < K and regular otherwise; K is a strong limit if X < K implies 
t ha t 2X < K; K is strongly inaccessible if it is a regular strong limit. We let log K 
be the first cardinal X such tha t 2X ^ /c. The cardinal successor of K is denoted 
by K+. Some of the theorems and remarks below follow from the generalized 
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cont inuum hypothesis, G.C.H., (for all infinite K, 2" = K + ) , bu t we s ta te and 
prove them under an appropria te instance of the weaker assumption 2<K = K, 
where for any cardinal X, \<K = X T < * X7. 

If X is a set, let [X]* = { Y C X | | Y\ = K}. Let (ya \ a < X) be a collection 
of cardinals. We shall employ the arrow notat ion of Erdôs and Rado to denote 
part i t ion relations. We write K —» (ya \ a < \)n if whenever [n]n = U«<\ Xa, 
there exists an a < X and F G [K]7" such t ha t [ F ] n Ç Z a . If 7« = 7 for all 
a < X, we write K —> (T)XW. T h e part i t ion relations used below, in addit ion to 
Ramsey ' s theorem [14], are the following cases of theorems of Erdos and Rado 
[3]. For all infinite cardinals K, 

0) (2«)+ - ( (2«)+ , K+y, 
(ii) (2* ) + -+ (x+)*2. 

(iii) If 2<" = K, then K+ - » (K)7
2 , for all 7 < cf K. 

A collection &~ of sets forms a A-system with kernel H if A P\ 7> = i f for a 
i ^ 5 Ç J^~. T h e Erdôs-Rado generalization [4] of Marczewski 's theorem [7] 
s ta tes : if K, X are regular cardinals with K < X, if a < x < X for all a < X, and if 
^ is a family of sets such tha t \A\ < K for each A G ^ and | ^ | = X, then 
some &~ CI ^ with \&~\ = X forms a A-system. (If 2<<r = o-, then X = <r+ and 
K = cf o- satisfy these hypotheses.) 

Unless otherwise indicated, all the cardinals in this paper are infinite. 

LEMMA 1. Let x, g, h G G. If [g, h] = 1 and [gx, hx] = 1, then gC(x) = hC(x). 

Proof Ai gh = hg, then gxhx = hxgx implies t ha t x = h~1gxhg~l = h~1gxg~lh. 
T h u s g~lh G C(x), so hC(x) = gC{x). 

LEMMA 2. If X -> (K)2
2 a ^ P ( G ) ^ K, /Aew G is \C. 

Proof. Let x G G and {xa | a < X} Ç G . We want to find a, 0, a ^ /3, such 
t ha t xaC(x) = x^C^x). Part i t ion [{xa: a < X}]2 into two classes—the class of 
commuta t ive pairs and the class of noncommuta t ive pairs. By X —> (K)2

2 and 
P(G) rg K, there is an S G [X]" such t ha t [xa, x$\ = 1 for all a, 0 £ S. Then 
P(G) ^ K implies there are a, 0 G S, a ^ 0, such t h a t [xax, x^x] = 1. By 
Lemma 1, x aC(x) = x$C(x). 

Remark 1. If we assume 2< K = K, P(K) implies K+C (use K+ —-> (/O22). 

L E M M A 3. 7/ x ( £ ) < *> ^ ^ G is KC. 

Proof. Let x G G and let G = U«<\ Aa, with each yla abelian and X < K. 
Suppose G = U/ser XpC(x). If \T\ ^ X+, then for some a < X and 5 G [7"]x , 
X/3 G ̂ 4« for all 0 £ S. Consider {x^x | 0 G S}. There exists R G [S]x and 
7 < X such tha t x^x G ̂ 47 for every 0 £ R. Now by Lemma 1, {x$ \ 0 G P) is 
not a set of distinct left coset representatives. I t follows t ha t [G: C(x)] ^ X. 

L E M M A 4. 7/ x(G) ^ K, //^^n //i^re exists an abelian subgroup A such that 
[G: A] ^ 2 2 \ 
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Proof. By Lemma 3, G is K+C. Assume the lemma fails. We construct se

quences {aa}, {ba}, [Ca] (a < (2")+) such tha t 

( 1 ) [ a a , b a ] ^ l , 

(2) a$,bt> e C0 = C({aa,ba\a < 0}). 

By (2), [G: Cp] S Ua<0 [G: C(aa)][G: C(ba)] £ (K+)W g 2 2 \ so no C0 can be 
abelian. Consider the products {ajbp} for a ^ fi < (2")+ . Let G = Ue<X(G) Ae 
with each Ae abelian. Since x(G) = K> (2*)+ —> (3)X(GO2- Thus there exists via 
and a, 0, y such tha t aa&0, #0^7 > aaby (z Ae. But aabpapby = a$byaabp if and only 
if bpap — apbp, a contradiction. 

LEMMA 5. (i) If G is K+C and has an abelian subgroup A such that [G: A] S K, 
then [G: Z(G)] ^ 2*. 

(ii) If K is strongly inaccessible, if G is KC and if G has an abelian subgroup A 
such that [G: A] < K, then [G: Z(G)] < K. 

Proof, (i) Suppose G = U«<* xaA. Then since 

D = AC\ ( n c(xa)) ^z(G), 

it follows tha t 

[G: Z{G)\ g [G:D] g [G: A] U [G: C(xa)] g KK = 2 \ 

(ii) The proof is similar, so we omit it. 

COROLLARY. If X(G) S K, then [G: Z(G)] ^ 222"-

Proof. The proof is immediate from Lemmas 3, 4 and 5 (i). 

Remark 2. When K = Xo this solves a problem of B. H. Neumann [12]. 

There is room for strengthening of the bound 222 —see Problem 2 below. 

LEMMA 6. If G = U/KX */3#, [H'> CH(xp)] ^ ^ , 2Z^<X K$ < K and x(H) < K, 
then x(G) < K. 

Proof. Let H = (Ja ^4a, then G = U/s,a xpAa. Since [^4a: C(x^) Pi ^4J ^ K:̂ , 
for each x$ there exists {^7,a,̂ } £ [ ^ J ^ such tha t ^4a = UT./S ^.«^(COty) P\ 
^4a). Since G is covered by the abelian sets xpyy,a,&{C(xp) C\ Aa), it follows tha t 

x(G) g x f f l ' E ^ ^ < *. 

COROLLARY. / / G is KC and has an abelian subgroup A such that [G: A] < 
cf (K), then x{G) < K. 

Proof. The proof is immediate. 

LEMMA 7. If G = USKX^H, [H: CH(X$)} S ty, E^<x ^ < cf (*) andP(H) ^ 

K, then P(G) S *• 
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Proof. If 

H= U yyAC(pcp)I^H)9 

then 

G= u % l f l (cyni / ) . 
/3<X 

The number of sets in this union is X)/KX H < cf (K)- Let X £ [G]\ Then there 
exists a F £ [^]K and 0, y such that F Ç xpyyfi(C(xp) H # ) . Now for a, b G 
C(x^) H H the following equations are equivalent: 

xpyy,paxpyytpb = Xpyyfibx$yyfia, 

x pay y $ = axpyytpb = bx$yyfia = xpbyy>pa, 

ay y ̂  = by y fia, 

yyfiayyfib = yyfibyyfia. 

Since yy^a G H if a £ C(x^) H 77, there must be two commuting elements 
in F. 

THEOREM I. If K is a strong limit cardinal, the following statements are equiva
lent: 

(I) x(G) < K; 

(II) |G/Z(G)| < K; 
(III) G is \C for some \ < K and has an abelian subgroup A such that [G: A] 

< K. 

Proof. The case K = Xo is proved in Theorem 3. That (I) implies (II) follows 
from the corollary to Lemma 5 (ii). That (II) implies (III) is obvious. That 
(III) implies (I) follows from Lemma 6. 

THEOREM 2. If K is a strongly inaccessible cardinal, the following statements are 
equivalent: 

(I) X(G) < K; 

(II) \G/Z(G)\ < K; 
(III) G is \C for some A < K and has an abelian subgroup A such that [G: A] 

< K) 

(IV) G is KC and has an abelian subgroup A such that [G: A] < K. 

Proof. The case K = Xo is proved in Theorem 3. By Theorem 1, (I), (II) and 
(III) are equivalent. Obviously, (III) implies (IV). That (IV) implies (I) 
follows from Lemma 6. 

THEOREM 3. The following statements are equivalent: 
(I) X(G) < Xo; 

(II) \G/Z(G)\ < K 0 ; 
(III) G is nC for some n < Xo and has an abelian subgroup of finite index; 
(IV) G is FC and has an abelian subgroup of finite index; 
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(V) P(G) ^ n for some n < No; 

(VI) P{G) S Ko. 

Proof. T h a t (IV) implies (II) follows from Lemma 5(ii). T h a t ( I I ) implies 
( I I I ) is obvious. Lemma 6 yields ( I I I ) implies (I) . I t is obvious tha t (I) implies 
(V) and (V) implies (VI) . 

We show VI implies IV. Suppose P(G) ^ No- By Lemma 2 and Ramsey 's 
Theorem, G is FC. Assuming tha t G does not satisfy (IV), we construct 
sequences {/n}, {an}, {bn\ with 

(1) fifi^fjfi, j * i ; 

(2) fne ({at\i£n} UibtliKn}); 

(3) bnfn 5* fnbn. 

Let /o = a0 and bo be two non-commuting elements. Inductively, let C = 
C({ai | i S n} U {bt \ i S n}). Since G is FC, C has finite index in G and thus 
is non-abelian. Let an+1 and bn+i be two non-commuting elements in C and let 
fn+l = fnbnan+1. Clearly (2) is satisfied. Suppose bn+1fn+i = fn+1bn+i. Then 

fnbnbn+ian+i = bn+ifnbnan+i = jnbnan+ibn+i, 

contradicting [an +i , 6 n +J ^ 1. Suppose / n + i / n = /n/«+i. Then 

contradicting (3). Suppose fn+ifi = fifn+i with i < n. Then 

Jnjibnan+1 ~ Jnbn
an+lji = J ijnbn

an+li 

contradicting (1). Thus (1), (2) and (3) are satisfied by fn+i, an+i and bn+\. 
The sequence [fn] contradicts P(G) S Ko-

Remark 3. As we mentioned in the introduction, the equivalence of (I) and 
(II) was shown by R. Baer by a different proof which does not generalize to 
strong limit cardinals. The equivalence of ( I I ) , ( I I I ) and (IV) was shown by 
B. H. Neumann by essentially the same proof (see [9].) We can show tha t ( I ) , 
(V) and (VI) are equivalent for cancellation semigroups. B. H. Neumann has 
independently shown the equivalence of (IV) and (VI) in [13]. 

LEMMA 8. (2* = K+). Let V be a K+ dimensional vector space over F2 and let 
VK be a K dimensional subspace. Let p0 be an alternating bilinear function from 
VK X VK into the F2 vector space W. Suppose also that for every (X, u, w) Ç 
K X V X V, S\(u, w) is a non-empty subset of W. Fhen there exists an alternating 
bilinear function p: V X V —>W satisfying 

(1) p = po on VK; 
(2) for every T G [V]\ D(T) = U x < « > € V\.p(w, u) $ 5x(w, u) V w 6 T) 

has cardinality at most K. 
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Proof. We assume tha t {ve | e < K+\ is a basis for V such tha t {z;e | e < K} is a 
basis for FK. Let F € be the subspace of F spanned by [va \a < e). Well-order 
[ F ] " with order type K+, {Xe\e < K+} , such tha t X€ QVe.Let&€ = {XT\r^ ej. 
We suppose inductively t ha t p has been defined on Ve and we wan t to extend 
to F e + i . Well-order Ve X ^? € X K, {(wa, Xa, Xa)}a<K . Let {w a | a < K} be an 
independent set of vectors such tha t wa G Xa and extend this set to a basis 
«â? for F e . Then define p(wa, vt) + p(wa, ££«) G 5xa(wa , wa + ^e) for each 
a < K. Complete the definition of p by defining p(v€, v€) = 0 and p(b, v€) = 
p(vf, b) for all b G <££?. In this way p is extended to F. Now suppose T G [7T]\ 
Then 7̂  = Xv for some 77 such tha t Xv C F , . Let w = £]x<a flx^x + Vs with 
<5 ̂  77 such tha t u G D(T). We used ^ = {^r|r ^ 5} going from F 5 to 
Fa+i. Since u — v^ G F5, for each X < K there exists a: < K such t h a t (u — v&, 
XVi X) = (wa, X a , Xa). T h u s for every X there exists w = wa G Xv such tha t 

p(w, u) = p(w, vi) + p(w, u - vs) G S x O , u — vs + v&) = S\(w, u). 

Hence M G 2 ) ( r ) . I t follows tha t D(T) C 7 , . 

Remark 4. This construction was used in [1, p. 206] to show tha t under the 
assumption 2" = K+ there is a 2-step nilpotent, FC group wi thout equipotent 
abelian subgroups. Fur ther details concerning this construction and those in 
the following three examples can be found in [1]. 

Example 1. (2* = K+) There exists a group G of cardinal i ty K+ such t ha t for 
each X ^ [G]K and Y G [G]"+ there exist (x, y), (u, v) G X X F such tha t 
1 = [x, 3/] ^ [u, v\. 

Proof. Let PF = F2, S0(w, u) = {0j, Si(w, w) = {lj in Lemma 8. Let 7: 
F X F—» 7̂ 2 be any bilinear form such t ha t p(x, y) = y(x, y) — y(y, x). We 
form a group G = F 7 F2 on the set F X F2 with multiplication defined by 
(x, a) - (y, b) = (x + y, a + b + T ( # , 3O). Note t ha t [(x, a ) , (3;, 6)] = 
( 0 , P ( X J ) ) . I f ^ G [G]Met 

X = {x G F | 3 a G 7̂ 2 (x, a) G X). 

Then C(X) = {y G F | p ( x , y ) = 0 V ^ Î | X 7 2̂, and [g G G | [g, x] ^ 1 
V x G X} = {y G F | p ( x , y) = 1 V * G X) X F2 . Both of these sets have 
cardinali ty a t most K by construction. 

Example 2. (2* = K+) There exists a group G of cardinali ty K+ satisfying 
P(G) g K+, which is not K+C. Consequently, P(G X G) > P(G). 

Proof. In Lemma 8, let IF = V, S0(w, u) = {0}, Si(w, u) = [w + u\. Let 
F G [7̂ 2 X V]K+. Suppose for all (a, x ) , (b, y) G F, p(x, y) ^ ^3/ + ex. There 
exists 5 G [7"]"+ such tha t for every (a, x) and (fr, y) G S, a = b. Then , lett ing 
S = {x G FI 3 a G F2 (x, a) G 5 } , 

7^(5) = U {u G F I p ( W | w) G 5aVw G 5 | 3 5, 
a£F>i 
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contradict ing \D(S)\ ^ K. N O W let U = F2 X V and define p ( l , fl) = fl for all 

v G F and extend p to an al ternat ing bilinear function p: [7 X f/—> F. As in 

Example 1, let G = UyV where 7: U X U -+ V satisfies p(x, y) = 7(x, y) — 

y(y, x) for all x, y G [7. Elements of G have the form (a + x, u) with a G ^2, 

x and v G F ; if (a + x, v), (6 + y, w) G G, 

[(a + x, 0), (6 + y, w)] = (0, p(a + xf b + y)) = (0, ay + ax + p(x, y ) ) . 

By construction, if X G [£]" there exists (a + x, v), (b + y, w) G X such 
t ha t p(x, y) = ay + ax. T h u s 

[(a + x, *;), (b + y,w)] = ( 0 , 0 ) = 1, 

which implies t ha t P(G) S *+. The elements (1, v) for v £ V are all conjugates 
of (1, 0) , so G is not K+C. By Lemma 1, P{G X G) > K+. 

Example 3. (2* = K+) There exist groups G and i 7 which are KC, P ( G ) = 
P ( f f ) = K+, bu t P(GX H) > K+. 

Proof. We proceed as in Lemma 8 and Example 1. Let V be K+ dimensional 
over F2 and IF be K dimensional over F2. Let { Va\ a < K+} be a basis for V. We 
construct al ternat ing bilinear pu p2 from V X V into IF such tha t 

(1) for every a < /3 < /c+, pi(z>a, Vp) = 0 implies tha t pi{va, v$) ^ 0; 
(2) for every T G [F]*, ^ ( T ) = {u G F |p*(w, w) ^ 0 V w G T] has car

dinality a t most K for i = 1, 2. 
Let F e = ({^« I a; < e} ), the subspace of V spanned by {va \ a < e}. We suppose 
[V]K = {X€ |/c ^ e < K+\ with Z e Ç Ve. First define pi, p2 on VK so tha t (1) 
is satisfied for a < /3 < K. 

Now suppose pi, p2 have been defined on F e (K ^ e < K+) SO tha t (1) holds 
for all a < 0 < e. Well-order {y a |a < e} as { » / | r < K] and let F / = 
(W\y < r}) . Well-order F € X { I T | * ^ r g e} as {(wa, X a)} a < / C . T o extend 
pi, P2 to F e + i , we make the following construction. Suppose 0 = 3 • a + 7, 
0 ^ 7 < 3 and pi, p2 have been defined on Q€,p X {̂ e} where VJ £ Ç e ^ and 

\Q*A < *-

Case 1. 7 = 0. Find w G JCa\Qe,p. Pu t pi(w, z>e) = pi(w, wa). Pu t Q«,/3+i = 

(Q€tp U [w] ). If there is no vT' G Qe,/3+i\Qe,p, let p2(w, fle) be arbi t rary. Other
wise, let {w + gM}M<p<K be all such vT'. Pick x G ^F\({p2(gM» ^«)|M < p} ) and pu t 
p2(w, v€) = x. 

Ca5^ 2. 7 = 1. Make the same construction as in case 1, but switch the roles 
of pi and p2. 

Case 3. 7 = 2. If vj G Qe,p, pu t Qetp+i = Q*,p and do nothing. If not, pu t 
(?€,/3+i = (Qe,0^ {Va}) and define p^^a', ve) so tha t p z (y / , v«) 9e 0 for all 
^ / ' G Qt.e+i\Q<,0. 

We leave it to the reader to verify t ha t (1) and (2) are satisfied. Now let 
y il F X F—* W be any bilinear maps such tha t pt(x, y) = 7<(x, y) — 
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yt(y,x). Put G = F 7 i W / a n d F = V 72W. Clearly, (1) implies that P(G X H) 
> K+, but the proof in Example 1 shows that both G and H are KC and P(G) = 
P ( # ) = K+. 

Remark 5. The existence of a group with the properties described in Example 
1 for K = Ko is independent of the usual axioms of set theory. Namely, it is a 
theorem of [6] that if 2X0 > Ki and Martin's axiom [8] hold, then coi -> 
(coi, (co: coi))2, that is, if [wi]2 = i W 5 then either there is an X g [coi]"1 with 
[X]2 Ç ,4 or there is a F Ç [coi]w and a n l f [wj"1 such that {{y, x} \ y Ç F and 
# G ̂ } £ B. This partition relation implies that there are no groups with the 
properties of Example 1, for K = No-

Example 4. For each cardinal X, there is a group G\ which has an abelian 
subgroup A\ such that [G\: A\] = 2, but Gx is not XC. 

Proof. Let A\ be an P2 vector space of dimension X with basis \va, wa \ a < X}. 
Let (j be the automorphism of A\ defined by <r(va) = waj <r(wa) = va. Let 
Gx = (<r)A\ be the split extension of A\ by (a). Then [G: A\] = 2, but 
(a-, O ) ^ ' ^ = ((7, wa + va) for all a < X, so G is not XC. 

Example 5. For every limit cardinal K there is a group G which is KC, has 
x(G) = K and has an abelian subgroup A such that [G: A] = cf (K). If K is 
regular, P(G) = K. If K is singular, P(G) = K+. 

Proof. Let G = £x<ct(K) Gax where G«x, of power ax, is the group in Example 3 
and K = limx ax- Clearly [G: ]£ ^x] = |Z! G«X/A4x| = cf (K) and G is KC. Since 
G is not yC for any 7 < K, X(G) = K. Suppose K is regular. Let X £ [G]\ For 
each x £ X, A(x) = {ct\x(a) = 1} is finite. By Marczewski's theorem there 
exists F = [X]K such that the sets A(x) with x £ F form a A-system with 
kernel i J = {«i, a2, . . . , an}. If x;y ^ 3>x for all ^ ^ x Ç F, there exists an 
i S n and a Z G [F]* such that :ry(a<) 7̂  yx(at) for all x 5̂  y £ Z, contra
dicting |Ga.| < K. If K is singular, P(G) = K+ follows directly from the next 
lemma and the fact that \G\ = K. 

LEMMA 9. Suppose K is a singular cardinal and K = lima<cf(^ Xa. / / G has a 
family of subsets Xaj a < cf (K), with the properties 

(1) [x, y] 7e 1 when x 9^ y G ^ a ; 
(2) \Xa\ = Xa; 
(3) Xfi Ç C(Xa) /or a < /3, 

then P{G) > K. 

Proof. Since cf(/c) < K, we may suppose X0 = cf(/c). Well-order X0 = 
{xa: a < cf(/c)}. Consider the set S = {xaya\ya £ Xa). If yaf za £ Xa and 
xayaxaza = xasaxa^«, then ;yasa = zaya, which implies za = ya. If a 5* P and 
xayaXpy$ = Xpy$xaya, then xax^ = x̂ Xa, a contradiction. Thus 5 is a set of K 
pairwise non-commuting elements. 
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LEMMA 10. Let nbe a strong limit cardinal. If G is a group which is KC and has 

P(G) — K. then G has a subgroup H and a normal subgroup K Ç H such that 

[H: K] = cf 0 ) , P(H) = K and P(K) < K. 

Proof. If K is regular, let H = G and K = E. Now assume tha t K is singular. 
If G has a subgroup L such tha t [G: L] < K and P{L) < K, then K = D ^ G L X 

is normal in G and [G: K] ^ [G: L][G:L] < K. Let K = lima<cf(K) Xa with X0 = 
cf(/c). By Lemma 7, for each a < C((K) there exists ya £ G\ i£ such tha t 
[K: CK(ya)] ^ \a. Let 77 = <{?a|a < cf (*)}>#. Clearly [H: K] = | iJ / iC| = 
cf(/c). If P ( i / ) = 7 < /c, then by Lemma 2, i ï is (2^)+C. Since K is a strong 
limit cardinal, (2 7 ) + < K and there exists an a such tha t Xa > 2y. Since ya has 
a t least Xa conjugates in H, we have a contradiction. Thus we may assume tha t 
every subgroup L such tha t [G: L] < K has P ( X ) = K. We construct sets X a , 
a < cf(/c), having the properties (1), (2) and (3) in Lemma 9 and the addi
tional property 

(4) [G: C(x)] S Ka < K when x Ç Xa. 

Let C = C(Xa\a < (3). Then 

[G: C] ^ Et IT [G: C(x)] ^ U K > < K. 

Since P ( C ) = K, we can choose X C C, X a set of pairwise non-commuting 
elements and |X| regular and a t least X .̂ There exists Kp < K and X$ £ [X] ^ 
such tha t x £ Xp implies tha t [G: C(x)] ^ K$. Lemma 9 yields P(G) > K, a 
contradiction. 

T H E O R E M 4. Suppose K is a strong limit cardinal cofinal with co. If G is KC, then 
P(G) * K. 

Proof. By Lemma 10, if P(G) = K, there exists an H0 < G with P(H0) < K 
and [G: i /0] < *• Let K = limw<a3 Xw with \n > 7 = P(H0). By Lemma 2, i J 0 

is (2?)+C. By Lemma 7, if K Ç i i 0 with [ i / 0 : 2T| < K, then for every n there 
exists a y € G such tha t [K: CK(y)] ^ (2X»)+. Let \xn = (2Xn)+ and choose 3/0 
such tha t [i/o: G#0(;yo)] ^ Mo- Then let Po = {Ao,a|a < Mo} be a commutat ive 
subset of a transversal for CH (yo) in i i 0 (this is possible since (2Xo)+—» 
((2Xo)+, X0

+)2). Suppose Hnj yn and Dn = {hn<a\a < idn\ have been defined for 
all n g 7 with [#w : i i„+ 1] < K. We let Hk+1 = CH/c(yk) C\ C({hn,a\a< Mll, 
w ^ &} ). Then 

[ffo:fl*+i] è [H0:Hk][Hk: CHk(yk)] Y\ Yl [Ho: CHo(hn,a)] 

^ [G: Cm{yk)\ EI ( jU 0 ) M n < K. 

Now let yk+i be such tha t [Hk+1: CHk+l (yk+i)] è M +̂i and A + i = {^+i,«l 
a < Ai/t+i} be a commutat ive subset of a set of coset representatives for 
G//fr+1(3Vn) in ii^+i. Thus we define Hn, yn and P n for all n < co. Let Cn = 
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CH^JU) for w •< co. There is an equipotent subset E0 of D0 and an infinite set 
IQ of positive integrers such tha t either 

(i) y0E0r\ ( U Ct) = 0 or (ii) y0E0 Ç O C,. 

Namely to each d £ D0 let fd: co —> 2 satisfy ^0^ 6 C< if and only if f(i) = 0. 
Pick £ 0 £ ^ o with | £ 0 | = \D0\ such tha t eu e2 G £o implies t h a t / C l = fe2 = f 
(jLto is regular and greater than 2Xo), and let Jo be an infinite set on which / is 
constant . Suppose we have continued this construction and have found En., 
i ^ k, and Ik, an infinite set of natural numbers , satisfying 

(A) n0 = 0 and {tii\0 ^ i ^ k) is an initial segment of Ih\ 

( B ) £ , Ç D , ; 
( C ) | £ n . | = /xn.; 

(D) either (i) y n .£ w . Pi C ; = 0 V j 6 A, j > nu or (ii) y n . £ n . C Cj 
V i e A, j > WJ; 

we find En}c +1 and Jfc+i by exactly the same method used to find E0 and I0. 

Now consider the sets J\ = {ni\D{i) holds} and J2 — {fii\D(ii) holds}. 
Consider further the elements xw>cr = ynhn<a for all n < co and a < iin. If xn>a 

commutes with xn^, then hn<ahn^~l Ç CHn(yn)- which by definition implies 
t ha t a = fl. If n < m, since /tm>/9 commutes with both yn and Are>a, xn,a commutes 
with xMt0 if and only if xn<a Ç C(ym) . Suppose / i is infinite. Then 

{xn<a'. n £ A and /*n>« G £„} 

is a set of K pairwise non-commuting elements, contradict ing P(G) ^ K. On 
the other hand, if J2 is infinite, let Xn = {xn<a \ hn>a £ En) for each w G Ji. Since 
[xK>a, xn,/s] ^ 1 if a ^ 0, bu t [xn,af xm,p] = 1 if n ^ m £ J2, Lemma 9 implies 
t ha t P(G) > K. 

Definition. We denote by I I ^ Ga the subgroup of I l a<K Ga consisting of all 
x G r i a < K Ga such t ha t \{a \x(a) 9^ 1}| < 7. 

T H E O R E M 5. Let G = TIa<K Ga with each Ga non-abelian. Let a = sup a < K 

x(Ga) and let 6 = max {0-, log K}. Assume 2<e = 6. If 7 ^ cf 6, then x(G) = 6. 

Proof, (i) X(G) ^ 6. Clearly X (G) à x(G«) for all a, so X (G) ^ <r. 
We claim tha t x(G) = log K. Suppose on the cont rary t h a t G is a disjoint 

union of abelian sets Ae, 6 < X for some cardinal X with 2X < K. In each Ga 

choose two non-commuting elements xa and ya. For each a < fi < K consider 
the element sa0 of G defined by 

^ ( e ) = <xa e = a 

Par t i t ion the pairs {a, 0}, a < /3 < K, into X classes—put {a, /3} in the 0th 
class if sap £ Ae. Since K —» (3)\2 , there exists Ae and a, 0, 7 such t ha t sa/j, 5^7, 
5a7 Ç Ae. However [sap, S0y](fi) = [yp, x$] 9e 1, a contradict ion. 
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(ii) x(G) S 0. Consider the tree T = (2)<e of functions from ordinals < 6 
into 2, ordered by function extension. T has 6 nodes and 2e ^ K pa ths (a pa th 
corresponds to a function from 9 into 2). We label K of these pa ths by ordinals 
less than K. We also suppose tha t for each a < /c, Ga = Up<e Aa$ with each 
Aa>p abelian. For each function (p such tha t the domain of <p is a set of incom
parable nodes of T with cardinality < y and the range of <p is a subset of 0, we 
form a set Q C G. F o r / G G , / G Q, if and only if 

(a) there is a one to one correspondence ^ : dom ^ —» {a | / ( a ) 7e 1} ; 
(b) for each node a 6 dom <p, a is on the pa th labeled \p{a) ; 
(c) for each node a G dom (p,f(\f/(a)) G ^(«^(a) . 

The number of Q,'s is 0<7, which, since 7 ^ cf 6 and 2<ff = 0, equals 6. 
T h e theorem will be completed by showing tha t each dp is abelian and tha t 

U? Q, = G. S u p p o s e / , g G Cv. For each a such t h a t / ( a ) , g (a) 5^ 1, only one 
node a G dom <£> can be on the pa th a, and so / ( a ) , g (a) G Aa<P(a), and 
[/(«), £(«)] = 1. Thus [/, g] = 1. If / G G, then since | { a | / ( a ) ^ 1}| < 7 ^ 
cf 6, then there is a set B of incomparable nodes of T and a bijection \p: B —» 
{ a | / ( a ) 5^ 1} such tha t 6 is on the path labeled by \p{b) for each b G B. Now 
for each b £ B let <p(b) s a t i s fy / (^ (6 ) ) G i4^(&)^(&). T h e n / G C ,̂. 

T H E O R E M 6. Let G = Yly
a<K Ga and let a = supa < K P(Ga). Assume 2<(T = a. If 

7 ^ cf 0-, thenP(G) ^ *+. 

Proof. Suppose there were a set X G [G]a+ of pairwise non-commutat ive 
elements. Applying the Erdôs-Rado generalization of Marczewski 's theorem, 
there is a F G [X]ff+ such tha t the sets Ay = {a|y(a) 9^ 1}, for y G Y, form a 
A-system with kernel H. For 3̂ 1, ^2 G F with 3>i 5^ 3>2, there is an o; G ^ with 
[^i(«)» y*(a)] ^ 1- Since |/Z"| < cf a, we apply a+ —» (0O1//12 to obtain a 
Z G [F]0" and a n a ^ F with [21(a), 22(a)] ^ 1 for all zi, z2 G Z with 21 5^ 22, 
contradict ing P(Ga) S <r. 

Remark 6. I t is not hard to give examples where <J+ is a t ta ined in the theorem. 
In addition to Examples 2 and 3, if G is the direct sum of free groups Fn on Xn 

generators for all n < co, P(G) = Xw+i- However, if P(G) = P(H) = Xo, 
then clearly from Theorem 3, P{G X H) = Xo- Can P ( G ) be a singular 
cardinal? 

Remark 7. I t follows from Theorems 5 and 6 tha t if K is an infinite cardinal 
and if G = ]C«<* Ga with each Ga finite and non-abelian, then x(G) = log K 
while P{G) = Xi. 

T H E O R E M 7. Let G be a group of cardinality (2")+. Let 7 ^ K+. If for every 
collection of sets (Xa | a < 7) TW/Â X a G [G]*+ //^re exists a ^ 13 such that xa G Xa 

and x$ G X$ with [xaj x$\ = 1, /Aew -P(G) ^ 7. 

Proof. Suppose P(G) > y. Let X G (G)*+. Wri te X = 0«<a X a with 
|X a | = K+. There exists a 9^ /3 such tha t xa G X«, x^ G Xp and [xa, x^] = 1. 
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Thus P(G) ^ K+. Let X £ [G]~> such that xy ^ yx for each x, y 6 X. Since 

[G: C(X)] ^ f i [G: C(*)] ^ (2")7 = 2", 

we have |C(X)| = (2*)+. Since (2*)+—» (/c+)2
2, we can choose an abelian sub

group A Ç [C(X)]"+. Consider Xp = {xa | a £ ,4}, x G X. If xayè = ybxa, then 
x;yafr = ^xa6 and xy = ^x, a contradiction. 

Remark 8. (G.C.H.) If G = X!«<x+ G« with each G« a finite simple group, 
then P(G) ^ Ki, G is T̂ C and X(G) = X; on the other hand, [G: Z] > X and 
for every abelian A, [G: A] > X. The group G in Example 2, has P(G) = K+ 

and [G: Z] g K+; on the other hand, G is not /c+C. The group G in Example 1 
is FC and has [G: Z] ^ K+, but has x(G) = *+> ^(G) = K+ and for every 
abelian subgroup A of G, [G: ^4] = K+. If G is a free group on K generators, 
x(G) = K and [G: Z] = K, but G is K+C and P(G) = K+. The groups G\ in 
Example 4 show that having an abelian subgroup of index 2 need not imply 
XC for any X. 

[G: A] < K++ 

[G: 4 ] < *+ 

[G: 4 ] < K 

P(K+) 

P(K) 

1 [G: Z] < * 

Class Inclusions (G.C.H.) 

The figure illustrates the class inclusions under G.C.H. (A denotes an 
abelian subgroup for which [G: A] is minimal.) All inclusions are proper if 
K is a successor cardinal. 

Problem 1. Does %(G) ^ K imply that [G: ,4] ^ K+? 

Problem 2. Does X(G) ^ K imply that [G: Z] ^ 22* or even [G: Z] ^ K+? 
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Problem 3. If K is a limit cardinal, does P(G) ^ K imply that G is KC? 

Problem 4. Does \G\ ^ (2«)+ and P(G) S K+ imply that X(G) ^ 2"? 

Problem 5. Can P(G) be a singular cardinal? 
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