INVARIANT SUBSPACES IN THE BIDISC AND COMMUTATORS

TAKAHIKO NAKAZI

(Received 19 February 1991; revised 1 August 1991)

Communicated by I. Raeburn

Abstract

Let M be an invariant subspace of $L^{2}\left(T^{2}\right)$ on the bidisc. V_{1} and V_{2} denote the multiplication operators on M by coordinate functions z and w, respectively. In this paper we study the relation between M and the commutator of V_{1} and V_{2}^{*}. For example, M is studied when the commutator is self-adjoint or of finite rank.

1991 Mathematics subject classification (Amer. Math. Soc.): 47 A 15, 47 B 47, 47 B 20, 46 J 15, 32 A 35.

1. Introduction

We let T^{2} be the torus that is the cartesian product of 2 unit circles in \mathbb{C}. The usual Lebesgue spaces, with respect to the Haar measure m of T^{2}, are denoted by $L^{p}=L^{p}\left(T^{2}\right)$, and $H^{p}=H^{p}\left(T^{2}\right)$ is the space of all f in L^{p} whose Fourier coefficients

$$
\hat{f}(j, \ell)=\int_{T^{2}} f(z, w) \bar{z}^{j} \bar{w}^{\ell} d m(z, w)
$$

are 0 as soon as at least one component of (j, ℓ) is negative.
A closed subspace M of L^{2} is said to be invariant if

$$
z M \subset M \quad \text { and } \quad w M \subset M .
$$

[^0]One can ask for a classification or an explicit description (in some sense) of all invariant subspaces of L^{2}, but this seems out of reach. In a previous paper [8], the author studied the relation between M and the structure of $M \ominus w M$. An important role was played by invariant subspaces of the form $F N$, where F is unimodular and $H^{2} \subseteq N \subseteq$ the closure of $\bigcup_{n=0}^{\infty} \bar{z}^{n} H^{2}$.

Such invariant subspaces are related to those invariant subspaces studied previously in [2, 4, 3, 1]. However the condition on $M \ominus w M$ in [8] is a little unnatural. In this paper we will find natural conditions on M which imply that M is of the form $F N$.

Given an invariant subspace M of L^{2}, V_{1} and V_{2} denote the restriction of multiplications by z and w on M, respectively. Put

$$
A_{n}=V_{1}^{n} V_{2}^{*}-V_{2}^{*} V_{1}^{n} \quad(n \geq 1)
$$

and write $A=A_{1}$. In this paper we will describe invariant subspaces of L^{2} when $A=0$ or $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \nsupseteq w M$. Mandrekar [6] described M when $A=0$ and M is in H^{2}. In fact, Theorem 2 in [6] is a corollary of (2) of Theorem 5 in [8] that was proved independently. In Section 2 we study invariant subspaces under several hypotheses on the restriction of V_{1} to the kernel of V_{2}^{*}. All but one are previously known results [8]. In Section 3, $A_{n}(n \geq 1)$ is studied using results of Section 2. In Section 4 invariant subspaces are studied when A is of finite rank. In Section 5 we try to prove that if A is selfadjoint then $A=0$. In Section 6 we give several examples to which the results of the previous sections can be applied.

We define several subspaces of L^{2} which will be used later. Let $C\left(T^{2}\right)$ be the spaces of complex-valued continuous functions.
(i) \mathscr{H}_{1} or \mathscr{H}_{2} is the set of f (in L^{2}) with Fourier series:

$$
\sum_{\substack{j \geq 0 \\ k=0}} a_{j k} z^{j} w^{k} \quad \text { or } \quad \sum_{\substack{k \geq 0 \\ j=0}} a_{j k} z^{j} w^{k}
$$

respectively. Put $\mathscr{A}_{j}=\mathscr{H}_{j} \cap C\left(T^{2}\right)$ for $j=1,2$.
(ii) \mathscr{L}_{1} or \mathscr{L}_{2} is the set of f (in L^{2}) with Fourier series:

$$
\sum_{k=0} a_{j k} z^{j} w^{k} \quad(\text { no restriction on } j)
$$

or

$$
\sum_{j=0} a_{j k} z^{j} w^{k} \quad(\text { no restriction on } k)
$$

respectively. Put $\mathscr{C}_{j}=\mathscr{L}_{j} \cap C\left(T^{2}\right)$ for $j=1,2$.
(iii) \mathbb{H}_{1} or \mathbb{H}_{2} is the set of f (in \mathscr{L}^{2}) with Fourier series:

$$
\sum_{k \geq 0} a_{j k} z^{j} w^{k} \quad \text { (no restriction on } j \text {) }
$$

or

$$
\sum_{j \geq 0} a_{j k} z^{j} w^{k} \quad(\text { no restriction on } k)
$$

respectively. Put $\mathscr{B}_{j}=\mathbb{H}_{j} \cap C\left(T^{2}\right)$ for $j=1,2$.

2. The restriction of V_{1} to $\operatorname{Ker} V_{2}^{*}$

Let M be an invariant subspace of L^{2}. Put

$$
S_{1}=M \ominus w M \quad \text { and } \quad S_{2}=M \ominus z M
$$

$S_{1}=\operatorname{Ker} V_{2}^{*}$ and $S_{2}=\operatorname{Ker} V_{1}^{*}$. In this section we derive a new result and results of the previous paper [8], which will be used in this paper.

Proposition 1. Let M be an invariant subspace of $L^{2} . V_{2}^{*}$ is a one-to-one operator if and only if $M=\chi_{E_{1}} F \mathbb{H}_{2}+\chi_{E_{2}} L^{2}$ where F is unimodular, and $\chi_{E_{j}}$ is a characteristic function of Borel set E_{j} on $T^{2}, \chi_{E_{1}} \in \mathscr{L}_{2}$ and $\chi_{E_{1}}+\chi_{E_{2}} \leq 1$ a.e.

The proof is in [3] and [7, page 164-165] since V_{2}^{*} is one-to-one if and only if $S_{1}=\{0\}$.

Proposition 2. Let M be an invariant subspace of L^{2} in which V_{2}^{*} has a nontrivial kernel.
(1) $V_{1}\left(\operatorname{Ker} V_{2}^{*}\right)=\operatorname{Ker} V_{2}^{*}$ if and only if $M=\chi_{E_{1}} F \mathbb{W}_{1}+\chi_{E_{2}} L^{2}$ where F is unimodular, $\chi_{E_{1}}$ is a nonzero function in \mathscr{L}_{1} and $\chi_{E_{1}}+\chi_{E_{2}} \leq 1$ a.e.
(2) $V_{1}\left(\operatorname{Ker} V_{2}^{*}\right) \subsetneq \operatorname{Ker} V_{2}^{*}$ if and only if $M=F H^{2}$ for some unimodular function F.

Proof. Theorem 5 in [8] shows that $z S_{1}=S_{1}$ (or $z S_{1} \subsetneq S_{1}$) if and only if M has the form: $M=\chi_{E_{1}} F \mathbb{H}_{1}+\chi_{E_{2}} L^{2}$ in (1) (or the form : $M=F H^{2}$ in (2), respectively). This implies the proposition because $\operatorname{Ker} V_{2}^{*}=S_{1}$.

By Propositions 1 and 2, we are interested in an invariant subspace such that Ker V_{2}^{*} is not invariant under V_{1}.

Proposition 3. Let M be an invariant subspace of L^{2} in which V_{2}^{*} has a nontrivial kernel.
(1) There exists a nonzero function f in $\operatorname{Ker} V_{2}^{*}$ such that $V_{1}^{n} f$ belongs to Ker V_{2}^{*} for any integer $n\left(V_{1}^{n}=V_{1}^{*(-n)}\right.$ when $\left.n<0\right)$ if and only if $M=$ $\chi_{E_{1}} F \mathbb{W}_{1}+\chi_{E_{2}} L^{2}$ where F is unimodular, and $\chi_{E_{1}}$ is a non-zero function in \mathscr{L}_{1} and $\chi_{E_{1}}+\chi_{E_{2}} \leq 1$ a.e.
(2) There exists a function f in $\operatorname{Ker} V_{2}^{*}$ such that $V_{1}^{n} f$ belongs to $\operatorname{Ker} V_{2}^{*}$ for any $n \geq 0$ and $V_{1}^{\ell} f$ is not in $\operatorname{Ker} V_{2}^{*}$ for some $\ell<0$ if and only if $M=F N$ where N is an invariant subspace which contains H^{2} and is contained properly in \mathbb{H}_{1}, and F is unimodular.

Proof. Part (1), under the hypothesis that $|f|>0$ a.e., and (2), were proved in [8, Theorem 6]. We will prove (1) in general. Put $M_{1}=\bigcap_{n \geq 0} w^{n} M$ then $M=\left(\sum_{n \geq 0} \oplus w^{n} S_{1}\right) \oplus M_{1}$. Let D be the largest closed subspace of S_{1} with $z D \subseteq D$. If we let $D_{3}=S_{1} \ominus D, D_{2}=\bigcap_{n \geq 0} z^{n} D$ and $D_{1}=D \ominus D_{2}$ then

$$
M=\left(\sum_{n \geq 0} \oplus w^{n} D_{1}\right) \oplus\left(\sum_{n \geq 0} \oplus w^{n} D_{2}\right) \oplus\left(\sum_{n \geq 0} \oplus w^{n} D_{3}\right) \oplus M_{1} .
$$

Since $z D_{2}=D_{2}$, by [3] and [7, pp. 164-165]

$$
\left(\sum_{n \geq 0} \oplus D_{2} w^{n}\right) \oplus M_{1}=\chi_{E_{1}} F_{1} \mathbb{H}_{1} \oplus \chi_{E_{2}} F_{2} \mathbb{H}_{2} \oplus \chi_{E_{3}} L^{2}
$$

where $\chi_{E_{j}} \in \mathscr{L}_{j}(j=1,2), \chi_{E_{1}}+\chi_{E_{3}} \leq 1$ a.e. and $\chi_{E_{2}}+\chi_{E_{3}} \geq 1$ a.e. If there exists a nonzero function f in $\operatorname{Ker} V_{2}^{*}$ such that $z^{n} f$ belongs to $\operatorname{Ker} V_{2}^{*}$ for any integer n, then $\chi_{E_{1}}$ is nonzero. Since $\chi_{E_{1}}\left(\bar{F}_{1} M \ominus \mathbb{H}_{1}\right)$ is invariant under multiplication of $w, \chi_{E_{1}}\left(\bar{F}_{1} M \ominus \mathbb{H}_{1}\right)=\{0\}$ and hence $\chi_{E_{1}} M=\chi_{E_{1}} F_{1} \mathbb{H}_{1}$. Since $\chi_{E_{1}} M \subset M,\left(1-\chi_{E_{1}}\right) M \subset M$ and $M=\chi_{E_{1}} M \oplus\left(1-\chi_{E_{1}}\right) M$. We can prove $z\left(1-\chi_{E_{1}}\right) M=\left(1-\chi_{E_{1}}\right) M$. For $z \mathscr{A}_{1}\left(1-\chi_{E_{1}}\right) M \subset\left(1-\chi_{E_{1}}\right) M$ and

$$
\left[z \mathscr{A}_{1}\left(1-\chi_{E_{1}}\right)\right]=\left(1-\chi_{E_{1}}\right) \mathscr{L}_{1} \ni \bar{z}\left(1-\chi_{E_{1}}\right) .
$$

Therefore $\bar{z}\left(1-\chi_{E_{1}}\right) M \subset\left(1-\chi_{E_{1}}\right) M$ and hence $z\left(1-\chi_{E_{1}}\right) M=\left(1-\chi_{E_{1}}\right) M$. Hence

$$
\left(1-\chi_{E_{1}}\right) M=\chi_{E_{4}} F_{4} \mathbb{H}_{1}+\chi_{E_{3}} L^{2}
$$

where $\chi_{E_{4}} \in \mathscr{L}_{1}, \chi_{E_{4}}+\chi_{E_{3}} \leq 1$ a.e. and F_{4} is unimodular. Thus M has the form $\chi_{E^{\prime}} F \mathfrak{H}_{1}+\chi_{E^{\prime \prime}} L^{2}$ for some unimodular F where $\chi_{E^{\prime}}=\chi_{E_{1}}+\chi_{E_{4}}$ and $\chi_{E^{\prime \prime}}=\chi_{E_{3}}$.

3. Commutator of V_{1}^{n} and V_{2}^{*}

Put $A_{n}=V_{1}^{n} V_{2}^{*}-V_{2}^{*} V_{1}^{n}(n \geq 1)$ and write $A=A_{1}$. The following trivial lemmas are important.

LEMMA 1. $A_{n} V_{2}=0$ for any $n \geq 1$ and hence $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supseteq w M$.
Lemma 2. For any f in $\operatorname{Ker} V_{2}^{*}, f \in \operatorname{Ker} A_{n}$ if and only if $z^{n} f \in \operatorname{Ker} V_{2}^{*}$.
Proof. When $f \in \operatorname{Ker} V_{2}^{*}$, if $f \in \operatorname{Ker} A_{n}$ then $V_{2}^{*} V_{1}^{n} f=0$ and hence $z^{n} f \in \operatorname{Ker} V_{2}^{*}$. Conversely if $z^{n} f \in \operatorname{Ker} V_{2}^{*}$ then $A_{n} f=V_{1}^{n} V_{2}^{*} f=0$.

In general A_{n} is a nonzero operator. The structure of M is simple when $A=0$ or $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$. The following theorems, which make this precise, are corollaries of [8, Theorem 5].

Theorem 4. Let M be an invariant subspace of L^{2} with $A=0$. Then one and only one of the following occurs.
(1) $M=\chi_{E_{1}} F \mathbb{H}_{1}+\chi_{E_{2}} L^{2}$ where $\chi_{E_{1}}$ is in $\mathscr{L}_{1}, \chi_{E_{1}}+\chi_{E_{2}} \leq 1$ a.e. and F is unimodular.
(2) $M=\chi_{E_{1}} F \mathbb{H}_{2}+\chi_{E_{2}} L^{2}$ where $\chi_{E_{1}}$ is in $\mathscr{L}_{2}, \chi_{E_{1}}+\chi_{E_{2}} \leq 1$ a.e. and F is unimodular.
(3) $\quad M=F H^{2}$ for some unimodular function.

Conversely, if (1), (2) or (3) holds for an invariant subspace M of L^{2}, then $A=0$.

Proof. If M has the form (1) then $S_{2}=\{0\}$ and hence $A^{*}=0$ because $A^{*} V_{1}=0$. Therefore $A=0$. If M has the form (2) then $S_{1}=\{0\}$ and hence $A=0$ because $A V_{2}=0$ by Lemma 1. If M has the form (3) then $z S_{1} \subseteq S_{1}$ and hence $V_{1} \operatorname{Ker} V_{2}^{*} \subseteq \operatorname{Ker} V_{2}^{*}$. Therefore $A=0$ on $\operatorname{Ker} V_{2}^{*}$ and $A=0$ because $A V_{2}=0$. Conversely suppose $A=0$. Then $z S_{1} \subseteq S_{1}$. If $S_{1}=0$, then by Proposition 1, M has the form (2). If $S_{1} \neq 0$, then (since $z_{z} \subseteq S_{1}$) Proposition 2 implies that M has either the form (1) or the form (3).

[^1]Theorem 5. Let M be an invariant subspace of L^{2} such that $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n}$ $\supsetneq w M$. Then one and only one of the following holds.
(1) $M=\chi_{E_{1}} F \mathbb{H}_{1}+\chi_{E_{2}} L^{2}$ where $\chi_{E_{1}}$ is a nonzero function in $\mathscr{L}_{1}, \chi_{E_{1}}+$ $\chi_{E_{2}} \leq 1$ a.e. and F is unimodular.
(2) $\quad M=F N$ where N is an invariant subspace which contains H^{2} and is contained properly in \mathbb{H}_{1}, and F is unimodular.

Conversely, if (1), (2) or (3) holds for an invariant subspace M of L^{2}, then $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$.

Proof. Suppose $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$. Then there exists $f \neq 0$ in $\left(\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n}\right) \ominus w M$. In particular, $f \in \operatorname{Ker} V_{2}^{*}$. By Lemma 2, $z^{n} f \in \operatorname{Ker} V_{2}^{*}$ for $n \geq 0$, so by Proposition 3, M is of either the form (1) or the form (2). Conversely if M has the form (1), then $A=0$ by Theorem 4. Then V_{2}^{*} commutes with V_{1}, so it commutes with every power of V_{1}; hence $A_{n}=0$ for $n \geq 1$. Thus $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n}=M$. Since $\chi_{E_{1}}$ is a nonzero function, $M \neq w M$ because $M \ominus w M=\chi_{E_{1}} F \mathscr{L}_{1}$. Therefore $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \nsupseteq w M$. If M has the form (2) by (2) of Proposition 3 there exists a function f in $\operatorname{Ker} V_{2}^{*}$ such that $z^{n} f \in \operatorname{Ker} V_{2}^{*}$ for any $n \geq 0$. By Lemma $2, f \in \operatorname{Ker} A_{n}$ while f is orthogonal to $w M$ because $f \in \operatorname{Ker} V_{2}^{*}$. Therefore $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$.

4. Finite rank commutators

Theorem 4 describes those invariant subspaces with $A=0$. Now we are interested in invariant subspaces in which A has finite rank. The following lemma was pointed out to the author by Professor K. Takahashi. It implies that if $A_{n}=0$, then $A=0$.

Lemma 3. $V_{1}^{*} A_{n}=A_{n-1}$ for $n>1$ and hence $\operatorname{Ker} A_{n} \subset \operatorname{Ker} A_{n-1}$.
The proof is clear.
Proposition 6. Let M be an invariant subspace of L^{2}.
(1) If $\operatorname{dim} \operatorname{Ker} V_{2}^{*}$ is finite then A_{n} is finite rank $r_{n}, \sup _{n} r_{n}<\infty$, and $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n}=w M$.
(2) Suppose $\operatorname{dim} \operatorname{Ker} V_{2}^{*}$ is infinite. If A_{n} is finite rank r_{n} and $\sup _{n} r_{n}<\infty$ then $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$.

Proof. (1) By Lemma 1, A_{n} is finite rank r_{n} and $r_{n} \leq \operatorname{dim} \operatorname{Ker} V_{2}^{*}$. Using Lemma 2, if $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$, then there exists a nonzero function f such that $f \in M \ominus w M$ and $z^{n} f \in M \ominus w M$ for any $n \geq 0$, and this implies that $\operatorname{dim} \operatorname{Ker} V_{2}^{*}$ is infinite. (2) By Lemma 3 and hypothesis, $r_{n} \leq r_{n+1}$, so ultimately, r_{n} is constant. Also $r_{n}=\operatorname{dim}\left(\operatorname{Ker} A_{n}\right)^{\perp}$, while $\left(\operatorname{Ker} A_{n+1}\right)^{\perp}$ contains $\left(\operatorname{Ker} A_{n}\right)^{\perp}$, so ultimately $\left(\operatorname{Ker} A_{n}\right)^{\perp}$ does not change with n. But then neither does $\operatorname{Ker} A_{n}$. In other words, $\operatorname{Ker} A_{n}=\operatorname{Ker} A_{n_{0}}$ if $n \geq n_{0}$, and hence $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n}=\operatorname{Ker} A_{n_{0}}$, for some $n_{0} \geq 1$. Therefore if $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n}=w M$ then $\operatorname{Ker} A_{n_{0}}=w M$ and hence $\left(\operatorname{Ker} A_{n_{0}}\right)^{\perp}=\operatorname{Ker} V_{2}^{*}$. Since $\operatorname{dim} \operatorname{Ker} V_{2}^{*}$ is infinite, this contradicts the hypothesis that $A_{n_{0}}$ is of finite rank, and hence $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$.

Corollary 1. Let M be an invariant subspace of H^{2}. If A_{n} has finite rank r_{n} and $\sup _{n} r_{n}<\infty$ then $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$.

Proof. If dim $\operatorname{Ker} V_{2}^{*}$ is finite, by [8, Theorem 3] there exists a nonzero function g in L^{∞} such that $g M \subset M$ and $g \notin H^{\infty}$. By [1, Proposition 3] this implies that $M \not \subset H^{2}$, so $\operatorname{dim} \operatorname{Ker} V_{2}^{*}$ is infinite. Part (2) of Proposition 6 implies the corollary.

Corollary 2. Let M be an invariant subspace with $\bigcap_{n=1}^{\infty} z^{n} M=\{0\}$. Then the following are equivalent:
(1) $\operatorname{dim} \operatorname{Ker} V_{2}^{*}=\infty, A_{n}$ is finite rank r_{n} and $\sup _{n} r_{n}=r<\infty$;
(2) $M=F N$ for some unimodular F and some invariant subspace with $N=K \oplus H^{2} \subsetneq \mathbb{H}_{1}$. Moreover $N \ominus w N=(K \ominus w K) \oplus \mathscr{H}_{1}$ and if S is the largest closed subspace of finite codimension r of $N \ominus w N$ such that $z S \subset S$, then $S \supseteq \mathscr{H}_{1}$.

Proof. (1) implies (2). By (2) of Proposition 6, $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$ and hence by hypothesis and Theorem $5, M$ has the form $F N$. If we put $S^{\prime}=$ [$\left.\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n}\right] \ominus w M$, then by Lemma 2, S^{\prime} is the largest closed subspace of $S_{1}=M \ominus w M$ with $z S^{\prime} \subset S^{\prime}$, and by hypothesis $\operatorname{dim}\left(S_{1} \ominus S^{\prime}\right)=r<\infty$. Put $S=\bar{F} S^{\prime}$; then S is the desired subspace and (2) follows.

We prove (2) implies (1). By hypothesis of (2), $F S$ is the largest closed subspace of S_{1} with $z F S \subset F S$ and hence $F S=\left[\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n}\right] \ominus w M$. This implies (1).

5. Selfadjoint commutators

In this section we will study the following conjecture: if $A=A^{*}$ then $A=0$. Unfortunately we have not been able to resolve it. However we will give some partial answers.

LEMMA 4. $A_{n}=\sum_{j=0}^{n-1} V_{1}^{n-1-j} A V_{1}^{j}$. If $A=A^{*}$ then $A_{n}=V^{n-1} A$ and hence $\operatorname{Ker} A_{n}=\operatorname{Ker} A$.

Proof. For any $n>1$

$$
\begin{aligned}
A_{n} & =V_{1}^{n-1}\left(V_{1} V_{2}^{*}\right)-\left(V_{2}^{*} V_{1}^{n-1}\right) V_{1} \\
& =V_{1}^{n-1}\left(V_{1} V_{2}^{*}\right)-\left(V_{1}^{n-1} V_{2}^{*}-A_{n-1}\right) V_{1} \\
& =V_{1}^{n-1} A+A_{n-1} V_{1}
\end{aligned}
$$

and hence $A_{n}=\sum_{j=0}^{n-1} V_{1}^{n-1-j} A V_{1}^{j}$. If $A=A^{*}$ then $A V_{1}=0$ and hence $A_{n}=V_{1}^{n-1} A$.

PROPOSITION 7. Suppose M is an invariant subspace with $A=A^{*}$. Then
(1) $A_{n}^{2}=0$ for any $n>1$;
(2) if A has finite rank r, then A_{n} is also of finite rank r for any $n>1$;
(3) if $\operatorname{Ker} V_{1}^{*} \cap \operatorname{Ker} V_{2}^{*}=\{0\}$, then $A=0$;
(4) if Ker $V_{1}^{*} \cap \operatorname{Ker} V_{2}^{*} \neq\{0\}$, then $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$.

Proof. (1) If $A=A^{*}$ then $A_{n}^{2}=V_{1}^{n-1} A V_{1}^{n-1} A=0$ for $n>1$ by Lemma 4 because $A^{*} V_{1}=0$. Part (2) is clear by Lemma 4. Since $A V_{1}=A V_{2}=0, A=0$ on $[z M+w M]$ (the closed linear span of $z M+w M$). If $\operatorname{Ker} V_{1}^{*} \cap \operatorname{Ker} V_{2}^{*}=\{0\}$, then $M=[z M+w M]$ and hence $A=0$. Suppose $\operatorname{Ker} V_{1}^{*} \cap \operatorname{Ker} V_{2}^{*} \neq\{0\}$. If $z M \not \subset w M$ then $[z M+w M] \supsetneq w M$ and hence $\operatorname{Ker} A \supsetneq w M$. By Lemma 4, $\bigcap_{n=1}^{\infty} A_{n} \supsetneq w M$. The case $z M \subset w M$ does not occur (as pointed out to me privately by Professor K. Takahashi). For if $f \in \operatorname{Ker} V_{1}^{*} \bigcap \operatorname{Ker} V_{2}^{*}$, then $A=A^{*}$ implies $V_{2}^{*} V_{1} f=V_{1}^{*} V_{2} f$. If $z M \subseteq w M$, then $V_{2}^{*} V_{1} f=\bar{w} z f$, and hence

$$
\|f\|=\left\|V_{2}^{*} V_{1} f\right\|=\left\|V_{1}^{*} V_{2} f\right\| .
$$

Thus $V_{1}^{*} V_{2} f=\bar{z} w f$, and so $\bar{w} z f=\bar{z} w f$; hence $f=0$. (Since otherwise $z^{2}=w^{2}$ in a set of positive measure.)

We do not know whether $A=A^{*}$ implies $A=0$. However, there exist many invariant subspaces such that A is unitarily equivalent to A^{*} and $A \neq 0$ (see Example 2). Put $U f(z, w)=f(w, z)$ for any f in L^{2}. Then U is a unitary operator on L^{2} and U^{2} is the identity operator I on L^{2}. Let M be an invariant subspace which is invariant under U. Then U is an isometry on M and $U^{2}=I$ on M. Hence U can be assumed to be a unitary operator on M.

PROPOSITION 8. Let M be an invariant subspace of L^{2} which is invariant under U. Then $V_{2} U=U V_{1}$ and $U A^{*} U=A$.

6. Examples

In the previous sections, invariant subspaces M, satisfying $\bigcap_{n=0}^{\infty} \operatorname{Ker} A_{n} \supsetneq$ $w M$, were important. In this section, we will give several examples of such invariant subspaces.

Example 1. Suppose M is a non-trivial invariant subspace in H^{2}. Let R be the orthogonal projection in L^{2} with range $H^{2} \ominus M$, and let the operator J_{z} on $H^{2} \ominus M$ be defined by $J_{z} f=R(z f)$. If J_{z} is of finite rank n then there exists an analytic polynomial p of z of degree n such that $p\left(S_{z}\right)=0$, and hence $p(z) H^{2} \subset M$. The inner part of $p(z)$ is a finite Blashke product $F=F(z)$ of degree m, and $m \neq 0$ because $M \neq H^{2}$. Since $\bar{F} H^{2}$ is in $\mathbb{H}_{1}, N=\bar{F} M$ lies between H^{2} and \mathbb{H}_{1}. Then $M=F N, N=K \oplus H^{2}$ and $\operatorname{dim} K \ominus w K \leq m$. For

$$
K \subset \sum_{j=0}^{\infty} \oplus\left(\bar{F} \mathscr{H}_{1} \ominus \mathscr{H}_{1}\right) w^{j}
$$

and hence $\operatorname{dim} K \ominus w K \leq \operatorname{dim}\left(\bar{F} \mathscr{H}_{1} \ominus \mathscr{H}\right)$. By Theorem 5, $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$ and by Corollary $2, A_{n}$ is of finite rank r_{n}, and $\sup _{n} r_{n} \leq m$. Since $\operatorname{dim}\left(H^{2} \Theta\right.$ $M)<\infty$ and $\operatorname{dim}\left(H^{2} \ominus F H^{2}\right)=\infty, M \neq F H^{2}$ and hence $\operatorname{dim} K \ominus w K \neq 0$. By Corollary $2,0<\sup _{n} r_{n} \leq m$. For if $\sup _{n} r_{n}=0$ then $(K \ominus w K) \oplus \mathscr{H}_{1}$ is an invariant subspace under the multiplication of z and $(K \ominus w K) \oplus \mathscr{H}_{1} \subseteq \bar{F} \mathscr{H}_{1}$. By Beurling's theorem (cf [4, page 4])

$$
(K \ominus w K) \oplus \mathscr{H}_{1}=\bar{q} \mathscr{H}_{1}
$$

and q is a nonconstant finite Blaschke product of degree $\leq m$ because $K \ominus w K \neq$ $\{0\}$. Therefore $N=\bar{q} H^{2}$. If $q \neq F$ then $M=G H^{2}$ and $m>\ell$ (the degree of
G) where $G=F \bar{q}$. Hence J_{z} is of finite rank ℓ. This contradiction implies that $0 \neq \sup _{n} r_{n}$. By Theorem $4, M$ does not have the form $q H^{2}$ for any unimodular q. This is given in [1, Corollary 2].

EXAMPLE 2. If M is an invariant subspace in H^{2}, of finite codimension n, then by Example $1, M=F_{1} N_{1}=F_{2} N_{2}$ where F_{1} and F_{2} are finite Blashke products of z and w, respectively, and $H^{2} \subset N_{j} \subset \mathbb{H}_{j}(j=1,2)$. Then both A and A^{*} are finite rank of degree $m \leq n$ and $m \neq 0$. By [8, Theorem 3], $\operatorname{dim} \operatorname{Ker} V_{2}^{*}=\operatorname{dim} \operatorname{Ker} V_{1}^{*}=\infty$. By Example 1, M does not have the form $q H^{2}$ for any unimodular q. Put $M=\left[z H^{2}+w H^{2}\right]$: then M is of finite codimension 1. Moreover M is invariant under U. Hence A has rank one and $U A^{*} U=A$.

EXAMPLE 3. Let M be an invariant subspace of L^{2}. Invariant subspaces M satisfying $w^{n} M \supset z M$ for any $n \geq 1$, or $z^{n} M \supset w M$ for any $n \geq 1$, were studied in $[3,4,7]$. In general, if $w M \supset z M$, then $A V_{1}=0$, since $A V_{2}=0$ by Lemma 1 , and because $V_{2} M \supset V_{1} M$. Hence by the first part of Lemma 4, $A_{n}=V_{1}^{n-1} A$. Thus $\operatorname{Ker} A_{n}=\operatorname{Ker} A$ for any $n \geq 1$. If $w^{n} M \supset z M$ for any $n \geq 1$, it is known (see [7]) that

$$
M=q\left(\mathscr{H}_{2} \oplus z \mathbb{H}_{2}\right)
$$

or

$$
M=\chi_{E_{1}} \mathbb{H}_{2} \oplus \chi_{E_{2}} L^{2}
$$

where q is unimodular, $\chi_{E_{1}} \in \mathscr{L}_{2}$ and $\chi_{E_{1}}+\chi_{E_{2}} \leq 1$ a.e. Hence if $w M \neq M$ then $M \ominus w M=\{q\}, \operatorname{dim} \operatorname{Ker} V_{2}^{*}=1, \operatorname{Ker} A_{n}=w M$ and A_{n} is of rank 1 for any $n \geq 1$. If $z^{n} M \supset w M$ for any $n \geq 1$, by Proposition 6 we have $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$ and $M \ominus w M=q\left(\mathscr{H}_{1} \oplus \bar{z} \overline{\mathscr{H}}_{1}\right)$ for some unimodular q. In [3], the authors considered the following generalizations of the above invariant subspaces: for any fixed $\ell \geq 1 M$ satisfies $w^{n} M \supset z^{\ell} M$ for any $n \geq 1$; or $z^{n} M \supset w^{\ell} M$ for any $n \geq 1$. They described completely such invariant subspaces and showed that if $z M \neq M$ or $w M \neq M$, then $M=F N$, where F is unimodular, and $\mathbb{H}_{1} \supset N \supset z^{\ell} \mathbb{H}_{1}$, or $\mathbb{H}_{2} \supset N \supset w^{\ell} \mathbb{H}_{2}$. Hence if $z M \neq M$ and $z^{n} M \supset w^{\ell} M$, then $\bigcap_{n=1}^{\infty} \operatorname{Ker} A_{n} \supsetneq w M$.

References

[1] O. P. Agrawal, D. N. Clark and R. G. Douglas, 'Invariant subspaces in the polydisk', Pacific J. Math. 121 (1986), l-11.
[2] P. R. Ahern and D. N. Clark, 'Invariant subspaces and analytic continuation in several variables', J. Math. Mech. 19 (1970), 963-969.
[3] R. E. Curto, P. S. Muhly, T. Nakazi and T. Yamamoto, 'On superalgebras of the polydisc algebra', Acta Sci. Math. (Szeged) 51 (1987), 413-421.
[4] H. Helson, 'Analyticity on compact abelian groups', in: Algebras in Analysis - Proceedings of the instructional conference and NATO advanced study institute, Birmingham, 1973 (Academic Press, London, 1975) pp. 1-62.
[5] K. Izuchi, 'Unitarily equivalence of invariant subspaces in the polydisk', Pacific J. Math. 130 (1987), 351-358.
[6] V. Mandrekar, 'The validity of Beurling theorems in polydiscs', Proc. Amer. Math. Soc. 103 (1988), 145-148.
[7] T. Nakazi, 'Invariant subspaces of weak* Dirichlet algebras', Pacific J. Math. 69 (1977), 151-167.
[8] _-_ 'Certain invariant subspaces of H^{2} and L^{2} on a bidisc', Canad. J. Math. XL (1988), 1272-1280.
[9] W. Rudin, 'Invariant subspaces of H^{2} on a torus', J. Funct. Anal. 61 (1985), 378-384.
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060
Japan

[^0]: (C) 1994 Australian Mathematical Society 0263-6115/94 \$A2.00 +0.00

 This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education

[^1]: Mandrekar [6] considered Theorem 4 when M is in H^{2}. Then since $\bigcap_{n=1}^{\infty} z^{n} H^{2}$ $=\bigcap_{n=1}^{\infty} w^{n} H^{2}=\{0\}, M$ has the form (3). Now we wish to consider invariant subspaces with $A \neq 0$.

