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The nonlinear mechanism in the self-sustaining process (SSP) of wall-bounded turbulence
is investigated. Resolvent analysis is used to identify the principal forcing mode that
produces the maximum amplification of the velocities in numerical simulations of
the minimal channel for the buffer layer and a modified logarithmic (log) layer. The
wavenumbers targeted in this study are those of the fundamental mode, which is infinitely
long in the streamwise direction and once-periodic in the spanwise direction. The
identified mode is then projected out from the nonlinear term of the Navier–Stokes
equations at each time step from the simulation of the corresponding minimal channel.
The results show that the removal of the principal forcing mode of the fundamental
wavenumber can inhibit turbulence in both the buffer and log layer, with the effect being
greater in the buffer layer. Removing other modes instead of the principal mode of the
fundamental wavenumber only marginally affects the flow. Closer inspection of the dyadic
interactions in the nonlinear term shows that contributions to the principal forcing mode
come from a limited set of wavenumber interactions. Using conditional averaging, the
flow structures that are responsible for generating the nonlinear interaction to self-sustain
turbulence are identified as spanwise rolls interacting with oblique streaks. This method,
based on the equations of motion, validates the similarities in the SSP of the buffer and
log layer, and characterises the underlying quadratic interactions in the SSP of the minimal
channel.
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1. Introduction

Since the first experiments by Klebanoff, Tidstrom & Sargent (1962) and Kline et al.
(1967), the coherent structure of near-wall turbulence has been extensively investigated. In
the vicinity of the wall, the flow is found to be highly organised and can be comprehended
as a collection of recurrent patterns usually referred to as coherent structures or eddies,
consisting of streamwise rolls/vortices and low- and high-speed streaks (Kline et al.
1967; Blackwelder & Eckelmann 1979; Smith & Metzler 1983), that are involved in a
quasi-periodic regeneration cycle (Robinson 1991; Panton 2001; Adrian 2007). However,
despite the large efforts devoted to the subject, questions still remain regarding the exact
mechanisms by which turbulence self-sustains in wall-bounded turbulent shear flows and
the dynamics in which these structures interact.

Townsend (1976) hypothesised that the log region would be composed of self-similar
energy-containing motions, the sizes of which are proportional to their distance from
the wall. By a suitable superposition of these hypothetical motions, termed ‘attached
eddies’, under the constraint of a constant Reynolds shear stress typical of the log layer,
Townsend predicted that the wall-parallel velocity components of turbulence intensities
in the log region would exhibit logarithmic wall-normal dependence. Traditionally,
wall-attached eddies have been interpreted as statistical entities (Marusic et al. 2010;
Smits, McKeon & Marusic 2011), but recent works suggest that they can also be identified
as instantaneous features of the flow (Jiménez 2018). The methodologies to identify
instantaneous energy eddies are diverse and frequently complementary, ranging from
the Fourier characterisation of the turbulent kinetic energy (Jiménez 2013, 2015) to
adaptive mode decomposition (Hellström, Ganapathisubramani & Smits 2016; Agostini
& Leschziner 2019; Cheng et al. 2019), and three-dimensional clustering techniques
(Del Alamo & Jiménez 2006; Lozano-Durán, Flores & Jiménez 2012; Lozano-Durán &
Jiménez 2014; Hwang & Sung 2018), to name a few.

In the buffer layer, important progress was made in the early 1990s using the ‘minimal
flow unit’ approach, which revealed that buffer-layer streaks can self-sustain even when
motions at larger scales are inhibited and that their existence, therefore, relies on an
autonomous process (Jiménez & Moin 1991). Hamilton, Kim & Waleffe (1995) utilised
a similar approach for Couette flow, where either certain velocity modes were suppressed
to remove streak formation or disturbances were added to allow streak breakdown. Jiménez
& Pinelli (1999) further confirmed that this near-wall process is independent of the flow in
the log and outer regions by showing the survival of the near-wall motions in the absence of
outer turbulence. The consensus from these studies, along with many others that followed
(e.g Waleffe 1997; Schoppa & Hussain 2002; Farrell, Gayme & Ioannou 2017), is that
the streaks are significantly amplified by the quasi-streamwise vortices via the lift-up
effect (Landahl 1975); the amplified streaks subsequently undergo a rapid streamwise
meandering motion, reminiscent of streak instability or transient growth, which eventually
results in the breakdown of the streaks and regeneration of new quasi-streamwise vortices
(Swearingen & Blackwelder 1987; Waleffe 1995; Kawahara et al. 2003). The cycle is
restarted by the generation of new vortices from the perturbations created by the disrupted
streaks through nonlinear interactions.

A similar but more disorganised scenario is hypothesised to occur for the larger
wall-attached energy eddies within the log layer (Flores & Jiménez 2010; Hwang & Cossu
2011; Cossu & Hwang 2017; Lozano-Durán, Bae & Encinar 2020). The existence of a
self-similar streak/roll structure in the log layer consistent with Townsend’s attached-eddy
model has been supported by the numerical studies by Del Alamo & Jiménez (2006),
Flores & Jiménez (2010), Hwang & Cossu (2011), Lozano-Durán et al. (2012) and
Lozano-Durán & Jiménez (2014), among others. A growing body of evidence also
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indicates that the generation of the log-layer streaks has its origins in the linear lift-up
effect (Kim & Lim 2000; Del Alamo & Jiménez 2006; Pujals et al. 2009; Hwang & Cossu
2010; Moarref et al. 2013; Alizard 2015) in conjunction with Orr’s mechanism (Orr 1907;
Jiménez 2012). Regarding roll formation, several works have speculated that rolls are the
consequence of a sinuous secondary instability of the streaks that collapse through a rapid
meander until breakdown (Andersson et al. 2001; Park, Hwang & Cossu 2011; Alizard
2015; Cassinelli, de Giovanetti & Hwang 2017), while others advocate for transient growth
(Schoppa & Hussain 2002) or parametric instability of the streamwise-averaged mean flow
as the generating mechanism of the rolls (Farrell et al. 2016).

The specific mechanism by which the coherent large-scale structures self-sustain can be
further investigated by looking for the existence of invariant solutions of the Navier–Stokes
equations (Waleffe 1998, 2001, 2003). The nonlinear steady-state solutions and travelling
wave solutions in plane Couette flow and the travelling wave solutions in plane Poiseuille
flow, also known as exact coherent structures (ECS), are a combination of the three
flow structures – streamwise vortices, streaks and waves – such that they maintain
each other despite viscous decay. The idea was that these ECS act as an organising
centre for the turbulence quasi-cycle. Kawahara & Kida (2001) detected periodic orbits
resembling the time-dependent version of Waleffe’s self-sustaining process (SSP) that
shares the full regeneration cycle of the near-wall coherent structures in plane Couette
turbulence. Further study was done in the large-scale motions (Cossu & Hwang 2017)
using over-damped large-eddy simulation to isolate the large-scale motions. However,
while realistic turbulence does show similarity to ECS solutions, the actual dynamics of
wall-bounded turbulence exhibits more complexity than the ones observed in ECS.

Several mechanisms for vortex regeneration have been proposed in the past, mostly
focused on the buffer region (Jiménez & Moin 1991; Hamilton et al. 1995; Panton 1997;
Schoppa & Hussain 2002; Hwang & Bengana 2016) due to the fundamentally nonlinear
nature of the problem. Previous studies successfully identified the dominant wavenumbers
involved in the nonlinear interaction (Hamilton et al. 1995) and the structures involved in
the regeneration mechanism based on instantaneous snapshots of turbulent flow (Jiménez
& Moin 1991; Hamilton et al. 1995; Schoppa & Hussain 2002). However, additional
insight is necessary to pinpoint the exact nonlinear interaction involved in the regeneration
cycle, i.e. to understand the underlying flow composition that leads to the meaningful
nonlinear interaction that produces the structures involved in the SSP, in realistic turbulent
flows. A meaningful addition to the previous studies would be to find an orthonormal basis
for the nonlinear term of the Navier–Stokes equations that isolates the most important
nonlinear interaction leading to regeneration of streamwise vortices, which is the goal of
the present study.

Various approaches rooted in the linearised equations have been utilised in the past to
study turbulent flows, such as rapid distortion theory of Batchelor & Proudman (1954) (see
the reviews by Hunt & Carruthers (1990) and Cambon & Scott (1999) for more details),
linear stability theory (Lin 1944; Malkus 1956; Reynolds & Hussain 1972), optimal
perturbation (Butler & Farrell 1993; Farrell & Ioannou 1993), input–output analysis
(Jovanovic & Bamieh 2005) and resolvent analysis (McKeon & Sharma 2010; McKeon
2017), among others. Early works focused their efforts on transition to turbulence, while
more recent studies have been devoted to fully turbulent flows. Here we focus on the latter
using resolvent analysis, as it has been successful at identifying the most energetic motions
in actual turbulent flows by approximating the nonlinear forcing from the interaction of
highly amplified coherent structures (McKeon & Sharma 2010; McKeon 2017). Resolvent
analysis identifies pairs of response (velocity) and forcing (nonlinear) modes and the
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corresponding amplification factor from the linearised Navier–Stokes operator while
taking into account the non-normality of the linear Navier–Stokes equations. This results
in a set of orthonormal bases for the velocity and nonlinear terms. A more detailed
comparison of previous works on linearised Navier–Stokes equations with the resolvent
analysis can be found in McKeon (2017).

It has been shown that a rank-one approximation of the resolvent modes captures the
characteristics of the most energetic modes of wall-bounded turbulent channels (Moarref
et al. 2013). We postulate that the principal (most amplified) forcing mode then must have
the largest impact on the flow and, in particular, the regeneration cycle, and we show
that the turbulence can be weakened by removing the nonlinear component corresponding
to the principal forcing mode in both the buffer and the log layer. The orthonormality of
the resolvent modes allows the removal of the spatio-temporal structure corresponding to
the principal forcing mode by extracting the projection of forcing mode onto the nonlinear
term. Furthermore, by identifying the most important contribution to the nonlinear term,
conditional averaging can identify the underlying interaction that leads to the generation of
this nonlinear term, making it possible to study the structures responsible for the nonlinear
mechanism in the SSP. A preliminary version of this work can be found in Bae & McKeon
(2020).

The paper is organised as follows. We first introduce the method used to identify and
remove resolvent forcing modes from the nonlinear term computed from the numerical
simulations of low- and moderate-Reynolds-number minimal channel flow simulations,
representing the buffer and log-layer dynamics, in § 2. We then present the resulting
changes in the flow statistics once the resolvent forcing modes are projected out in § 3,
where it is shown that the removal of the principal forcing modes can significantly reduce
turbulence in both the buffer and log layers. The precursor velocity structures involved
in the generation of the most amplified nonlinear term, and thus the structures involved
in the nonlinear mechanisms of the SSP, are identified in § 4. Finally, our findings are
summarised in § 5.

2. Methods

In the following, we consider a turbulent flow between two parallel walls. The streamwise,
wall-normal and spanwise directions are denoted by x, y and z, respectively. The
streamwise and spanwise directions are periodic. The flow velocities in the corresponding
directions are given by Ū, V̄ and W̄. We define two decompositions of the flow
velocities, Ū = U + u = ū + u′, where U is the velocity averaged over the homogeneous
directions and time, and ū is the velocity averaged over the homogeneous directions only
(analogously defined for V̄ and W̄). The flow is characterised by the friction Reynolds
number Reτ = δuτ /ν, where δ is the channel half-height, uτ is the friction velocity and ν

is the kinematic viscosity.

2.1. Principal forcing modes
In order to identify the most amplified nonlinear component in the turbulent channel flow,
we perform the resolvent analysis with the base mean flow being the mean velocity of a
turbulent channel flow, U = (U, V, W). The incompressible Navier–Stokes equations can
be Fourier-transformed in homogeneous directions and time, and reorganised as

− iωũ + (U · ∇̂)ũ + (ũ · ∇̂)U + ∇̂p̃ − 1
Reτ

Δ̂ũ = f̃ , ∇̂ · ũ = 0, (2.1)
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for each (kx, kz, ω) /= (0, 0, 0), where ( ·̃ ) is the Fourier transform in time and
space, ũ(kx, kz, ω) = [ũ, ṽ, w̃]T, U = [U, V, W]T, f̃ (kx, kz, ω) = [ f̃u, f̃v, f̃w]T denotes the
nonlinear advection terms and p̃(kx, kz, ω) is the pressure, all of which are functions of
wall-normal distance y. The operators ∇̂ = [ikx, ∂y, ikz]T and Δ̂ = ∂yy − k2

x − k2
z . Here,

the triplet (kx, kz, ω) denotes the streamwise and spanwise wavenumbers and the temporal
frequency, respectively. The length, velocity and time scales are non-dimensionalised
using δ, uτ and δ/uτ , respectively, and kx, kz and ω are non-dimensionalised using δ−1,
δ−1 and uτ /δ, respectively. Further, to facilitate the notation, we define k◦

x = 2πδkx/Lx and
k◦

z = 2πδkz/Lz such that integer values of k◦
x and k◦

z indicate the number of wavelengths
that fit in the streamwise and spanwise domain of size (Lx, Lz), and, for any function
ζ(kx, kz, ω), ζ (a,b,c) = ζ(k◦

x = a, k◦
z = b, ω = c).

Equivalently, we can express the Navier–Stokes equations for (kx, kz, ω) /= (0, 0, 0) as[
ũ(kx, kz, ω)

p̃(kx, kz, ω)

]
= H(kx, kz, ω)

[
f̃ (kx, kz, ω)

0

]
. (2.2)

We refer to the linear operator H(kx, kz, ω), which takes U as input, as the resolvent
operator. The singular value decomposition of the resolvent operator returns an ordered
basis pair {ψ̃ j, φ̃j} along with the associated singular value σj (σ1 ≥ σ2 ≥ · · · ≥ 0), which
can be used to express (2.2) as[

ũ(kx, kz, ω)

p̃(kx, kz, ω)

]
=

∞∑
j=1

σj(kx, kz, ω)ψ̃ j(kx, kz, ω)

〈
φ̃j(kx, kz, ω),

[
f̃ (kx, kz, ω)

0

]〉
, (2.3)

where 〈·, ·〉 is the inner product corresponding to the kinetic energy norm, and the basis
vectors φ̃i and ψ̃ i vectors are unitary. We refer to ψ̃ j as the response modes and φ̃j as
the forcing modes. The former identifies the most amplified coherent structures, which are
considered to contain most of the energy. The latter are the basis for the nonlinear terms
that create the response modes via the linear resolvent operator.

While the eddy viscosity formulation of the resolvent analysis, as in Morra et al.
(2019), has been shown to improve the prediction of statistics for most energetic
streamwise-constant streaks, a more recent study by Symon, Illingworth & Marusic (2020)
shows that eddy viscosity does not respect the conservative nature of the nonlinear energy
transfer, which must sum to zero over all scales. Consequently, it is less effective for scales
that receive energy from the nonlinear terms. Thus, for the purposes of this study, we
find the original resolvent formulation without the additional eddy viscosity term more
relevant.

Note that, due to the symmetry in the channel flow, the resolvent modes appear in
pairs, and the modes corresponding to the two largest singular values, σ1 and σ2, can
be decomposed into two components that are symmetric about y = 1. For the purpose
of identifying modes that act primarily on the top or bottom of the channel, we define
the principal mode as the linear combination of the two largest resolvent modes as
follows. To find a principal forcing mode that acts mostly on the bottom half of the
channel (0 ≤ y ≤ 1), we first define the symmetric and antisymmetric modes as a linear
combination that is symmetric or antisymmetric, respectively, with respect to y = 1 and
has positive real component when integrated from y = 0 to y = 1. We then focus on
the principal forcing mode φ̃1 = [φ̃1,u, φ̃1,v, φ̃1,w, 0]T computed by taking the sum of
the symmetric and antisymmetric linear combination of the pair, such that the sum of the
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two will mostly affect flow in the bottom half (0 ≤ y ≤ 1) of the channel. Consequently,
φ̃2 is the difference of the symmetric and antisymmetric linear combination of the pair
corresponding to these two largest singular values such that the projection of the resolvent
mode will mostly affect flow in the top half of the channel. All subsequent modes φ̃3,4,...

are defined analogously.

2.2. Numerical simulation
Two sets of numerical simulations are performed by solving the incompressible
Navier–Stokes equations

∂Ū
∂t

= −(Ū · ∇)Ū − ∇p + 1
Reτ

ΔŪ, ∇ · Ū = 0, (2.4a,b)

using a computational domain tailored to isolate the most energetic eddies in either
the buffer layer (Jiménez & Moin 1991) or the log layer (Bae & Lozano-Durán 2019).
This can be considered the simplest numerical set-up to study the SSP for wall-bounded
energy-containing eddies of a given size.

In order to isolate the most energetic eddies in the buffer layer, defined as 5 < y+ < 30,
where the superscript + denotes viscous units, we perform a direct numerical simulation
(DNS) of an incompressible turbulent channel flow at Reτ ≈ 186. The simulations are
performed by discretising the incompressible Navier–Stokes equations with a staggered,
second-order-accurate, central finite-difference method in space (Orlandi 2000), and an
explicit third-order-accurate Runge–Kutta method for time advancement (Wray 1990). The
system of equations is solved via an operator splitting approach (Chorin 1968). Periodic
boundary conditions are imposed in the streamwise and spanwise directions, and the
no-slip condition is applied at the walls. The code has been validated in previous studies
of turbulent channel flows (Bae et al. 2018, 2019). The streamwise, wall-normal and
spanwise domain sizes are L+

x ≈ 340, L+
y ≈ 372 and L+

z ≈ 170, respectively. Jiménez &
Moin (1991) showed that simulations in this domain constitute an elemental structural unit
containing a single streamwise streak and a pair of staggered quasi-streamwise vortices,
which reproduce reasonably well the statistics of the flow in larger domains. The grid
spacings in the streamwise and spanwise directions are uniform, with Δ+

x ≈ 10.6 and
Δ+

z ≈ 5.3; non-uniform meshes are used in the wall-normal direction, with the grid
stretched towards the wall according to a hyperbolic tangent distribution with min(Δ+

y ) ≈
0.17 and max(Δ+

y ) ≈ 7.6.

In the case of the log layer, defined as 3Re−1/2
τ < y < 0.15 (Marusic et al. 2013), we

perform a large-eddy simulation (LES) of an incompressible turbulent channel flow at
Reτ ≈ 2003 with modified wall boundary conditions. The set-up of the simulations is
similar to the buffer-layer case, but the no-slip boundary condition at the walls is replaced
by a slip boundary condition of the form

Ū = ls
∂Ū
∂y

, V̄ = ls
∂V̄
∂y

, W̄ = ls
∂W̄
∂y

, (2.5a–c)

where ls = 0.05 is the slip length. The choice to use LES with the slip boundary condition
rather than DNS is deliberate in order to remove the presence of small-scale motions
from the flow (Leonard 1975; Hwang & Bengana 2016; Cossu & Hwang 2017; Bae
& Lozano-Durán 2019) and to suppress the formation of near-wall viscous layers and
buffer-layer eddies (Lozano-Durán & Bae 2016, 2019a; Bae & Lozano-Durán 2019), as
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we are interested in energy-containing motions of the log layer. This modified channel
flow is tailored to isolate the large-scale motions of the log layer. While the simulated log
layer produces healthy turbulence only in a limited range of wall-normal locations, this
allows a simplified approach to study the SSP of the isolated scales.

The choice of the slip length is such that the adaptation length (Lozano-Durán & Bae
2019a), i.e. the vertical distance from the boundary above which the flow recovers to the
nominal no-slip flow statistics, is below the lower bound of the log layer for this Reynolds
number. The anisotropic minimum dissipation model (Rozema et al. 2015) is used as the
subgrid-scale model for the LES. The streamwise, wall-normal and spanwise domain sizes
of the simulation are Lx ≈ 1.57, Ly = 2 and Lz ≈ 0.79, respectively. This domain size
corresponds to a minimal box simulation for the log layer and is sufficient to isolate the
relevant dynamical structures involved in the bursting process (Flores & Jiménez 2010).
Moreover, the choice of the domain size is such that the wall-normal distance below which
flow exhibits healthy turbulence, ld ≈ Lz/3 ≈ 0.25 (Flores & Jiménez 2010), is above the
upper bound of the log layer. The domain is discretised using Nx = 256 and Nz = 64 points
in the streamwise and spanwise directions, and Ny = 101 in the wall-normal direction. The
grid spacings in the streamwise and spanwise directions are uniform with Δx ≈ 0.006 and
Δz ≈ 0.012 such that the grid captures 90 % of the turbulent kinetic energy at y = 0.15,
which is necessary to accurately capture the coherent structures present in the flow
(Lozano-Durán & Bae 2019b). Non-uniform meshes are used in the wall-normal direction,
with the grid stretched towards the wall according to a hyperbolic tangent distribution
with min(Δy) ≈ 0.003 and max(Δy) ≈ 0.04. Bae & Lozano-Durán (2019) showed that
simulations in this domain with the modified boundary conditions reproduce the statistics
in the log layer of the flow in larger domains while suppressing the formation of the
near-wall eddies. For details regarding this simulation, the reader is referred to Bae &
Lozano-Durán (2019).

The flow is simulated for more than 100 time units after transients for computation of the
mean streamwise velocity profile in the undisturbed minimal channel, which we label UF,
shown in figure 1(a,b) for the two cases. The resolvent modes φ̃i and ψ̃ i for the minimal
buffer and log layer were then computed with the respective UF, using the same staggered,
second-order-accurate, central finite-difference method in the wall-normal direction and
the corresponding wall boundary conditions. The Fourier discretisation in the computation
of the resolvent modes in the streamwise and spanwise directions was updated to use
the modified wavenumber corresponding to a staggered second-order finite-difference
method. The mismatch of the mean velocity profile for the buffer-layer case away from
the wall (y+ > 30) is expected due to the smaller box, which is designed to remove larger
scales of motion and is in agreement with previous studies utilising minimal channels
(Jiménez & Moin 1991). In the log-layer case, the simulation is designed to remove both
the viscous scales and subgrid scales as well as the larger outer-region scales, resulting
in the mismatch in both the buffer and the outer region. The disruption of the viscous
scale can be better observed from the lack of the inner peak in the streamwise turbulence
intensity (figure 1d).

The new simulations are started from an initial condition from the channel flow
described above that is modified such that ū = UF. Then, an appropriate forcing at each
time step is applied to (2.4a) to freeze the mean such that ū = UF, or equivalently
∂ ū/∂t = 0. This is done by setting the (kx, kz) = (0, 0) mode of the right-hand side of
(2.4a) to zero at each time step. The mean velocity profile is frozen so that the most
amplified resolvent modes remain constant throughout the simulation. It is also consistent
with the aim of the study, which is to characterise the mechanisms that sustain the
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Figure 1. (a) Mean streamwise velocity profile, (c) turbulence intensities and (e) energy spectra at y+ = 15 of
the buffer-layer minimal channel (black solid line) compared to the mean velocity profile of the channel flow
for the domain size of 12π × 2 × 4π (red dashed line) at Reτ ≈ 186 from Del Alamo & Jiménez (2003).
(b) Mean streamwise velocity profile, (d) turbulence intensities and ( f ) energy spectra at y = 0.15 of the
log-layer minimal channel (black solid line) compared to the mean velocity profile of the channel flow for
the domain size of 8π × 2 × 3π (red dashed line) at Reτ ≈ 2003 from Hoyas & Jiménez (2006). The mean
streamwise velocity profile for the minimal channel in (b) is vertically shifted by 8.4 wall units such that the
velocity at y = 0.15 coincides with the larger-domain case. Turbulence intensities are shown for streamwise
(©), wall-normal (�) and spanwise (�) components. Dotted lines in (a–d) indicate lower and upper domains
for buffer and log layer for corresponding cases. Dotted lines in (e, f ) indicate the domain size of the minimal
channel. Contour levels are 1 %, 5 % and 10 % for (e) and 10 %, 25 % and 40 % for ( f ) of the maximum value
of the large-domain cases.

fluctuating velocities generated by the actual turbulent mean flow. Tuerke & Jiménez
(2013) showed that turbulent channel flows with prescribed correct mean velocity profiles
result in naturally occurring fluctuating velocities. An additional case without freezing the

914 A3-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

85
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.857


Nonlinear mechanism of the SSP of wall-bounded flows

mean, i.e. not applying the additional forcing to set ∂ ū/∂t = 0, is performed later in § 3.1
to study the effect of freezing the mean.

The turbulence intensities and the energy spectra of the frozen-mean minimal-domain
simulations are compared to the large-domain counterparts in figure 1(c–f ). We see that,
in the regions bounded by the vertical dotted lines in figure 1(c,d), which signify the
lower and upper bounds of the buffer and log layer in the respective cases, the turbulence
intensities follow the trend of its large-domain counterpart. The underprediction of
the turbulence intensities in the log-layer simulation is due to the use of LES, where
energy from the small- and largest-scale motions are not included. The two-dimensional
premultiplied energy spectra at y+ = 15 and y = 0.15, respectively, are shown in
figure 1(e, f ), and the results match well with the large-domain counterparts, with the
exception of the missing large-scale motions, which extend beyond the respective domains,
and the small-scale contributions in the log layer, which are modelled and not resolved in
LES.

In order to study the effect of the forcing modes on the flow, a separate simulation
is advanced in time by removing the projection of the nonlinear term f ′ = −(u′ · ∇)u′

onto the resolvent forcing mode φ̃1 for the chosen (kx, kz, ω) at each time step. Note
that u′ = u in the case when the mean is frozen in time. This is done by first taking the
Fourier transform of the nonlinear term in the homogeneous directions and computing the
projection

ĝ1(kx, kz, ω) =
〈[

f̂ ′(kx, kz)
0

]
, φ̃1(kx, kz, ω)

〉⎡⎢⎣φ̃1,u(kx, kz, ω)

φ̃1,v(kx, kz, ω)

φ̃1,w(kx, kz, ω)

⎤⎥⎦ (2.6a,b)

at each time step. The projection is then removed by subtracting the inverse
Fourier-transformed ĝ1 from the right-hand side of (2.4a) and advancing in time.
Symmetry of the Fourier modes is preserved by also removing ĝ∗T

1 , the conjugate of
ĝ1 (where superscript ∗ denotes conjugate transpose and T denotes transpose), from the
nonlinear term f̂ ′(−kx, −kz) at each time step. Projections onto φ̃i are analogously defined
as ĝi.

For the remainder of the paper, we denote the channel flow simulation with the mean
fixed at each time step but no forcing mode removed as the ‘undamped’ case and the
simulation with the forcing mode removed as the ‘damped’ case.

3. Effect of principal forcing modes on turbulence intensities

3.1. Buffer layer
As mentioned in the previous section, a choice of the target wavenumbers is required
to identify the forcing modes that are removed at each time step. For this, we target
the Fourier modes with the most energy content. Figure 2(a) shows the spectral energy
content, Ê(kx, kz) = 1

2 (û∗û), at y+ ≈ 15 for the buffer-layer case, as a function of
streamwise and spanwise wavenumbers. There is a clear peak at (k◦

x , k◦
z ) = (0, ±1). This

is consistent with the fact that the domain size of the minimal channel is such that it
isolates flow structures to be infinitely long in the streamwise direction and once-periodic
in the spanwise direction. Thus, for our analysis, we choose the streamwise and spanwise
wavenumbers (k◦

x , k◦
z ) = (0, 1). This choice of streamwise and spanwise wavenumbers

also coincides with the (kx, kz) with the largest σ1 over all values of ω, which shows
not only that this wavenumber pair holds the most energy, but also that it has the
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Figure 2. (a) Logarithm of spectral energy content, log(Ê), at y+ ≈ 15 for the buffer-layer case. (b) Principal
singular value σ1 as a function of ω for (k◦

x , k◦
z ) = (0, 1) for the buffer layer. (c,d) The y–z plane of the principal

(c) forcing mode φ̃1 and (d) response mode for (k◦
x , k◦

z , ω) = (0, 1, 0) for the buffer-layer case. The streamwise
component (colour) and the cross-flow component (arrows) are given, with the colour bar indicating magnitude
for both components.

highest amplification within the resolvent framework. The temporal frequency is given
as ω = 0, which corresponds to the highest σ1 for (k◦

x , k◦
z ) = (0, 1) (figure 2b). Note that

the projection (2.6a,b) includes the contributions from various temporal frequencies apart
from ω = 0 due to the fact that (2.6a,b) is time-dependent. However, it ascertains the
removal of this particular forcing mode. Also, the singular value associated with ω = 0
is much larger than other temporal frequencies, making the removal of other frequency
contents relatively less significant.

The principal forcing and response modes for this particular frequency–wavenumber
triplet are given in figure 2(c,d). The forcing mode highlights a pair of streamwise rolls in
the nonlinear term, i.e. the Reynolds stress contribution to the advection term, spanning the
entire channel half-height. A much weaker streamwise streak in the nonlinear term whose
magnitude (|φ̃1,u|) is approximately 5 % of that of the streamwise rolls, (φ̃2

1,v + φ̃2
1,w)1/2,

is also present. The response modes exhibit streamwise streaks with alternating signs of
the same magnitude (only the magnitude is shown in figure 2d) and weak cross-flow. The
values above y = 1 are negligible due to our definition of the principal mode. This shows
that the streamwise rolls generated by the nonlinear term can be transformed through a
linear process, i.e. the lift-up mechanism, to streamwise streaks, as expected from previous
studies of the SSP. For the given (kx, kz, ω), the principal forcing mode contains the largest
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Nonlinear mechanism of the SSP of wall-bounded flows

energetic contribution under unit broadband forcing (approximately 85 %), defined as
(σ 2

i + σ 2
i+1)/

∑∞
k=1 σ 2

k for each φ̃i for i = 1, 3, 5, . . .. The subsequent modes φ̃3 and φ̃5
have an energetic contribution of approximately 12 % and 2 %, respectively (see figure 5a).
The large separation in the singular values indicates that the principal forcing mode will
be amplified by almost an order of magnitude more than the other forcing modes and thus
will be integral in the SSP.

The effect of removing ĝ(0,1,0)
1 can be seen in figure 3(a) in the form of the turbulence

kinetic energy (TKE) evolution in time. Although not shown, the dissipation rate as
a function of time exhibits similar trends to that of the TKE. Figure 3(a) shows that
removing ĝ(0,1,0)

1 reduces the TKE significantly. The steady-state root-mean-square (r.m.s.)
velocity fluctuation profiles for this case are given in figure 3(b). As expected, the
effect of removing the principal forcing term is observed only on the bottom half of
the channel where the principal forcing term was isolated, with only minor changes in
the statistics in the top half of the channel. At any instant in time of the undamped case,
the contribution of ĝ(0,1,0)

1 to the nonlinear advection term, defined as the average-in-time
ratio of

∫
ĝ(0,1,0)∗

1 ĝ(0,1,0)
1 dy to

∫∫∫
f ′2 dx dy dz, is less than 0.9 %, and removing the same

magnitude randomly from the advection term at each time step had no effect on the
one-point statistics, which supports the importance of the spatial structure of the mode
being projected out to the turbulent flow. Furthermore, if we remove 1

2 ĝ(0,1,0)
1 at each time

step rather than ĝ(0,1,0)
1 , the impact on the turbulence statistics is negligible compared to

the undamped case, which further highlights the importance of the principal forcing term.
In the case where the mean flow is not frozen but rather is allowed to evolve in time

(figure 4a), the time evolution of TKE follows similar results as shown in figure 3(a) until
t ≈ 12, where it starts to increase again. This is due to the change in the mean velocity
profile, as shown in figure 4(b). The initial reduction of turbulence intensities changes the
dynamics of the flow such that the mean velocity profile approaches the laminar profile
on the bottom half of the channel. The drastic change in the mean profile invalidates the
relevance of the principal forcing mode obtained from the turbulent mean state, UF, and
causes the TKE to increase again. Even after the TKE becomes statistically stationary,
t > 20, the new equilibrium state after transients shown in figure 4(b) differs from the
turbulence with mean profile UF.

In order to study the effects of removing subsequent forcing modes, we repeat the
previous frozen-mean experiment, but removing either ĝ(0,1,0)

3 or ĝ(0,1,0)
5 , the secondary

and tertiary forcing modes restricted primarily to the bottom half of the channel as
defined in § 2.1, instead of ĝ(0,1,0)

1 . We see that turbulence is sustained in both cases
from figure 3(c), but the extreme peaks in TKE observed in the undamped case are not
as prominent. We can also see in figure 3(d) that, while the effect of removing ĝ(0,1,0)

3 still
has some impact on the steady-state turbulence intensities, especially around y+ ≈ 15,
the net change in the statistics is much smaller than that of removing ĝ(0,1,0)

1 . Removing
ĝ(0,1,0)

5 has no impact on one-point statistics, and similar results are expected of subsequent
forcing modes. Additionally, removing ĝ(0,1,0)

3 or ĝ(0,1,0)
5 in conjunction with ĝ(0,1,0)

1 (not
shown) resulted in similar statistics as removing only ĝ(0,1,0)

1 . At any instant in time, the
average contribution of ĝ(0,1,0)

3 or ĝ(0,1,0)
5 in the undamped case is statistically similar to

the contribution of ĝ(0,1,0)
1 at 0.9 % of the total advection term, which shows the dominant

impact of the principal forcing mode on the SSP.
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Figure 3. (a) Temporal evolution of TKE at y+ ≈ 15 for the damped buffer-layer case removing ĝ(0,1,0)
1 (red)

and the undamped buffer-layer minimal channel (black). (b) Streamwise (solid line), wall-normal (dashed line)
and spanwise (dash-dotted line) r.m.s. velocity fluctuations for the damped case removing ĝ(0,1,0)

1 (red) and the
undamped (black) buffer-layer minimal channel. (c,d) Same as (a,b), but removing ĝ(0,1,0)

3 (blue) or ĝ(0,1,0)
5

(green) at each time step instead of ĝ(0,1,0)
1 .
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Figure 4. (a) Temporal evolution of TKE at y+ ≈ 15 for the damped buffer-layer case removing ĝ(0,1,0)
1

without fixing the mean (maroon) and the undamped buffer-layer minimal channel (black). (b) Mean
streamwise velocity corresponding to t = 12 (maroon solid line) and averaged over 20 < t < 100 (maroon
dotted line) for the case without fixing the mean and the fixed mean profile (black dashed line).
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Nonlinear mechanism of the SSP of wall-bounded flows

1 3 5 7 9 11 13 15 17 19 20 40 60 80 100
i t

10–1

100

101

T
K

Eσi

102

0

2

4

6

8

10

12(b)(a)

Figure 5. (a) Amplification factors σi for (k◦
x , k◦

z , ω) = (0, 1, 0) (black) and (k◦
x , k◦

z , ω) = (0, 2, 0) (red) for
the buffer-layer case. (b) Temporal evolution of TKE at y+ ≈ 15 for the damped buffer-layer case removing
ĝ(0,2,0)

1 (magenta) and the undamped buffer-layer minimal channel (black).

Additionally, we also repeat the experiment, removing ĝ(0,2,0)
1 , as (k◦

x , k◦
z ) = (0, 2)

contains a significant amount of energy in figure 2(a). However, compared to the triplet
(k◦

x , k◦
z , ω) = (0, 1, 0), the amplification factor σ1 for (k◦

x , k◦
z , ω) = (0, 2, 0) is an order of

magnitude lower as seen in figure 5(a) and the principal mode has an energetic contribution
of approximately 65 %, which is much lower than the 85 % for (k◦

x , k◦
z , ω) = (0, 1, 0). The

resulting time evolution of TKE shown in figure 5(b) is hence much less affected than
removing ĝ(0,1,0)

1 , and removing ĝ(0,2,0)
1 in conjunction with ĝ(0,1,0)

1 (not shown) resulted
in marginal difference compared to removing only ĝ(0,1,0)

1 . Overall, the removal of the
principal forcing mode corresponding to (k◦

x , k◦
z , ω) = (0, 1, 0) has the most impact on

the flow, as expected.

3.2. Logarithmic layer
Using the same approach as in the buffer-layer case, we identify the target wavenumbers
for the log-layer case. Figure 6(a) shows Ê(kx, kz) = 1

2 (û∗û) at y ≈ 0.15 for the log-layer
case, as a function of streamwise and spanwise wavenumbers. Again, there is a clear peak
at (k◦

x , k◦
z ) = (0, ±1), which is consistent with the fact that the domain size of the minimal

channel for the log layer is such that the most dominant flow structures are infinitely long
in the streamwise direction and once-periodic in the spanwise direction. Thus, for our
analysis, we again choose the streamwise and spanwise wavenumbers (k◦

x , k◦
z ) = (0, 1).

However, note that, unlike in the buffer-layer case, the spectral energy content of the
log-layer case is distributed among various combinations of kx and kz, in particular with
large contributions from (k◦

x , k◦
z ) = (±1, ±1), indicating a more complex phenomenon in

the SSP that cannot be isolated to one wavenumber, as seen in figure 6(a). However, similar
to the analysis on (k◦

x , k◦
z ) = (0, 2) for the buffer-layer case, the largest singular values as

well as the spectral gap for the non-fundamental wavenumbers are significantly lower than
that of (k◦

x , k◦
z ) = (0, 1), indicating that the effect of the principal resolvent modes for

(k◦
x , k◦

z ) /= (0, 1) are not as dominant as that of (k◦
x , k◦

z ) = (0, 1). The temporal frequency
identified by the highest σ1 for (k◦

x , k◦
z ) = (0, 1) (figure 6b) is ω = 0, but the values of σ1

do not decay as fast as in the buffer-layer case, indicating that more combinations of ω

may be involved compared to the buffer-layer case.
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Figure 6. (a) Logarithm of spectral energy content, log(Ê), at y ≈ 0.15 for the log-layer case. (b) Principal
singular value σ1 as a function of ω for (k◦

x , k◦
z ) = (0, 1) for the log-layer case. (c,d) The y–z plane of the

principal (c) forcing mode φ̃1 and (d) response mode for (k◦
x , k◦

z , ω) = (0, 1, 0) for the log-layer case. The
streamwise component (colour) and the cross-flow component (arrows) are given, with the colour bar indicating
magnitude for both components.

The principal forcing and response modes for this particular frequency–wavenumber
triplet are given in figure 6(c,d). Despite the different Reynolds number and the wall
boundary condition, the forcing and response modes of the log layer are similar to those of
the buffer layer. The forcing mode highlights a pair of streamwise rolls spanning the entire
channel half-height, and the response modes exhibit streamwise streaks with alternating
signs of the same magnitude. For the given (kx, kz, ω), the principal forcing mode contains
the largest energetic contribution under unit broadband forcing (approximately 81 %),
similar to the buffer-layer case. The similarity in the identified principal resolvent modes
indicates the similarity in the underlying mechanism for the SSP of the buffer and log
layers, as has been hypothesised in the literature.

The fact that the log-layer structure of the minimal flow unit spans the full boundary
layer thickness can be further explained by the self-similar attached-eddy hypothesis
(Townsend 1976; Perry & Chong 1982; Meneveau & Marusic 2013; Agostini & Leschziner
2017; Marusic & Monty 2019). McKeon (2019) has recently identified that an isolated
resolvent mode with a given convection velocity constitutes only part of the full attached
eddy, and a geometric progression of such modes needs to be considered for the fair
comparison to the attached eddies. In particular, a single wall-normal location of the log
layer will be affected by a series of wall-attached eddies whose footprint includes the
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Figure 7. (a) Temporal evolution of TKE at y ≈ 0.15 for the damped log-layer case removing ĝ(0,1,0)
1 (red) and

the undamped log-layer minimal channel (black). (b) Streamwise (solid line), wall-normal (dashed line) and
spanwise (dash-dotted line) r.m.s. velocity fluctuations for the damped log-layer case removing ĝ(0,1,0)

1 (red)
and the undamped (black) log-layer minimal channel.

given wall-normal height. From this viewpoint, the structures that impact the log layer
would span the whole half-channel as observed in the current case.

The results of removing ĝ(0,1,0)
1 for the log layer are shown in figure 7. The TKE does

not reduce as significantly as in the buffer-layer case, as seen in the time evolution of TKE
in figure 7(a) and the time-averaged turbulence intensities in figure 7(b); however, we do
see a significant reduction in the TKE. Similar to the buffer-layer case, the dissipation rate
(not shown) follow the trends of the TKE. The relatively smaller effect of the principal
forcing modes in the log layer is due to the complexity and the disorganisation of the
log layer itself. Unlike the buffer layer, where only one scale is isolated by the minimal
domain, the log layer still includes contributions from various scales that exist in the log
layer (figure 6a), which makes it harder to affect the full system by removing only one
scale. However, the significant reduction in TKE and turbulence intensities obtained by
removing the principal forcing mode, which exhibit similar characteristics in both the
buffer and log layer, shows that the mechanism in which turbulence self-sustains is similar
in both regions. The results of removing secondary forcing modes and principal forcing
modes for a different (kx, kz, ω), while not reported here, show comparable trends as seen
in the buffer layer, where the impact on the flow statistics is marginal compared to that of
ĝ(0,1,0)

1 .

4. Nonlinear interaction

As demonstrated in the previous section, the principal forcing mode φ̃(0,1,0)
1 identifies the

most amplified nonlinear interaction for the most energetic wavenumber and is integral
in sustaining turbulence in the near-wall cycle for both the buffer and log layers. In order
to study the nonlinear interactions that produce this term through dyadic interactions, we
decompose the nonlinear term as a convolution sum in Fourier space,

f̂ (kx, kz) =
∞∑

k′
x,k′

z=−∞
(û(k′

x, k′
z) · ∇̂)û(kx − k′

x, kz − k′
z), (4.1)
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Figure 8. Average contribution of each convolution sum |Π(k′
x = 1, k′

z = 0; kx = 0, kz = 1, ω = 0)|
normalised by the total contribution | ∑k′

x,k′
z
Π(k′

x, k′
z; kx = 0, kz = 1, ω = 0)| for the (a) buffer-layer case and

(b) log-layer case.

which is a function of y and t. The contribution of each component of the convolution sum
towards the projection of the principal forcing term onto φ̃(0,1,0)

1 for any given flow field
can be measured as

Π(k′
x, k′

z; kx, kz, ω) =
〈[

(û(k′
x, k′

z) · ∇̂)û(kx − k′
x, kz − k′

z)

0

]
, φ̃1(kx, kz, ω)

〉
. (4.2)

Note that integration over all k′
x and k′

z of Π(k′
x, k′

z)
(0,1,0) gives the projection

coefficient computed in (2.6a,b), where, by abuse of notation, we define Π(k′
x, k′

z)
(a,b,c) =

Π(k′
x, k′

z; k◦
x = a, k◦

z = b, ω = c) and Π(a,b;c,d,e) = Π(k′◦
x = a, k′◦

z = b; k◦
x = c, k◦

z = d,

ω = e). Also, due to incompressibility, Π is symmetric with respect to (kx, kz)
for each flow field; that is, Π(k′

x, k′
z; kx, kz, ω) = Π(kx − k′

x, kz − k′
z; kx, kz, ω). The

average spectral map of |Π(k′
x, k′

z)
(0,1,0)| normalised by the total contribution

|∑k′
x,k′

z
Π(k′

x, k′
z)

(0,1,0)| is computed from flow fields of the undamped minimal channel
of the buffer and log layer and is depicted in figure 8. Both spectral maps show
quantitatively similar features and identify two main sources of contribution from the
wavenumber pair (k′◦

x , k′◦
z ) = (1, 0) and ((kx − k′

x)
◦, (kz − k′

z)
◦) = (−1, 1) and its mirror

image in the xy-plane, (k′◦
x , k′◦

z ) = (−1, 1) and (−k′◦
x , 1 − k′◦

z ) = (1, 0), which account
for approximately 40 % of the total contribution. This is consistent with the results from
Hamilton et al. (1995), which used vorticity as a measure rather than the contribution
towards resolvent forcing modes. While the contributions from other wavenumber pairs are
not negligible, for the remainder of this paper, we focus on the two pairs of wavenumbers to
identify the coherent structures responsible for the nonlinear forcing term and without loss
of generality choose the pair (k′◦

x , k′◦
z ) = (1, 0) and ((kx − k′

x)
◦, (kz − k′

z)
◦) = (−1, 1).

To identify instantaneous flow configurations where the contribution towards φ̃(0,1,0)
1

is strong or weak, we first observe values of Π̄(1,0;0,1,0) = |Π(1,0;0,1,0)|/〈 f̂ (k′◦
x = 1,

k′◦
z = 0), f̂ (k′◦

x = 1, k′◦
z = 0)〉1/2, which represents the normalised contribution to the

principal forcing term with respect to the total energy of the nonlinear term in the (k′
x, k′

z)
mode, computed from flow fields of the undamped channel. We then determine the mean
μ and standard deviation ς of the distribution of Π̄(1,0;0,1,0) over all time instants.
The high-forcing-intensity events are defined as those with Π̄(1,0;0,1,0) > μ + 2ς and
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Figure 9. Average (a,d) F−1(û), (b,e) F−1(v̂) and (c, f ) F−1(ŵ) for (k◦
x , k◦

z ) = (1, 0) (a–c) and (−1, 1) (d–f )
conditioned to high-forcing-intensity events for the buffer-layer case. The isosurfaces are 0.41 (solid red), 0.26
(transparent red), −0.26 (transparent blue) and −0.41 (solid blue).

low forcing-intensity events as those with Π̄(1,0;0,1,0) < μ − 2ς . Both cases consist of
approximately 5 % of the total events.

The average F−1(û(k◦
x = 1, k◦

z = 0)) and F−1(û(k◦
x = −1, k◦

z = 1)) conditioned to
high-forcing-intensity events for the buffer layer are shown in figure 9, where F−1 is
the inverse Fourier transform. The modes are phase-shifted before averaging such that
they are phase-aligned for the streamwise velocity component at y+ ≈ 40 in an effort to
centre the underlying structures at a fixed location. The coherent structures identified by
the (k◦

x , k◦
z ) = (1, 0) mode (figure 9a–c) are in the form of a pair of spanwise rolls that is

being sheared in the spanwise direction by w. That is, the relative phase of the velocity
components depicts the vertically displaced pairs of positive and negative streamwise
velocity components located between the horizontally displaced pairs of positive and
negative wall-normal velocity, forming a structure in the shape of a spanwise roll, which
then are affected by the alternating sign of the w components. The (k◦

x , k◦
z ) = (−1, 1) mode

(figure 9d–f ) shows oblique streaks, which are the components of meandering streaks,
with high-speed streaks moving towards the wall and low-speed streaks moving away from
the wall, corresponding to sweeps and ejections. Furthermore, the spatial autocorrelation
coefficients of the streamwise, wall-normal and spanwise velocity fluctuations, denoted
Cuu, Cvv and Cww, respectively, are computed, where

Cqq(x − x′, y, z − z′) = E[q(x, y, z)q(x′, y′, z′) | Π̄(1,0;0,1,0) > μ + 2ς ]
E[q(x, y, z)q(x, y, z) | Π̄(1,0;0,1,0) > μ + 2ς ]

(4.3)

is the correlation conditioned to high-forcing-intensity events at y′+ ≈ 40 for the buffer
layer and y′ ≈ 0.2 for the log layer. Here, q ∈ {u, v, w} and E[ · ] is the expectation, or
alternatively the average quantity over homogeneous spatial directions and instants. The
correlations for both cases, shown in figure 10, reveal structures very similar to those
highlighted by the time-averaged F−1(û(k◦

x = 1, k◦
z = 0)) and F−1(û(k◦

x = −1, k◦
z = 1))
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Figure 10. Correlations (a,d) Cuu, (b,e) Cvv and (c, f ) Cww conditioned to high-forcing-intensity events for
the buffer layer (a–c) and log layer (d–f ). The isosurfaces are 0.1 (red) and −0.04 (blue).

and resemble spanwise-sheared spanwise rolls (Cvv and Cww) with oblique streaks (Cuu),
which are shared for both the buffer and log layer. This indicates that not only the linear
mechanism but also the nonlinear mechanism driving the SSP are similar in both regions
with similar structures forming the precursor events leading to strong intensities of the
principal resolvent forcing term.

On the contrary, although not shown, average F−1(û(k◦
x = 1, k◦

z = 0)) and F−1(û(k◦
x =

−1, k◦
z = 1)) conditioned to low-forcing-intensity events are less coherent for these wave

parameters. This can be observed from the conditional correlation of the buffer-layer
case in figure 11(a–c), where the streamwise and wall-normal velocities only show
structures resembling straight streaks corresponding to wavenumbers (k◦

x , k◦
z ) = (0, 2)

and no structures resembling oblique streaks or spanwise rolls. Considering the fact that
the total kinetic energy distributions for the strong and weak events are similar, these
results show that the precursor to the nonlinear interaction that generates the principal
forcing mode has more defined coherent structures in the form of spanwise rolls and
oblique streaks, which interact to produce the principal forcing mode, which then plays
an important role in the SSP of near-wall turbulence. Identifying these precursor events
will allow development of new control mechanisms that aim to reduce the production of
the resolvent forcing modes essential in sustaining turbulence.

Unlike the buffer-layer case, the streamwise correlation conditioned to
low-forcing-intensity events shown in figure 11(d–f ) is not as different from the
high-forcing-intensity events for the log-layer case. The wall-normal correlation still shows
clear positive and negative correlation pairs in the streamwise direction when conditioned
to low-forcing-intensity events, and the spanwise correlations are less pronounced in the
spanwise direction. The similarity in the streamwise component, although less pronounced
in the low-forcing-intensity events, shows that, even if the principal forcing mode is
removed, the flow will still self-sustain structures necessary for regenerating streamwise
vortices, which is corroborated in § 3.2. However, the most significant difference in the
correlations conditioned to strong- and weak-forcing-intensity events are the wall-normal
components that partly form the spanwise rolls. These spanwise rolls are observed in cases
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Figure 11. Correlations (a,d) Cuu, (b,e) Cvv and (c, f ) Cww conditioned to low-forcing-intensity events for the
buffer layer (a–c) and log layer (d–f ). The isosurfaces are 0.1 (red) and −0.04 (blue).

of drag increase in active and passive control (García-Mayoral & Jiménez 2011, 2012;
Toedtli, Yu & McKeon 2019), which is consistent with our observation that these are
precursor events to generation of the principal resolvent forcing term that is crucial in
generating and self-sustaining turbulence.

5. Conclusions

We have studied the SSP of wall-bounded turbulence in the buffer and log layers with
special emphasis on the nonlinear mechanisms involved in vortex regeneration. For this
purpose, we have utilised resolvent analysis to identify the most amplified nonlinear term
in the incompressible Navier–Stokes equations and studied the effect of this term on
numerical simulations of turbulent channel flow tailored to study isolated structures in
the buffer and log layer.

Simulations of the minimal channel for the buffer and log layer with a fixed mean
streamwise velocity profile were performed to isolate the structures at a prescribed scale.
The most amplified nonlinear term corresponding to the most energetic wavenumber was
then computed from the resolvent analysis using the mean velocity profile of the minimal
channel simulations. The identified mode was removed from the nonlinear term of the
corresponding simulation for a minimal channel simulation with a fixed mean velocity
profile at each time step. This is made possible by the orthonormality of the resolvent
modes, which provides an orthonormal basis for the nonlinear term to be projected onto.
We have shown that the removal of the principal forcing mode leads to a reduction of
turbulence in the flow. We also applied the removal method for subsequent forcing modes
as well as non-fundamental wavenumbers instead and observed only a marginal decrease in
the turbulence intensities, which reinstates the principal forcing mode for the fundamental
wavenumber as the most amplified, and thus the most important, component of the
nonlinear term. The diminished effect on the log layer is attributed to the multi-scale nature
of high-Reynolds-number turbulence due to the more complicated interaction between
various scales.
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Finally, we identified the coherent structures that, through the nonlinear interaction,
form the principal forcing mode. The identified structures are in the form of
spanwise-sheared spanwise rolls and oblique streaks for both the buffer and log layer.
The interaction of the two components highlighted here regenerates streamwise vortices,
which through the lift-up mechanism amplifies streamwise streaks. These streamwise
streaks break down, spawning new generations of meandering streaks and spanwise rolls,
completing the SSP. The similarities in the structures identified for the buffer and log layer
highlight the similarity of the nonlinear process in the SSP of the two cases.

This new technique allows the analysis of nonlinear mechanisms by combining resolvent
analysis with numerical simulations of fully nonlinear Navier–Stokes equations in a
realistic turbulent flow. The results show that the nonlinear mechanism of the buffer and
log layer are driven by similar structures and that, without these structures present in
the flow, turbulence intensity is significantly reduced. The findings corroborate previous
studies on nonlinear interaction of the SSP and allow the characterisation of the underlying
quadratic interactions in the SSP in the buffer and log layer of wall-bounded turbulence
using resolvent analysis. The study also supports the hypothesis that the SSP in the buffer
and log layer are similar by showing the similarities in the form of the principal forcing
mode as well as the structures of the flow correlations conditioned to high-forcing-intensity
events that lead to the generation of the principal forcing mode.
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