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Abstract

The host immune system status remains an unresolved mystery among several malignancies.
An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer
cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the
tumour-immune microenvironment, a complex network and crosstalk between infiltrating
immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and
shed ligands are present. Cytokines such as interleukins can influence all components of
the tumour microenvironment (TME), consequently promoting or suppressing tumour
invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine
that has been associated with several types of malignancies and proved to have paradoxical
effects. IL-10 has multiple functions on cellular and non-cellular components within the
TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME
of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic
approaches for the regulation of IL-10 were presented and discussed.

Introduction

The use of immunotherapy as a novel therapeutic approach in preventing cancer has become
widespread (Ref. 1). Immune checkpoint blockade modalities targeting PD-1 and CTLA-4
provide long-lasting immune responses with established therapeutic benefits for some cancer
patients (Refs 2–6). Although, targeting cytokines is considered a crucial approach in
immunotherapy as evidenced in the treatment of solid tumours, such as renal cell carcinoma
(RCC) and melanoma, only interferons (IFNs) and IL-2 have been approved by Food and
Drug Administration (FDA) for use as cancer therapies (Ref. 7).

IL-10 is considered one of the very promising targets for immunotherapy; however, its con-
troversial role in carcinogenesis hinders the applicability of benefiting from its blockade in
cancer treatment (Ref. 8). IL-10 has been shown to possess both anti- and pro-inflammatory
roles in cancer (Ref. 9). The intensity of the immunological response to both self and foreign
antigens is reduced by IL-10. In light of this, IL-10 signalling blockage improves
vaccine-induced T-cell responses and tumour growth inhibition (Ref. 10). On the other
hand, tumour regression is also induced by exogenous IL-10, particularly PEGylated
(PEG)-IL-10 (Ref. 11). This paradoxical data urges the need to investigate the role of pharma-
cogenomics, epigenetics and genetic variants in IL-10 and its receptor to identify those
patients that might benefit from IL-10 targeted therapies. In this review, the authors will
address the role of IL-10 in cancer, the currently available IL-10-based immunotherapy, the
epigenetic regulation of IL-10 and the single nucleotide polymorphisms (SNPs) present in
IL-10 that might influence patient responses to therapy.

The tumour microenvironment

Cancer definition has been revolutionized over the past few decades from the concept of being
abnormal cells to a plethora of complex network that is made up of both neoplastic cells with
their surrounding stroma (Refs 1, 4, 6, 12). The multifaceted dynamic milieu of cellular com-
ponents along with non-cellular compartments portrays what is now known as the tumour
microenvironment (TME) (Refs 6, 13, 14). Such a microenvironment could control the aggres-
siveness, rate of growth and metastatic potential of the tumour (Refs 15–18). These cellular
components include immune cells such as T lymphocytes (Refs 19–24), regulatory T cells
(Tregs) (Ref. 25), B lymphocytes, natural killer (NK) cells (Refs 16, 26–29), mesenchymal
stem cells (Refs 30, 31), tumour-associated-macrophages (Refs 32, 33), tumour-associated
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neutrophils (Refs 34, 35), dendritic cells (DCs) (Ref. 36) and non-
immune cells such as pericytes (Ref. 37), adipocytes (Refs 38, 39),
myeloid-derived suppressor cells (MDSCs) (Refs 40–42) and cancer-
associated fibroblastic cells (Refs 43, 44). Interestingly, these immune
cells drive the production of soluble components that include cyto-
kines, chemokines, growth factors and extra-cellular remodelling
enzymes (Refs 27, 28). Such mediators, particularly cytokines, assist
in the communication between the cellular TME components and
cancer cells as shown in Figure 1 (Refs 45, 46).

Interleukin-10 (IL-10)

One of these cytokines is the paradoxical interleukin ‘IL-10’,
which remains an integral part of several malignancies, and regu-
lates the secretion of other cytokines. This pleiotropic cytokine
was characterized early in the late 1980s and was named cytokine
synthesis inhibitory factor (Refs 47, 48). Later on, six immune
mediators (IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26) were
grouped into the IL-10 family of cytokines based on their similar-
ities with respect to the structure and location of their encoding
genes, their primary and secondary protein structures and the
receptor complexes (Refs 49–51). Out of these six members,
IL-10 has been recognized as a major member mediating different
functions within the immune system and cancer cells (Ref. 52).

Paradoxical role of IL-10 in oncology

IL-10 produced by immune cells
IL-10 has also been causally linked to immunity in both the
innate and adaptive immune arms. Different triggers have been
shown to induce IL-10 production in various immune cells
(Ref. 53). The main source of IL-10 appears to be monocytes,
and different T-cell subsets (Ref. 54). Moreover, DCs, B cells,
NK cells, mast cells, as well as neutrophils, and eosinophils can
also synthesize IL-10 (Ref. 54). During infection, macrophages
are considered a major source of IL-10. Several toll-like receptors
(TLRs), including TLR2, TLR4, TLR5, TLR7 and TLR9 have been
shown to induce IL-10 production in macrophages and DCs
(Refs 55–63). Also, IL-10 production in DCs is enhanced by the

co-activation of TLR2 and Dectin-1 (Ref. 64). Following exposure
to IL-10, DCs can initiate the development of regulatory T cells
(Tregs) that limit these effector responses (Refs 65, 66). B cells
also express several TLRs which have been shown to promote
IL-10 production including TLR2, TLR4 or TLR9 (Refs 67–69).
Nonetheless, it is also worth mentioning that IFN-α augments
IL-10 production if combined with TLR agonists from B cells
(Refs 70, 71). Additionally, neutrophils produce IL-10 in response
to TLR and C-type lectin co-activation through myeloid differen-
tiation primary response 88 (MyD88) and spleen tyrosine kinase
(SYK), respectively (Ref. 72).

The key producer of IL-10 is Treg cells that produce other
immunoregulatory cytokines, such as TGF-β (Ref. 73). The pro-
duction and action of both cytokines IL-10 and TGF-β are
involved in a positive feedback loop (Ref. 74). Concerning the
mechanism of IL-10 production from Tregs, it has been shown
that IL-2 and IL-4 induce IL-10 production from Tregs
(Refs 75–77). Additionally, a study concluded that TGF-β is
required for the differentiation and production of IL-10 from
Tregs (Ref. 78). IL-2 and IL-27 are responsible for inducing
IL-10 expression in cytotoxic CD8+ T cells (Ref. 79). However,
IL-12 and IL-23 prime CD8+ and CD4+ T cells for IL-10 produc-
tion (Refs 80–82).

Some studies reported IL-10 immunosuppressive effects such as
inhibiting IFN-γ and TNF-α production by NK cells in-vitro
(Ref. 83). However, other studies reported IL-10 immunostimulatory
effects via the promotion ofNKcell cytotoxicity in preclinicalmodels
(Refs 9, 84). Adding to the complexity of this master cytokine, one of
the studies has shown that the exposure of malignant cells to IL-10
resulted in a reduction in their sensitivity to cytotoxic T cells but
an increase in NK cell cytotoxicity (Ref. 85). This might suggest
that IL-10 contributes to fighting malignant cells by stimulating the
immune innate arm (Ref. 86).

As mentioned earlier, one of the main drivers of IL-10 expres-
sion in many immune cells is TLR signalling (Ref. 56). TLR liga-
tion leads to the activation of several downstream pathways,
including the mitogen-activated protein kinase (MAPK) pathway
and the phosphoinositide 3-kinases (PI3K)/AKT pathways
(Ref. 87). Activation of the MAPK and downstream extracellular-

Figure 1. Snapshot of cellular and non-cellular components of the tumour
microenvironment
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signal-regulated kinase (ERK1 and ERK2) are critical for IL-10
production in macrophages and DCs in response to several TLR
activators (Refs 58, 62, 88, 89). The MAPK pathway eventually
results in the activation of several transcription family members
such as the activator protein-1 (AP-1) which activates IL-10 tran-
scription (Refs 55, 58, 62, 90). Moreover, ERK and p38 also con-
tribute to IL-10 production in TLR-stimulated macrophages,
monocytes, and DCs (Refs 57, 89–92). Both ERK and p38 may
function cooperatively in their regulation of IL-10 production,
through their joined activation of mitogen and stress-activated pro-
tein kinases (MSK1 and MSK2) which promote IL-10 production
in TLR-stimulated macrophages. Downstream of MSK1 and
MSK2 are the transcription factors, cAMP-response element bind-
ing protein (CREB), and AP-1, which also bind and transactivate
the IL-10 promoter (Refs 93–95). Moreover, it is worth mentioning
that both ERK and p38 were shown also to directly phosphorylate
Sp1, one of the IL-10 transcription factors (Refs 96, 97).

The phosphatidylinositol-3-kinase (PI3K/AKT) pathway also
contributes to IL-10 expression in myeloid cells either by antag-
onizing glycogen synthase kinase 3 beta (GSK3-β), a constitutively
active kinase that inhibits the production of IL-10 or through ERK
and mammalian target of rapamycin (mTOR) and STAT-3 activa-
tion (Refs 98–100).

IL-10 produced by cancer cells
IL-10 has been linked to many types of cancers such as gastric
cancer (Ref. 101), cervical cancer (Ref. 102), lung cancer
(Ref. 103), breast cancer (Ref. 104), colon adenocarcinoma

(Ref. 105), head and neck cancer (Ref. 106), oesophageal cancer,
nasopharyngeal cancer, oral cancer (Ref. 107) and colorectal can-
cer (Ref. 108). Its role in tumourigenesis is reported to be contro-
versial where it could be a tumour suppressor or promoter.
However, due to the complex nature of IL-10, its role in shaping
the TME remains a gap that needs further research. Most of the
literature is directed towards presenting the pro-tumoural activity
of IL-10 in different oncological settings. This could be through
the positive feedback loop with STAT-3, as IL-10 has been
shown to activate STAT-3 resulting in the upregulation of B-cell
lymphoma 2 (BCL-2) or B-cell lymphoma-extra-large (BCL-xL),
and stimulation of cell proliferation by cyclins D1, D2, B, and
proto-oncogene c-Myc, thus contributing to cancer progression
(Ref. 93). On the other hand, IL-10 immunosuppressive activity
has been reported on macrophages and DCs, where it was
found to dampen antigen presentation, cell maturation, and dif-
ferentiation resulting in tumour immune evasion as shown in
Figure 2 (Ref. 109). Several studies have examined the role of
IL-10 in different types of malignancies as listed in Table 1 below.

Previous studies highlighted a significant correlation between
IL-10 and the percentage of plasma cells in multiple myeloma
patients as it induces the proliferation of plasma cells
(Refs 117–119). Other studies indicated an elevation of IL-10 in
different haematological malignancies such as Hodgkin lymph-
oma and non-Hodgkin lymphoma (Refs 120, 121). High IL-10
levels were reported to be associated with a shorter survival rate
among patients with diffuse large-cell lymphoma (Ref. 120).
Similarly, high IL-10 levels was found to be a prognostic factor

Figure 2. Paradoxical pro- and anti-tumour roles of IL-10 in oncology
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in peripheral T cell lymphoma, which can lead to worsening of
overall survival, low complete response rate, and higher early
relapse rate (Ref. 122). Moreover, elevated IL-10 at diagnosis
was found to be an independent prognostic marker in adult
hemophagocytic lymphohistiocytosis patients in order to find
the right treatment strategy (Ref. 123).

The riddle of IL-10 at the tumour-immune cell synapse
The balance between pro-inflammatory and anti-inflammatory
signals is generally crucial for the maintenance of normal physi-
ology and the prevention of cancer and a wide variety of diseases
(Refs 14, 124–126). In the context of IL-10, it plays a dual func-
tion acting either as a pro-inflammatory or an anti-inflammatory
mediator (Ref. 127). Regarding its role in cancer, studies have
reported that IL-10, secreted by tumours or tumour-infiltrating
immune cells, has allowed malignant cells to escape from the
immune surveillance (Refs 128–130). In a study by Neven et al.,
IL-10 knockout in mice promoted the development of colon can-
cer. Moreover, the same study showed that humans deficient in
IL-10 signalling molecules were more prone to develop lymph-
omas at a younger age (Ref. 131). As an anti-inflammatory cyto-
kine, IL-10 is considered crucial for the homoeostasis of the
anti-inflammatory Tregs and the suppression of proinflammatory
IL-17-expressing T cells. However, IL-10 action depends on mul-
tiple factors such as targeted cells, other stimuli, and the time and
duration of its effect (Ref. 132). Though, with many rationales
presented, a question mark continues to rise to explore the nature
of this complex cytokine.

Is IL-10 blockade a possible option as a novel
immunotherapeutic approach for cancer patients?

Controversial data exists regarding the effectiveness of IL-10
immunotherapy in cancer (Ref. 133). Cancer vaccines that utilized
monoclonal antibody (mAb) against IL-10 receptors succeeded to
increase CD8+ T cell responses and to inhibit tumour growth
whether injected intraperitoneally or subcutaneously (Refs 134,
135). The beneficial effect of IL-10 blockade is best explained
through the inhibition of IL-10-induced suppression of DCs
and prevention of their antigen presentation capacity by decreas-
ing the expression of MHC class II and co-stimulator molecules
(Ref. 136). Thus, DC-based vaccinations that disrupt IL-10 signal-
ling provide more potent anti-tumour responses (Ref. 136). On
the contrary, others claimed that antibodies targeting IL-10R
had no protective effect against tumour growth when used with

vaccines containing adjuvants that do not induce IL-10, such as
the TLR3 ligand poly (I: C) or anti-CD40 agonistic antibodies
(Ref. 137). Such a controversy regarding the effectiveness of thera-
peutic immunization could be explained and summarized by
vaccine-induced IL-10 rather than IL-10 produced by tumours
(Ref. 137).

It was previously reported that the prognosis of cancer patients
is inversely correlated with elevated serum and tumour IL-10
levels (Ref. 138). Despite that, exogenous administration of
IL-10 was tested in clinical studies, and resulted in immunological
activation, as evidenced by higher granzymes and IFN in the
serum of those patients receiving treatment. Pegylated recombin-
ant (PEG) murine IL-10 promoted rejection of tumours and
metastases by enhancing CD8 + T cell-mediated immune
responses (Ref. 139). In addition, PEG-IL-10 exhibited immuno-
logic and clinical advantages in solid tumours in clinical trials,
particularly in RCC and uveal melanoma (Ref. 140). CD8 +
tumour-infiltrating lymphocytes (TILs) in metastatic melanoma
co-upregulate IL-10R and PD-1. While PD-1 blockade or IL-10
neutralization as monotherapies were insufficient to produce anti-
tumour activity, combination therapies of PD-L1 blockers with
IL-10R blockers were shown to exert anti-tumour effects by
enhancing T cell responses, thereby suppressing the tumour
growth (Ref. 141). Similarly, mice with ovarian tumours treated
with PD-1 blocking antibodies have higher levels of IL-10 in
their serum and ascites. Moreover, infiltration of immunosup-
pressive MDSCs was reduced, and the immunological activity
was increased when IL-10 and PD-1 blockers were used together
(Ref. 142). On the other hand, a multi-centred trial involving 111
patients with advanced malignant solid tumours unresponsive to
previous therapies revealed that anti-PD-1 treatment (pembroli-
zumab or nivolumab) in combination with PEG-IL-10 offered a
new therapeutic option (Ref. 143).

Most of the immune cells express IL-10 receptors and can acti-
vate subsequent downstream signalling pathways. Therefore, the
paradox underlying the IL-10 blockade and whether it carries a
beneficial or detrimental role in cancer treatment might be deci-
phered if we understood how exactly these cells react to IL-10 sig-
nalling through comprehensive genomic, epigenomic, and
proteomic analysis.

Epigenomic approach

Epigenetic regulations include DNA methylation, histone modifi-
cations, histone acetylation, and the action of non-coding RNAs
(ncRNAs) (Refs 144–146). Epigenetics arising from an alteration

Table 1. Role of IL-10 in different solid malignancies

Cancer type Effect of IL-10 Reference

Colon cancer Serum level of IL-10 was correlated with reduced cytotoxic activity of CD8 + T cells in MC38- mouse colon cancer
model

(Ref. 110)

Gastric cancer Induction of the autocrine secretion of IL-10 from DCs resulted in the maturation of DCs yet the antigen delivery
activity was inhibited, leading to evasion of the host immune surveillance and the development of gastric cancer.

(Ref. 111)

Breast cancer Neutralizing IL-10 using anti-IL-10 antibody resulted in the attenuation of STAT3 activation and decreased Bcl-2
mRNA expression and reduced BC cells chemoresistance

(Refs 112, 113)

Ovarian cancer Recombinant IL-10 enhanced cellular migration verifying the pro-tumoural activities of IL-10 in ovarian cancer. (Ref. 114)

Bladder cancer Paracrine secretion of IL-10 by bladder cancer cells was found to paralyse most of the host immune-regulatory
actions to concur the tumour.

(Ref. 115)

Cervical cancer Evaluation of IL-10 expression in cervical lesions, IL-10 mRNA was detected positive only in precancerous and
invasive cervical cancers.
None of the patients with normal cervical cytology expressed the IL-10 mRNA.
IL-10 was also shown to contribute to human Papillomavirus persistency to establish a low-grade squamous
intraepithelial neoplasia (LGSIL), then high-grade squamous intraepithelial neoplasia (HGSIL) and finally,
progression to cervical cancer.

(Ref. 116)
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in the chromatin usually leads to alterations in gene expression.
Moreover, epigenetic changes could either activate or suppress
an oncogene or a tumour suppressor gene (Refs 147–150). It
has been recently revealed that IL-10 is highly epigenetically regu-
lated (Refs 93, 151). It is worth noting that such a level of post-
transcriptional regulation of IL-10 expression might be a relevant
explanation for the differential expression and effects of IL-10 in dif-
ferent cells at the TMEdespite the existence of common pathways for
IL-10 induction as previouslymentioned in this review, via the action
of non-coding RNAs including microRNAs (miRNAs) (Refs 152,
153), longnon-codingRNAs (lncRNAs) (Refs 154–156), and circular
RNAs (circRNAs) (Refs 144, 156, 157).

Epigenetic modulation of IL-10 on the post-transcriptional has
been highly evident in several reports via DNA methylation, his-
tone modifications and histone acetylation, which have been
extensively studied before in several studies (Refs 158, 159) and
recently reviewed in (Ref. 158). However, the epigenetic regulation
of IL-10 via ncRNAs, miRNAs, lncRNAs and circRNAs is
recently being explored. Therefore, a closer approach to exploring
the epigenetic regulation of IL-10 via ncRNAs could aid in under-
standing the complex nature of this cytokine.

microRNAs (miRNAs) regulating IL-10
miRNAs are short ncRNAs around 18–25 nucleotides long that
widely exist in plants, viruses and animals (Refs 29, 150, 160,
161). These miRNAs can regulate gene expression by either
degrading the mRNA target or by suppressing mRNA translation
and reducing mRNA stability by binding to the 3′UTR (untrans-
lated region) of a target gene (Refs 125, 153). Thus, a miRNA
could therefore inhibit or activate the expression of tumour sup-
pressors or oncogenes. Generally, oncogenic miRNAs (oncomiRs)
are found to be over-expressed in cancers, whereas miRNAs with
tumour-suppressive function are found to be under-expressed
(Refs 124, 146, 150). When these oncomiRs or tumour suppressor
miRNAs are inhibited or stimulated, respectively, cancer cell
metastasis, proliferation and survival may be reduced, depending
on the specific miRNA being affected and the type of cancer
(Refs 28, 29, 133). Moreover, some cancers are dependent on spe-
cific oncomiRs, and suppressing such oncomiRs could completely
regress cancer growth (Refs 149, 151, 162).

Few studies have presented miRNAs that could modulate IL-10
expression. In a study, testing for the possible post-transcriptional
modulation of IL-10Rα and IL-10Rβ expression by miRNAs, three
miRNAs were shown to have seed regions that target the 3′UTR of
IL-10Rα; miR-15a, miR-185 and miR-211. These miRNAs were
shown to inhibit the proliferation of IL-10-treated melanoma
cells, while their inhibitors caused an increase in cell proliferation
in melanoma (Ref. 163). IL-10 was also shown to be targeted by
several other miRNAs (Ref. 164). Another study showed that
miR-106a could bind to the 3′UTR of IL-10 and significantly
downregulate its expression in-vitro (Ref. 165). Two transcription
factors; early growth response 1 (Egr1) and Sp1 were implicated
in the induction of miR-106a, which consequently reduced IL-10
levels (Ref. 164). Furthermore, an inverse relation was reported
between Egr1-stimulated miR-106a and IL-10 levels. It is also
worth mentioning that miR-106a is part of a cluster that is
known to be dysregulated in 46% of human T-cell leukaemias.
Thus, it was deduced that the promotion of leukaemic cell survival
by IL-10 might be through its modulation via miR-106a (Ref. 164).

Another miRNA reported to positively regulate IL-10 was
miRNA-4661. The miR-4661 binding to the 3′UTR of IL-10
resulted in a net increase in the half-life of IL-10. This action
was favoured by preventing tristetraprolin (TTP) from binding
to the IL-10 mRNA (Ref. 166). TTP is an RNA binding protein
that plays a critical role in regulating proinflammatory immune
responses by destabilizing target mRNAs via binding to their

AU-rich elements (AREs) in the 3′-UTRs of mRNAs (Ref. 167).
Moreover, miRNA/IL-10 interactions were reported in a study
by Liu et al. revealing that miR-98-mediated post-transcriptional
control could potentially be involved in fine-tuning IL-10 produc-
tion in endotoxin tolerance (Refs 168, 169). On the other hand,
IL-10 was reported to upregulate miRNAs that contribute towards
an anti-inflammatory response such as miR-187 or downregulate
those that are highly pro-inflammatory, such as miR-155
(Ref. 164). IL-10 was able to downregulate the induction of
miR-155 induced by LPS (Ref. 170). Moreover, in-vivo studies
on mice deficient in miR-155, could not generate a protective
immune response (Ref. 171). Whereas in IL-10 mice-deficient
cells, miR-155 levels were shown to highly increase. It was previ-
ously known that miR-155 could target a number of genes
involved in the immune response, such as suppressor of cytokine
signalling (SOCS), inhibitor of NK-κB kinase subunit epsilon
(IKBKE) and Fas-associated death domain (FADD). Thus, target-
ing this miRNA by IL-10 is likely to elucidate key mechanisms
through which IL-10 exerts control in the cell. Another study
uncovered details of the IL-10 pathway by examining the effect
of IL-10 on miRNAs, using IL-10 deficient mice for expression.
Ten miRNAs were found to be upregulated in IL-10 deficient
mice (miR-19a, miR-21, miR-31, miR-101, miR-223, miR-326,
miR-142-3p, miR-142-5p, miR-146a and miR-155) (Ref. 172).
miR-223 could hinder Roquin ubiquitin ligase by binding to its
3′UTR, eventually regulating IL-17 production and its inhibitor
IL-10. Thus, this suggested a mechanism by which IL-10 could
modulate the expression of IL-17 through miR-223. As previously
mentioned, IL-10 can also induce the expression of anti-
inflammatorymiRNAs, such asmiR-198which is known to suppress
TNF-α and IL-6. Consequently, this resulted in the promotion of an
anti-inflammatory environment (Ref. 173). Collectively, such inter-
esting findings of the mutual interaction between IL-10 and
miRNAs discussed in the previous section highlighted an important
role in themiRNA-mediated regulation of IL-10 expression and pro-
vided new insights into the intertwined mechanistic details of such
immunomodulatory cytokine.

LncRNAs regulating IL-10
Long transcripts of RNA having more than 200 nucleotides, and
not involved in protein translation are regarded as lncRNAs
(Refs 16, 18, 154). LncRNAs play a significant role in the occur-
rence and development of cancer and thus, regulate the expres-
sion of cytokines such as IL-10 and IFN-γ as reported in a
study by Tang et al. on non-small cell lung cancer (NSCLC)
(Ref. 174). A large number of lncRNAs has been associated
with cancer as recognized by genome-wide association studies
on numerous tumours (Ref. 126). They are believed to exhibit
functions such as tumour suppression and promotion, hence
depicting to have a promising novel approach as biomarkers
and therapeutic targets for cancers (Ref. 175). An increased
expression of lncRNA SNHGI in cancerous breast cells of CD4
+ TILs was also reported, whereas the expression of FOX and
IL-10 was seen to be greatly reduced by siRNA SNHGI
(Ref. 176). Moreover, silencing the lncRNA cox-2 was believed
to increase the expression of IL-10, Arg-1 and Fizz-1 in M2
macrophages (Ref. 177). A study conducted by Zhou et al.
reported reduced expression of IL-10 via suppression of
lnc-LINC00473 (Ref. 178). Additionally, increased expression of
IL-10 has been associated with the knockdown of lncRNA growth
arrest-specific transcript 5 (GAS5) and reduced CRC cell prolifer-
ation while knockout of GAS5 promoted CRC colony formation
and proliferation (Ref. 179). LncRNAs are known to regulate vari-
ous signalling pathways such as TGF-β, STAT3, Hippo, EGF,
Wnt, PI3 K/AKT and p53, whilst IL-10 is mostly involved in
T-cell immune surveillance and suppression of cancer-associated
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inflammation. The expression of interleukins is regulated by
lncRNAs that are known to be involved in various types of cancer.
For instance, previous work by our group highlighted the poten-
tial of miRNA and lncRNA in the regulation of IL-10 in breast
cancer, where miR-17-5p was identified as a dual regulator of
TNF-α and IL-10. Additionally, knocking down the lncRNAs
MALAT1 and/or H19 induced miR-17-5p and decreased TNF-α
and IL-10 expression levels (Ref. 8). Such reports ed the
immune-activator potential of miRNAs and the oncogenic poten-
tial of lncRNAs in cancers by regulating immunological targets
in the TME. Hence, the extensive research on the relationship
between the lncRNAs regulating IL-10 in various cancer needs to
be validated further to establish a valid therapeutic link (Ref. 180).

CircRNAs regulating IL-10
CircRNAs are recognized as special ncRNA molecules with a dis-
tinctive ring structure and play significant roles as gene regulators
and are considered one of the recently discovered epigenetic fac-
tors (Refs 153, 157). Abnormal production of circRNAs was
found to influence the onset, progression and metastasis of cancer
by acting as either tumour-suppressive or oncogenic factors
(Refs 152, 181–183). This happens via interactions with proteins,
miRNA sponge function and posttranscriptional regulation
(Refs 155, 157, 184). Moreover, a line of evidence showed that
circRNAs play pivotal roles in the chemoresistance (Refs 157,
185). Recently, specific circRNAs were found to possess an immu-
nomodulatory function and alter the response of the TME by
regulating the functions of tumour-infiltrating immune cells.
For instance, CD4 + T cells activity is enhanced by circ0005519
through promoting the expression of IL-13 and IL-6 via affecting
the expression of hsa-let-7a-5p (Ref. 186). On the other hand,
circNT5C2 could attenuate the immune response by targeting
miR-448 and serve as an oncogene via promoting tumour prolif-
eration and metastasis (Ref. 187).

Since IL-10 function represents an unresolved enigma in can-
cer therapy, and since circRNAs also have dual roles in cancer
therapy, the comprehensive understanding of circRNAs regulating
IL-10 expression and function might be the key to answering
numerous questions. Therefore, several studies that shed the
light on novel circRNAs regulating IL-10 in different oncological
and non-oncological contexts are highlighted. Some circRNAs
can either enhance or inhibit IL-10 production and consequently
could either promote or inhibit carcinogenesis. For example,
circMERTK was reported to inhibit IL-10 production in colorectal
cancer. The same study came to the conclusion that circMERTK
knockdown reduced the activity of CD8 + T cells, suggesting that
circMERTK may affect immunosuppressive activity through the
circMERTK/miR-125a-3p/IL-10 axis (Ref. 188). According to
another in vitro study, the downregulation of secreted PD-L1 by
non-small cell lung cancer cells upon knockdown of circCPA4
resulted in the activation of CD8 + T cells in the TME
(Ref. 188). In addition, the study found that PD-L1 abrogation
reduced the expression of IL-10 in CD8 + T cells (Ref. 189).
Circ103516 expression was found to be inversely correlated with
IL-10 in inflammatory bowel diseases and thus it was postulated
to play a proinflammatory role by sponging miR-19b.
Additionally, it was discovered that circRNA HECTD1 contribu-
ted to the development of acute ischaemic stroke and that it was
inversely linked with IL-10 production, suggesting that IL-10
played a protective function in acute ischaemic stroke
(Ref. 190). In another cardiac context, the synthesis of IL-10
was decreased as a result of the overexpression of circFoxo3, a
circRNA that is crucial in avoiding cardiac dysfunction brought
on by myocardial infarction (Ref. 191). Downregulation of
circ00074854 was reported to prevent polarization of M2 macro-
phages, which consequently alleviated the invasion and migration

of hepatocellular carcinoma cells. According to the same study,
macrophages exposed to exosomes produced by HepG2 cells
that contained lower amounts of circ00074854 had significantly
lower levels of IL-10 than those exposed to exosomes produced
by HepG2 cells, demonstrating the direct relationship between
Circ00074854 and IL-10 in different cancer settings (Ref. 192).
Furthermore, a recent study emphasized the potential of
CircSnx5 as a therapeutic target for immunological disorders
since it has the ability to regulate the immunity and tolerance
induced by DCs. It is interesting to note that knockdown of
CircSnx5 led to a significant drop in IL-10, whilst overexpression
of CircSnx5 was found to block DC maturation and boost IL-10
expression (Ref. 193). Another study focused on Circ0001598 as
a potential target for treating breast cancer. It was discovered
that circ0001598 regulates miR-1184 and PD-L1 via significantly
increasing breast cancer proliferation, chemo-resistance and
escape from immune surveillance. According to the same study
mentioned above, depletion of circ0001598 increased breast can-
cer cells’ susceptibility to Tratuzumab-induced CD8 + T cell cyto-
toxicity while decreasing the production of IL-10 (Ref. 194).
Another study showed that the knockdown of circRNA PLCE1
ablated IL-10 production from macrophages while PLCE1
encouraged the transformation of epithelial cells into mesenchy-
mal tissue, thus aiding glycolysis in colorectal cancer (Ref. 195).
Another recently identified circRNA; circZNF609 has been linked
to the pathogenesis of coronary artery disease, and forced overex-
pression of circZNF609 resulted in augmenting IL-10 expression
(Ref. 196). It is also worth mentioning that a recent study discov-
ered that circRNA NF1-419 attenuated inflammatory factors such
as IL-10 and aging markers to postpone the onset of senile
dementia (Ref. 197). Also, circGFRA1 has been indicated as a
potential therapeutic target in prostate cancer; where Meng
et al. reported that through a reduction in IL-10, knocking
down circGFRA1 lessens the tumourigenic and immune-evading
characteristics of prostate cancer cells (Ref. 198). Zhang et al. also
discovered the role of circ0005075 in mediating neuroinflamma-
tion where silencing of circ0005075 in rat models resulted in a
decrease in IL-10 production and protected against
neuro-inflammation (Ref. 199). Another in vitro study revealed
that circCdr1 overexpression enhanced the transcription of
IL-10 both in naïve and pro-inflammatory macrophages
(Ref. 200). CircCHST15 was recently reported to possess an onco-
genic role by promoting immune escape through upregulating the
expression of IL-10 and a sponging effect on miR-155 and
miR-194 in lung cancer (Ref. 201). Additionally, circ_0046523
was found to promote carcinogenesis, mediate immunosuppres-
sion and abrogate CD8 + T cells function in pancreatic cancer
via enhancing the secretion of IL-10 and TGF-β (Ref. 202).
Furthermore, silencing circDNMT3B was discovered to decrease
cell survival, promote apoptosis and increase IL-10 production
in rat intestinal tissue (Ref. 203).

Collectively, it is quite clear that the circRNAs that inhibit
IL-10 production from tumour cells act as tumour suppressors,
while those that increase the production of IL-10 from tumour
cells promote oncogenesis, cell survival, drug resistance and medi-
ate immunosuppression. This highlights the promising role of
such circRNAs as novel immunotherapeutic molecules that
could ablate IL-10 production and act as a powerful immunomo-
dulatory anti-cancer treatment for several cancer patients.

Pharmacogenomic approach: single nucleotide
polymorphisms in IL-10 and its receptor

IL-10 gene
A very important basis for studies and research in IL-10 regula-
tion is the examination of its genomic location and promoter
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structure. IL-10 gene encodes a protein, 178 amino acids long,
which is secreted after cleavage to be comprised of 18 amino
acids (Ref. 54). At the proximal promoter sequence of IL-10 in
the human genome, there is a TATA box located upstream of
the translation start site, for several transcription family members,
including nuclear factor-κB (NF-κB), STAT, specificity protein
(Sp), CREB, CCATT enhancer/binding protein (C/EBP), c-mus-
culoaponeurotic fibrosarcoma factor (c-MAF), which have been
characterized as ‘critical’ factors in regulating IL-10 expression
(Ref. 204).

IL-10 signalling
Next, it is necessary to understand how IL-10 can signal through
its receptor. IL-10R is a heterodimeric receptor complex com-
posed of two chains (IL-10Rα ‘R1’ and IL-10Rβ ‘R2’). The
α-chain binds directly to IL-10, while the β-chain is subsequently
recruited into the IL-10/IL-10Rα complex (Ref. 205). The binding
of IL-10 to IL-10Rα induces a conformational change in the
receptor, allowing it to dimerize with IL-10Rβ. This dimerization
leads to signal transduction in target cells (Ref. 206). When the
IL-10 complex is formed, tyrosine kinases Tyk2 and Jak1 become
activated and phosphorylate specific tyrosine residues. This
phosphorylation further activates the cytoplasmic inactive tran-
scription factor; STAT-3 resulting in the translocation and tran-
scriptional activation (Ref. 207). IL-10 rapidly activates STAT-3
and remains phosphorylated over a sustained period, unlike the
transient phosphorylation of IL-6 (Ref. 208). The STAT-3 docking
sites in IL-10R1 appear to be sufficient to induce IL-10-mediated
proliferative responses (Ref. 209). While IL-10R2 intracellular
domain seems to provide the docking site for Tyk2. Thus, most

IL-10-specific cellular functions appear to reside in the IL-10R1
chain, whereas IL-10R2 recruits the downstream signalling
kinases (Ref. 210).

SNPs affecting IL-10
The IL-10 gene promoter and IL-10R have been found to include
a significant number of SNPs (Refs 145, 211). There is strong evi-
dence that several of these polymorphisms are linked to the differ-
ential expression of IL-10 in vitro and in some situations, in vivo
(Refs 161, 212, 213). Some of these IL-10 variants have been asso-
ciated with either low or high expression in several cancer types.
For example, some genotypes have been evidenced to be corre-
lated with a decreased expression of IL-10 and a higher risk to
develop prostate cancer or non-Hodgkin’s lymphoma (Refs 214,
215). On the other hand, other evidence concluded that some
IL-10 variants are associated with higher expression of IL-10
and consequently, an elevated risk for cancer development of
multiple myeloma, cervical cancer and gastric cancer in patients
harbouring a particular IL-10 variant (Refs 216–218). Also, it
has been demonstrated that the IL-10 gene transcription and
translation were impacted by the SNPs in the IL-10 promoter
region, leading to aberrant cell division and emergence of breast
cancer (Ref. 219). Table 2 summarizes most of the IL-10 poly-
morphisms documented in the literature and their association
with cancer development and risk.

Since IL-10 has a role in malignancy, it is regarded to be the
subject of numerous disputes in the literature, whether it has a
positive or negative effect. As a result, whether IL-10 blockage
is effective as an immunotherapeutic strategy is another unsolved
puzzle. This opens the door to a crucial query that might provide

Table 2. IL-10 polymorphisms and their association with cancer development and risk

Type of cancer
IL-10

polymorphism Variant Contribution References

Chronic lymphocytic
leukaemia (CLL)

−1082 1082 G/A and A/A Increased risk to CLL (Ref. 220)

Prostate cancer −1082 −1082 AA High risk factor and
susceptibility

(Ref. 221)

Cervical cancer rs1800896 AG/AA genotypes High risk factor and
susceptibility

(Ref. 222)

Breast cancer rs1800896
rs1800871
rs1800872

AA genotypes High risk factor and
susceptibility

(Ref. 223)

Gastric carcinoma −1082,
−592
−819

GCC, ATA, AG haplotype Advanced stage, high risk factor
and susceptibility,

(Ref. 224)

Oral cancer −1082 −1082 G allele High susceptibility to oral
carcinoma

(Ref. 225)

Multiple myeloma IL-10G
IL-10R

IL-10 G 136/136, IL-10R 112/114 Increased susceptibility (Ref. 226)

Lung cancer −592 A > C Increased risk (Ref. 227)

Non-Hodgkin’s lymphoma −1082
−592
−819

−1082 AA, ATA, ACC haplotypes More aggressive form of the
disease.

(Ref. 228)

Acute lymphoblastic
leukaemia

−1082 −1082 GG Low possibility of poor
response to prednisolone

(Ref. 229)

Acute myeloid leukaemia −819 −819 T/C Increased risk of AML (Ref. 230)

Colorectal cancer −819 T > C genotypes Increased risk of colorectal
cancer

(Ref. 231)

Cutaneous malignant
melanoma

−1082
−592
−819

High risk, larger tumour thickness, disease
progression and shorter survival

1082 AA, 1082 GG, ACC/ACC,
ACC/ATA, ATA/ATA

(Refs 232, 233)
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the answer. However, it has not yet been addressed in the litera-
ture. It remains unclear whether SNPs in the IL-10 or its receptor
account for the varying effects of IL-10 inhibition on cancer treat-
ment. A clinical investigation addressing the existence of SNPs in
IL-10 or its receptors and their impact on the response to IL-10
therapy is necessary. These pharmacogenomic investigations will
aid in the development of immunotherapeutic modalities by iden-
tifying the most qualified individuals to provide these
cutting-edge drugs.

Conclusions

This review highlighted the controversial functions of IL-10 in
oncology. Such contradictory information prevented researchers
from determining whether exogenous IL-10 administration or
blockage will boost the immune system and combat changes at
the TME. This could be explained by the fact that IL-10 has
two distinct functions depending on which immune cell and
which receptor would be activated. Also, epigenetic regulation
of IL-10 in cancer via ncRNAs is quite complex (Fig. 3). Also,
the relationship between IL-10 SNPs will help us better under-
stand the precise function of IL-10 in the TME and will help us
develop more individualized immunotherapeutic approaches by
classifying patients into responders and non-responders.
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