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Abstract

Let M be an invariant subspace of L2(T2) on the bidisc. Vi and V2 denote the multiplication
operators on M by coordinate functions z and w, respectively. In this paper we study the relation
between M and the commutator of V] and V2*. For example, M is studied when the commutator
is self-adjoint or of finite rank.

1991 Mathematics subject classification (Amer. Math. Soc): 47 A 15,47 B 47,47 B 20, 46 J 15,
32 A 35.

1. Introduction

We let T2 be the torus that is the cartesian product of 2 unit circles in C. The
usual Lebesgue spaces, with respect to the Haar measure m of T2, are denoted
by L" = LP(T2), and HP = HP(T2) is the space of all / in L" whose Fourier
coefficients

/ O \ *)= [ / (z. w)zJw*dm(z, w)
JT2

are 0 as soon as at least one component of (j, I) is negative.
A closed subspace M of L2 is said to be invariant if

zM c M and wM C M.
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[2] Invariant subspaces in the bidisc and commutators 233

One can ask for a classification or an explicit description (in some sense) of all
invariant subspaces of L2, but this seems out of reach. In a previous paper [8],
the author studied the relation between M and the structure of M © wM. An
important role was played by invariant subspaces of the form FN, where F is
unimodular and H2 c N c the closure of (J^L0 z" H2.

Such invariant subspaces are related to those invariant subspaces studied
previously in [2, 4, 3, 1]. However the condition on M Q wM in [8] is a little
unnatural. In this paper we will find natural conditions on M which imply that
M is of the form FN.

Given an invariant subspace M of L2, V\ and V2 denote the restriction of
multiplications by z and w on M, respectively. Put

and write A = A\. In this paper we will describe invariant subspaces of L2

when A = 0 or fXli Ker An jb wM. Mandrekar [6] described M when A = 0
and M is in H2. In fact, Theorem 2 in [6] is a corollary of (2) of Theorem 5
in [8] that was proved independently. In Section 2 we study invariant subspaces
under several hypotheses on the restriction of Vi to the kernel of V2*. All but
one are previously known results [8]. In Section 3, An (n > 1) is studied using
results of Section 2. In Section 4 invariant subspaces are studied when A is of
finite rank. In Section 5 we try to prove that if A is selfadjoint then A = 0. In
Section 6 we give several examples to which the results of the previous sections
can be applied.

We define several subspaces of L2 which will be used later. Let C(T2) be the
spaces of complex-valued continuous functions.

(i) J£[ or J2f is the set of / (in L2) with Fourier series:

iicZJwk or

j>0 k>0
k=0 j=0

respectively. Put ^ ; = Jt} D C(T2) for j = 1,2.
(ii) _£?i or -Sf2 is the set of / (inL2) with Fourier series:

Y^ ajkz
Jwk (no restriction on j)

k=0

or
2_. Ujkz' wk (no restriction on k),
j=0
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respectively. Put %•.= Jẑ •. D C(J2) for y = 1,2.
(iii) H] or H2 is the set of / (in _£?2) with Fourier series:

2_[ Ojkz
Jwk (no restriction on j)

or
ikz' wk (no restriction on k)

respectively. Put SBj = H,- n C(T2) for j = 1, 2.

2. The restriction of V, to Ker V2*

Let M be an invariant subspace of L2. Put

5[ = M e «)M and S2 = M Q zM.

S\ — Ker V2* and 52 = Ker V*. In this section we derive a new result and results
of the previous paper [8], which will be used in this paper.

PROPOSITION 1. Let M be an invariant subspace of L2. V2* is a one-to-one
operator if and only if M — XE, FH2 + XE2L

2 where F is unimodular, and \Ej

is a characteristic function ofBorel set Ej on T2, XE, G ££2 and XE, + XE2 < 1
a.e.

The proof is in [3] and [7, page 164-165] since V2* is one-to-one if and only
ifS, = {0}.

PROPOSITION 2. Let M be an invariant subspace of L2 in which V2* has a
nontrivial kernel.

(1) V,(Ker V*) = Ker V* if and only if M = *E, ^ H , + XE2L
2 where F is

unimodular, XE, « a nonzero function in J£\ and XE, + XE2 < 1 ae-
(2) Vi (Ker V*) c Ker V* if and only if M = FH2 for some unimodular

function F.

PROOF. Theorem 5 in [8] shows that z5, = S, (or z5, £ 50 if and only if M
has the form: M = XE,FUX + XE2L

2 in (1) (or the form : M = FH2 in (2),
respectively). This implies the proposition because Ker V2* = 5j.
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By Propositions 1 and 2, we are interested in an invariant subspace such that
Ker Vj is not invariant under Vi.

PROPOSITION 3. Let M be an invariant subspace of L1 in which V2* has a
nontrivial kernel.

(1) There exists a nonzero function f in KerVJ such that V"f belongs
to Ker V2* for any integer n (V" = V*(~n) when n < 0) if and only if M —
XE, FHI + XE2L

2 where F is unimodular, and XE, is a non-zero function in Jz?i
and XE, + XE2 < 1 a.e.

(2) There exists a function f in Ker V2* such that V"f belongs to Ker V2*
for any n > 0 and V[f is not in Ker V2for some I < 0 if and only if M — FN
where N is an invariant subspace which contains H2 and is contained properly
in Mi, and F is unimodular.

PROOF. Part (1), under the hypothesis that | / | > 0 a.e., and (2), were proved
in [8, Theorem 6]. We will prove (1) in general. Put Mi = f]n>ow"M then
M = (£„><)©u>"Si) © M\. Let D be the largest closed subspace of 5i with
zD c D. If we let D3 = 5i Q D, D2 = Hn^o2"0 and Di = D Q D2 then

M =

Since zD2 = D2, by [3] and [7, pp. 164-165]

© M, = XE,FXH, © XE2F2M2 © XE}L
2

where XE< e ^ (i = 1, 2), XE, + XE, < 1 a.e. and XE2 + XE, > 1 a.e. If
there exists a nonzero function / in Ker V2* such that z" / belongs to Ker V2* for
any integer «, then XE, is nonzero. Since XE,(F\M Q Mt) is invariant under
multiplication of w, XE, (^I Af © H i) = {0} and hence XE, A/ = XE, ^I H I • Since
XE.Af C M, (1 - XE,)A^ C M and M = XEXM © (1 - XE<)M- We can prove
z(l - XEl)M = (1 - XE,)A/. For z^ i ( l - XE, )M C (1 - XE,)M and

- XE,)] = (1 -

Therefore z(l - XE>)M C (1 - XE,)M and hence z(l - XE,)A* = (1 - XE,)M.

Hence

where XE4 e S£\, XE4 + XE3 < 1 a e - and ^4 is unimodular. Thus M has the form
XE< F M I + XE»^2 for some unimodular F where XE' = XE, + XE4 and XE» = XE3 •
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3. Commutator of V," and V2*

Put An = VfVf - V*V[ (n > 1) and write A = A,. The following trivial
lemmas are important.

LEMMA 1. An V2 = Ofor any n > 1 and hence f)™=l Ker An^

LEMMA 2. For any f in Ker V*, f e Ker An if and only ifz"f € Ker V*.

PROOF. When / e KerV2*, if / e KerAn then VfVff = 0 and hence
z"/ e Ker V2*. Conversely if z" / e Ker V2* then AB/ = V,"V2*/ = 0.

In general An is a nonzero operator. The structure of M is simple when A = 0
or fXli Ker An =>wM. The following theorems, which make this precise, are
corollaries of [8, Theorem 5].

THEOREM 4. Le? M be an invariant subspace of L1 with A = 0. Then one
and only one of the following occurs.

(1) M = x£l FHi + X£2£
2 w/2m> XE, W /« -Sfi, XE, + XE2 < 1 a.e. a«<i F

/s unimodular.
(2) M = X£, FH12 + Xf2£

2 vv/iere Xe, « '« -^2, XE, + XE2 < 1 a.e. a«rf F
/•S1 unimodular.

(3) M = FH2 for some unimodular function.
Conversely, if (1), (2) or (3) holds for an invariant subspace M of L2, then

A = 0.

PROOF. If M has the form (1) then 52 = {0} and hence A* = 0 because
A* Vi = 0. Therefore A = 0. If M has the form (2) then 5, = {0} and hence
A = 0 because AV2 — 0 by Lemma 1. If M has the form (3) then z5, c Si
and hence V^Ker V* c Ker V2*. Therefore A = 0 on Ker V2* and /i = 0 because
AV2 = 0 . Conversely suppose A = 0. Then zS{ c Si. If 5, = 0, then by
Proposition 1, M has the form (2). If Si ^ 0, then (since zS] c Si) Proposition 2
implies that M has either the form (1) or the form (3).

Mandrekar [6] considered Theorem 4 when M is in H2. Then since H^Li Z"H2

= fXli w" H2 = {0}, M has the form (3). Now we wish to consider invariant
subspaces with A ^ 0 ,
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THEOREM 5. Let M be an invariant subspace of L2 such that fXti Ker A,,
^.wM. Then one and only one of the following holds.

(1) M = XE^FMX + XE2L
2 where XE, is a nonzero function in J£\, XEX +

XE2 < 1 a.e. and F is unimodular.
(2) M = FN where N is an invariant subspace which contains H2 and is

contained properly in Hi, and F is unimodular.
Conversely, if (1), (2) or (3) holds for an invariant subspace M of L2, then

PROOF. Suppose f]^LsKerAn 5 wM. Then there exists / ^ 0 in
(fXti Ker An) 0 wM. In particular, / e Ker V2*. By Lemma 2, z" f e Ker V*
for n > 0, so by Proposition 3, M is of either the form (1) or the form (2). Con-
versely if M has the form (1), then A = 0 by Theorem 4. Then V2* commutes
with Vu so it commutes with every power of Vi; hence An — 0 for n > 1.
Thus P|^li KerAn = M. Since XE, is a nonzero function, M ^ wM because
MQwM = XE, F&i. Therefore f|^! Ker An 2 wM. If M has the form (2) by
(2) of Proposition 3 there exists a function / in Ker V2* such that z" / e Ker V2*
for any n > 0. By Lemma 2, / € Ker /in while / is orthogonal to wM because
/ e Ker V*. Therefore (XLI K e r A* - wM-

4. Finite rank commutators

Theorem 4 describes those invariant subspaces with A = 0. Now we are
interested in invariant subspaces in which A has finite rank. The following
lemma was pointed out to the author by Professor K. Takahashi. It implies that
if An = 0, then A = 0.

LEMMA 3. V*An = An^forn > 1 and hence Ker An C KerAn_[.

The proof is clear.

PROPOSITION 6. Let M be an invariant subspace of L2.
(1) / /dim Ker V£ is finite then An is finite rank rn, supn rn < oo, and

nr= 1 Ker An = u;M.
(2) Suppose dim Ker V2* w infinite. If An is finite rank rn and sup,, rn < oo
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PROOF. (1) By Lemma 1, An is finite rank rn and rn < dimKer V2*. Using
Lemma 2, if f ^ l , Ker An 5 wM, then there exists a nonzero function / such
that / e M © wM and z"f € M Q wM for any n > 0, and this implies that
dim Ker V2* is infinite. (2) By Lemma 3 and hypothesis, rn < rn+1, so ultimately,
/•„ is constant. Also rn — dim(Ker An)

L, while (Ker An+\)L contains (Ker An)
L,

so ultimately (Ker An)
L does not change with n. But then neither does KerAn.

In other words, Ker An = KerAno if n > n0, and hence fXL\ Ker/4« = Kerj4no,
for some n0 > 1. Therefore if (~X?=l Ker An = wM then Ker Ano = wM and
hence (Kery4no)

± = Ker V2*. Since dimKer V2* is infinite, this contradicts the
hypothesis that Ano is of finite rank, and hence fX?=i

COROLLARY 1. Let M be an invariant subspace of H2. If An has finite rank
rn and supn rn < oo then fX?

PROOF. If dim Ker V2* is finite, by [8, Theorem 3] there exists a nonzero
function g in L°° such that gM c M and g g H°°. By [1, Proposition 3] this
implies that M <£_ H2, so dim Ker V2* is infinite. Part (2) of Proposition 6 implies
the corollary.

COROLLARY 2. Let M be an invariant subspace with f}™=l z"M - {0}. Then
the following are equivalent:

(1) dim Ker V2* = oo, An is finite rank rn and supn rn — r < oo;
(2) M = FN for some unimodular F and some invariant subspace with

N = K © H1 $ H,. Moreover N QwN = (K 0 wK) © J#? and if S is the
largest closed subspace of finite codimension r of N © wN such that zS C S,
then S^Jfy.

PROOF. (1) implies (2). By (2) of Proposition 6, f^ l i Kery4n 5 wM and
hence by hypothesis and Theorem 5, M has the form FN. If we put 5' =
[Pl^li KerA,,] © wM, then by Lemma 2, 5' is the largest closed subspace of
5, = M © wM with zS' C S', and by hypothesis dim(Si © 5') — r < oo. Put
S = FS'; then 5 is the desired subspace and (2) follows.

We prove (2) implies (1). By hypothesis of (2), FS is the largest closed
subspace of S, with zFS C FS and hence FS = [(XL\ KeTAn] © ^M. This
implies (1).
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5. Selfadjoint commutators

In this section we will study the following conjecture: if A — A* then A = 0.
Unfortunately we have not been able to resolve it. However we will give some
partial answers.

LEMMA 4. An = J2"jZo y"~l~'AVi- VA = A*then An = Vn~lA and hence
KerAn = KerA.

PROOF. For any n > 1

An = V,"-1(ViV2*)-(V;V1"-1)V1

= Vl
n-lA + An-1V1

and hence An = J^Zo V"~X~'AV(. If A = A* then AVX = 0 and hence
An = Vr'A.

PROPOSITION 7. Suppose M is an invariant subspace with A = A*. Then
(1) A\ =0foranyn > 1;
(2) if A has finite rank r, then An is also of finite rank r for any n > 1;
(3) j/Ker V* f| Ker V* = {0}, then A = 0;
(4) r/Ker V,* f| Ker V* # {0}, then f j * i Ker An 5 wM.

PROOF. (1) If A = A* then A2
n = V^A Vx

n~x A = 0 for n > 1 by Lemma 4
because A* Vi = 0. Part (2) is clear by Lemma 4. Since AVX = A V2 = 0, A = 0
on[zM+it)M](theclosedlinearspanofzM+uiM). IfKer V,* f ) K e r V 2 = (°}>
then M = [zM + wM] and hence A = 0. Suppose Ker V* f| Ker V* ^ {0}.
If zM £ u>M then [zM + wM] 5 10M and hence Ker A 5 u;M. By Lemma 4,
f ^ l , An 5 wM. The case zM C wM does not occur (as pointed out to me
privately by Professor K. Takahashi). For if / e Ker V,* f) Ker V*, then A = A*
implies V^Vxf = V*V2f .If zM <ZwM, then V2*Vi/ = wzf, and hence

11/11 = liv;v,/n = IIV;V2/II.

Thus V*V2f = zwf, and so wzf = zwf; hence / = 0. (Since otherwise
z2 = w2 in a set of positive measure.)
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We do not know whether A — A* implies A = 0. However, there exist many
invariant subspaces such that A is unitarily equivalent to A* and A ^ 0 (see
Example 2). Put Uf(z, w) = f(w, z) for any / in L2. Then U is a unitary
operator on L2 and U2 is the identity operator / on L2. Let M be an invariant
subspace which is invariant under U. Then U is an isometry on M and U2 = I
on M. Hence U can be assumed to be a unitary operator on M.

PROPOSITION 8. Let M be an invariant subspace of L2 which is invariant
under U. Then V2U = UVX and UA*U = A.

6. Examples

In the previous sections, invariant subspaces M, satisfying P|^0Ker/4n 2
wM, were important. In this section, we will give several examples of such
invariant subspaces.

EXAMPLE 1. Suppose M is a non-trivial invariant subspace in H2. Let R
be the orthogonal projection in L2 with range H2 © M, and let the operator Jz

on H2 © M be denned by Jzf = R(zf). If J2 is of finite rank n then there
exists an analytic polynomial p of z of degree n such that p(Sz) —0, and hence
p(z)H2 c M. The inner part of p(z) is a finite Blashke product F = F(z) of
degree m, and m ^ O because M 7̂  //2. Since FH2 is in Hi, iV = FM lies
between //2 and Hi. Then M - FN, N - K © H2 and dim K QwK <m.
For

7=0

and hence dim KQwK < &\m{FJ%Q J%). By Theorem 5, f^, Ker An

and by Corollary 2, AB is of finite rank rn, and sup,, rn < m. Since dim(//2 ©
M) < 00 and dim(//2 © FH2) = 00, M ^ F / / 2 and hence dim AT © wK ^ 0.
By Corollary 2,0 < supn rn < m. For if supn rn — 0 then ( # © u>K) © ̂  is an
invariant subspace under the multiplication of z and (K © wK) © ^ c FJ^J.
By Beurling's theorem (cf [4, page 4])

(K Q wK) © J4?x = qjP\

and g is a nonconstant finite Blaschke product of degree < m because KQwK ^
{0}. Therefore N =qH2. If q ^ F then M = G//2 and m > £ (the degree of
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G) where G = Fq. Hence Jz is of finite rank I. This contradiction implies that
0 ^ supn rn. By Theorem 4, M does not have the form qH2 for any unimodular
q. This is given in [1, Corollary 2].

EXAMPLE 2. If M is an invariant subspace in H2, of finite codimension n,
then by Example 1, M — FiN{ = F2N2 where F\ and F2 are finite Blashke
products of z and w, respectively, and H2 C Nj C Hy (j = 1,2). Then both
A and A* are finite rank of degree m < n and m ^ 0. By [8, Theorem 3],
dimKer V2* = dimKer V* — oo. By Example 1, M does not have the form
qH2 for any unimodular q. Put M = [zH2 + wH2]: then M is of finite
codimension 1. Moreover M is invariant under U. Hence A has rank one and
UA*U = A.

EXAMPLE 3. Let M be an invariant subspace of L2. Invariant subspaces M
satisfying w"M D zM for any n > 1, or z"M D WM for any n > 1, were
studied in [3, 4, 7]. In general, if wM D zM, then AV\ — 0, since J4V2 = 0
by Lemma 1, and because V2M D V^Af. Hence by the first part of Lemma 4,
An = V"~lA. Thus Ker An = Ker A for any « > 1. If w"M D zM for any
n > 1, it is known (see [7]) that

or

where q is unimodular, X£, € -^2 and XE, + XE2 < 1 a-e- Hence if wM =fi M
then M © u;M = {^}, dimKer V2* = 1, Ker An = wM and An is of rank 1
for any n > 1. If z"M D wM for any n > 1, by Proposition 6 we have
CX?=1 Ker An 5 u>M and M © wM = q(J#\ © zii^) for some unimodular q.
In [3], the authors considered the following generalizations of the above invariant
subspaces: for any fixed I > 1 M satisfies w"M D zlM for any n > 1;
or z"M D wlM for any « > 1. They described completely such invariant
subspaces and showed that if zM ^ M or wM ^ M, then M = FN, where F
is unimodular, and H, D N D zeHu or H2 D N D weH2. Hence if zM ^ M
and z"M D weM, then fXti Ker An 5 wM.

https://doi.org/10.1017/S1446788700034856 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034856


242 Takahiko Nakazi [11]

References

[1] O. P. Agrawal, D. N. Clark and R. G. Douglas, 'Invariant subspaces in the polydisk', Pacific
J.Math. 121(1986), 1-11.

[2] P. R. Ahern and D. N. Clark, 'Invariant subspaces and analytic continuation in several
variables', / . Math. Mech. 19 (1970), 963-969.

[3] R. E. Curto, P. S. Muhly, T. Nakazi and T. Yamamoto, 'On superalgebras of the polydisc
algebra', Ada Sci. Math. (Szeged) 51 (1987), 413-421.

[4] H. Helson,' Analyticity on compact abelian groups', in: Algebras in Analysis - Proceedings
of the instructional conference and NATO advanced study institute, Birmingham, 1973
(Academic Press, London, 1975) pp. 1-62.

[5] K. Izuchi, 'Unitarily equivalence of invariant subspaces in the polydisk', Pacific J. Math.
130 (1987), 351-358.

[6] V. Mandrekar, "The validity of Beurling theorems in polydiscs', Proc. Amer. Math. Soc. 103
(1988), 145-148.

[7] T. Nakazi, 'Invariant subspaces of weak* Dirichlet algebras', Pacific J. Math. 69 (1977),
151-167.

[8] , 'Certain invariant subspaces of H2 and L2 on a bidisc', Canad. J. Math. XL (1988),
1272-1280.

[9] W. Rudin, 'Invariant subspaces of H2 on a torus', / . Fund. Anal. 61 (1985), 378-384.

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060
Japan

https://doi.org/10.1017/S1446788700034856 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034856

