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Abstract. We first study the regularised version of a modified two-component
Camassa–Holm shallow water system and obtain the energy estimates of the
corresponding approximate solutions. Then, we present a sufficient condition which
guarantees that these approximate solutions converge to a low regularity weak solution
of the modified two-component Camassa–Holm shallow water system.
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1. Introduction. In this paper, we consider the following modified two-
component Camassa–Holm shallow water system [23]:⎧⎪⎪⎨⎪⎪⎩

mt + umx + 2mux = −σρρ̄x, t > 0, x ∈ �,

ρt + (ρu)x = 0, t > 0, x ∈ �,

m(0, x) = m0(x), x ∈ �,

ρ(0, x) = ρ0(x), x ∈ �,

(1.1)

where m = u − uxx and ρ = (1 − ∂2
x)(ρ̄ − ρ̄0).

The Camassa–Holm equation is a well-known integrable equation describing the
unidirectional propagation of shallow water waves over a flat bottom [2, 7, 15, 24]. It is
also a model for the propagation axially symmetric waves in hyperelastic rods [13]. It
has a bi-Hamiltonian structure [5] and is completely integrable [2, 6]. Its solitary waves
are peaked [3], capturing thus the shape of solitary wave solutions to the governing
equations for water waves [10]. The orbital stability of the peaked solutions is proved
in [12]. In fact, a lot of works have been carried out to study the Cauchy problem and
initial-boundary value problem for the Camassa–Holm equation [8, 9, 14, 17, 18, 26,
28].

The two-component Camassa–Holm equation was recently introduced by Chen
et al. in [4], Flaqui in [19] and Constantin and Ivanov in [11]. The variable u(x, t)
describes the horizontal velocity of the fluid and the variable ρ(x, t) is in connection
with the horizontal deviation of the surface from equilibrium, all measured in
dimensionless units [11]. The mathematical properties of two-component Camassa–
Holm equation have been studied in many works cf. [4, 11, 16, 20].

The Camassa–Holm equation was recently extended to a two-component
integrable system by combing its integrability property with compressibility, or
free-surface elevation dynamics in its shallow-water interpretation [11, 23]. The
system (1.1) introduced recently by Holm et al. in [23] is a modified version of the
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two-component integrable system to allow a dependence on the average density ρ̄ as
well as the pointwise density ρ, cf. [23]. The modified two-component Camassa–Holm
system is written in terms of velocity u and locally averaged density ρ̄ and ρ̄0 is taken to
be constant. Recently, Holm and Ivanov [22] gave a new interpretation of this system.
The modified CH2 system in 1D has been shown to be equivalent to the original
EPDiff (H1) equation in 2D coordinates (x1, x2) ∈ R2.

Recently, the modified two-component Camassa–Holm system was studied in [21].
Their work established the local well-posedness and derived precise blow-up scenarios,
and proved that the system has strong solutions which blow up in finite time.

Motivated by [21] and [26], the purpose of this paper is to study the low regularity
solutions for the modified two-component Camassa–Holm system (1.1). For the sake
of convenience, we always assume σ = 1 in the remainder of the paper.

Our paper is organised as follows. In Section 2, we summarise our basic notations
and recall some required equalities. In Section 3, we present some results of the
regularised modified two-component Camassa–Holm system. In Section 4, we study
the low regularity solutions for a modified two-component Camassa–Holm system.

2. Preliminaries. We begin by summarising our basic notations. For any real
number s, we let Hs = Hs(�) denote the Sobolev space consisting of all tempered
distributions f such that

‖f ‖Hs =
( ∫ ∞

−∞
(1 + |ξ |2)s |̂f (ξ )|2dξ

)1/2

< ∞.

For any function u = u(x, t) : � × [0, T) → � of two variables with T > 0, we denote
its Fourier transform, Lp-norm and Hs-norm with respect to x by û = û(ξ, t), ‖u‖Lp =
‖u(·, t)‖Lp and ‖u‖Hs = ‖u(·, t)‖Hs, respectively. The integral operator � = (I − ∂2

x)1/2

will play a key role. We let [A, B] denote the commutator of linear operator A and B.
Next, we will give a few basic inequalities.

LEMMA 2.1. [25]. If r > 0, then Hr ⋂
L∞ is an algebra. Moreover,

‖fg‖Hr ≤ c(‖f ‖L∞‖g‖Hr + ‖f ‖Hr‖g‖L∞ ), (2.1)

where c is a constant depending only on r.

LEMMA 2.2. [25]. If r > 0, then

‖[�r, f ]g‖L2 ≤ c(‖∂xf ‖L∞‖�r−1g‖L2 + ‖�rf ‖L2‖g‖L∞ ), (2.2)

where c is a constant depending only on r.

Then, we shall reformulate the problem (1.1). With m = u − uxx, ρ = γ − γxx and
γ = ρ̄ − ρ̄0, we can rewrite the system (1.1) as follows:⎧⎪⎪⎨⎪⎪⎩

ut − utxx + 3uux = F, t > 0, x ∈ �,

γt − γxxt + ((γ − γxx)u)x = 0, t > 0, x ∈ �,

u(0, x) = u0(x), x ∈ �,

γ (0, x) = γ0(x), x ∈ �,

(2.3)

where F = 2uxuxx + uuxxx − γx(γ − γxx).
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3. A priori estimates. In this section, we will consider the initial-value problem
for a regularised version of the system (2.3):⎧⎪⎪⎨⎪⎪⎩

ut − utxx + εuxxxxt + 3uux = F, t > 0, x ∈ �,

γt − γxxt + εγxxxxt + ((γ − γxx)u)x = 0, t > 0, x ∈ �,

u(0, x) = u0(x), x ∈ �,

γ (0, x) = γ0(x), x ∈ �,

(3.1)

where F = 2uxuxx + uuxxx − γx(γ − γxx) and ε is a constant with 0 < ε < 1/4.

LEMMA 3.1. For any 0 < ε < 1/4 and any s ≥ 1, the integral operator

D = (I − ∂2
x + ε∂4

x)−1 : Hs → Hs+4

defines a bounded linear operator on the indicated Sobolev spaces. Moreover,

D(f ) = (Gε ∗ f )(x) =
∫

�

Gε(x − y)f (y)dy, f ∈ Hs,

can be expressed as a convolution with respect to

Gε(x) = 1

2
√

1 − 4ε

(√
1 + √

1 − 4ε√
2

e−
√

2/(1+√
1−4ε)|x|

−
√

2ε√
1 + √

1 − 4ε
e−

√
(1+√

1−4ε)/2ε|x|
)

.

To show the existence of a solution to the regularised problem (3.1), we apply the
operator of the above lemma to the regularised problem (3.1). A standard application
of the contraction mapping theorem leads to the following result.

THEOREM 3.1. For each initial data z0 = (u0
γ0

) ∈ Hs × Hs, s ≥ 1, there is a T > 0
depending only on the norm of z0 in Hs × Hs, and a unique solution z = (u

γ
) to (3.1) such

that z(x, t) ∈ C([0, T); Hs × Hs) satisfies (3.1) in the sense of distributions. If s ≥ 2, the
solution z(x, t) ∈ C∞([0,∞); Hs × Hs) exists globally in the time. In particular, when
s ≥ 4, the corresponding solution is a classical global solution.

Next, we consider the norms of solutions by energy estimates.

LEMMA 3.2. Suppose that for some s ≥ 4, the function z = (u
γ
) is a solution of (3.1)

corresponding to the initial data z0 = (u0
γ0

) in Hs × Hs. Then the following hold:

‖u‖2
H1 + ‖γ ‖2

H1 ≤
∫

�

(
u2 + u2

x + εu2
xx + γ 2 + γ 2

x + εγ 2
xx

)
dx

=
∫

�

(
u2

0 + u2
0x + εu2

0xx + γ 2
0 + γ 2

0x + εγ 2
0xx

)
dx. (3.2)
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For any real number q ∈ (0, s − 1], there exists a constant c depending only on q, such
that ∫

�

((�q+1u)2 + (�q+1γ )2) dx

≤
∫

�

((�q+1u0)2 + ε(�qu0xx)2 + (�q+1γ0)2 + (�qγ0xx)2) dx

+ c
∫ t

0
(‖ux‖L∞ + ‖γx‖L∞ + ‖u‖L∞ + ‖γ ‖L∞ )

(‖γ ‖2
Hq+1 + ‖u‖2

Hq+1

)
dτ. (3.3)

For any real number q ∈ [0, s − 1], there exists a constant c such that

(1 − 2ε)‖ut‖Hq ≤ c(‖u‖H1‖u‖Hq+1 + ‖γ ‖H1‖γ ‖Hq+1 ), (3.4)

(1 − 2ε)‖γt‖Hq ≤ c(‖u‖H1‖γ ‖Hq+1 ). (3.5)

Proof. Multiplying the first equation in (3.1) by u and then integrating by parts,
we get

d
dt

∫
�

(
u2 + u2

x + εu2
xx

)
dx = −

∫
�

2uγ γx + 2uγxxγx dx.

Multiplying the second equation in (3.1) by γ and then integrating by parts, we
obtain

d
dt

∫
�

(
γ 2 + γ 2

x + εγ 2
xx

)
dx

= −2
∫

�

((γ − γxx)u)xγ dx =
∫

�

2uγ γx − 2uγxxγx.

Combining the above two equalities, we have

d
dt

∫
�

(
u2 + u2

x + εu2
xx + γ 2 + γ 2

x + εγ 2
xx

)
dx = 0,

which implies the equality (3.2).
For any q ∈ (0, s − 1], applying (�qu)�q to the first equation in (3.1) and

integrating by parts, we get

1
2

d
dt

∫
�

[(�qu)2 + (�qux)2 + ε(�quxx)2] dx

= −3
∫

�

�qu�q(uux) dx +
∫

�

�qu�q(uuxxx) dx +
∫

�

�qu�q(2uxuxx) dx

−
∫

�

�qu�q(γ γx) dx +
∫

�

�qu�q(γxγxx) dx

= −2
∫

�

�qu�q(uux) dx −
∫

�

�q+1u�q+1(uux) dx + 1
2

∫
�

�q(u2
x)�q(ux) dx

−1
2

∫
�

�qu�q(γ 2)xdx + 1
2

∫
�

�qu�q(γ 2
x )x dx.
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It follows from (2.1)–(2.2) that there exists a constant c such that

d
dt

∫
�

[(�q+1u)2 + ε(�quxx)2]dx

≤ c(‖ux‖L∞ + ‖γx‖L∞ + ‖u‖L∞ + ‖γ ‖L∞ )
(‖γ ‖2

Hq+1 + ‖u‖2
Hq+1

)
.

Similar to the estimate of u, we can obtain

d
dt

∫
�

[(�q+1γ )2 + ε(�qγxx)2]dx

≤ c(‖ux‖L∞ + ‖γx‖L∞ + ‖u‖L∞ + ‖γ ‖L∞ )
(‖γ ‖2

Hq+1 + ‖u‖2
Hq+1

)
.

By the above two inequalities, we have

d
dt

∫
�

[(�q+1u)2 + ε(�qγxx)2 + (�q+1γ )2 + ε(�qγxx)2]dx

≤ c(‖ux‖L∞ + ‖γx‖L∞ + ‖u‖L∞ + ‖γ ‖L∞ )
(‖γ ‖2

Hq+1 + ‖u‖2
Hq+1

)
.

Integrating with respect to t on both sides of the above inequality leads to the inequality
(3.2).

Applying the operator �−2 to both sides of the first equation in (3.1), we get

(1 − ε)ut − εuxxt + uux (3.6)

= (I − ∂2
x)−1

[
−εut + ∂x

(
−u2 − u2

x

2
− γ 2

2
+ γ 2

x

2

)]
.

Then applying �qut�
q to both sides of (3.6), we obtain∫

�

[(1 − ε)(�qut)2 + ε(�quxt)2 + �qut�
quux]dx

=
∫

�

�qut(I − ∂2
x)−1�q

[
−εut + ∂x

(
−u2 − u2

x

2
− γ 2

2
+ γ 2

x

2

)]
dx.

Note that there exists a constant c such that

(1 + ξ 2)q ≤ c[(1 + (ξ − η)2)q] + (1 + η2)q]

holds, for any q > 0, ξ, η ∈ �. By Schwarz’s and Young’s inequalities, one can obtain
(3.4). Similar to (3.6), we have

(1 − ε)γt − εγxxt = (
I − ∂2

x

)−1
[−εγt − ∂x((γ − γxx)u)]. (3.7)

Similarly, one also can estimate the norm of γt of (3.4). This completes the proof of
the lemma. �

We also need the properties of the initial data uε0 in the following lemma, which is
similar to that of Lemma 5 in [1].

LEMMA 3.3. Let uε0 be the convolution uε0 = φε ∗ u0 of the functions φε(x) =
ε−1/4φ(ε−1/4x) and u0 such that the Fourier transform φ̂ of φ satisfies φ̂ ∈ C∞

c , φ̂(ξ ) ≥ 0
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and φ̂(ξ ) = 1 for any ξ ∈ (−1, 1). Then the following estimates hold for any ε with
0 < ε < 1

4 :

‖uε0‖Hq ≤ c, if q ≤ s, (3.8)

‖uε0‖Hq ≤ cε
s−q

4 , if q > s. (3.9)

Similarly, we can also define γε0 and get the estimates of γε0. For this, we just replace uε0

by γε0 and obtain the same estimates as that of uε0.

4. The existence of low regularity weak solutions. From the above preparations,
the following property holds for the weak solutions:

THEOREM 4.1. Suppose that u0(x) and γ0(x) are functions of Sobolev space Hs for
s ∈ [1, 3/2] such that ‖u0x‖L∞ < ∞ and ‖γ0x‖L∞ < ∞. Let uε0 and γε0 be defined as in
Lemma 3.3. Then there exist constants T > 0 and c > 0 being independent of ε such that
the corresponding solution zε of (3.1) satisfies ‖uεx‖L∞ + ‖γεx‖L∞ ≤ c for any t ∈ [0, T).

Proof. Let us start from the first equation of the regularised problem (3.1) with
u = uε. Differentiating with respect to x on both sides of (3.6), one obtain

(1 − ε)utx − εuxxxt + uuxx + u2
x

2

= (
I − ∂2

x

)−1
(

−εutx − u2 − u2
x

2
− γ 2

2
+ γ 2

x

2

)
+

(
u2 + γ 2

2
− γ 2

x

2

)
.

Let n > 0 be an integer. Then multiplying the above equation by (ux)2n+1 to integrate
with respect to x yields the equality

1 − ε

2n + 2
d
dt

∫
�

(ux)2n+2dx − ε

∫
�

(ux)2n+1uxxxtdx + n
2n + 2

∫
�

(ux)2n+3dx

=
∫

�

(ux)2n+1�−2
(

−εutx − u2 − u2
x

2
− γ 2

2
+ γ 2

x

2

)
dx

+
∫

�

(ux)2n+1
(

(u2 + γ 2

2
− γ 2

x

2

)
dx.

Set g = �−2(−εutx − u2 − u2
x

2 − γ 2

2 + γ 2
x
2 ). By Hölder’s inequality, we get

1 − ε

2n + 2
d
dt

∫
�

(ux)2n+2 dx

≤
(∫

�

|ux|2n+2dx
) 2n+1

2n+2

) [
ε

(∫
�

|uxxxt|2n+2dx
) 1

2n+2

+
(∫

�

|u|4n+4dx
) 1

2n+2

+1
2

(∫
�

|γ |4n+4dx
) 1

2n+2

+ 1
2

(∫
�

|γx|4n+4dx
) 1

2n+2

]

+
(∫

�

|g|2n+2dx
) 1

2n+2

+ n
2n + 2

‖ux‖L∞

∫
�

|ux|2n+2 dx,
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or

(1 − ε)
d
dt

(∫
�

|ux|2n+2dx
) 1

2n+2

≤ ε

(∫
�

|uxxxt|2n+2dx
) 1

2n+2

+
(∫

�

|u|4n+4dx
) 1

2n+2

+1
2

(∫
�

|γ |4n+4dx
) 1

2n+2

+ 1
2

(∫
�

|γx|4n+4dx
) 1

2n+2

+
(∫

�

|g|2n+2dx
) 1

2n+2

+ n‖ux‖L∞

2n + 2

(∫
�

|ux|2n+2dx
) 1

2n+2

.

Since ‖f ‖Lp → ‖f ‖L∞ as p → ∞ for any f ∈ L∞ ⋂
L2, integrating with respect to t and

taking the limit as p → ∞ on both sides of the above inequality leads to the estimate

(1 − ε)‖ux‖L∞

≤ (1 − ε)‖u0x‖L∞ +
∫ t

0

[
ε‖uxxxt‖L∞ + c(‖u2‖L∞ + ‖g‖L∞

+‖γ 2‖L∞ ) + 1
2
‖γ 2

x ‖L∞ + 1
2
‖ux‖2

L∞

]
dτ. (4.1)

Note that if p(x) := 1
2 e−|x|, x ∈ �, then �−2f = p ∗ f for all f ∈ L2. Thus,

‖g‖L∞ ≤ c̃
(‖ut‖L2 + ‖u‖2

L2 + ‖ux‖2
L2 + ‖γ ‖2

L2 + ‖γx‖2
L2

)
,

where the constant c̃ is independent of ε. Therefore, it follows from (3.2), (3.4) and
(3.8) that

‖g‖L∞ ≤ c1(‖uε0‖H1 + ‖γε0‖H1 )2 ≤ c2,

where constants c1, c2 are independent of ε. Moreover, for any fixed r ∈ ( 1
2 , 1), there

is a constant cr such that ‖uxxxt‖L∞ ≤ cr‖uxxxt‖Hr ≤ cr‖ut‖Hr+3 . This combining (3.2)
with (3.4) yields

‖uxxxt‖L∞ ≤ c‖u‖Hr+4 . (4.2)

Similarly, we have

(1 − ε)γtx − εγxxxt = (
I − ∂2

x

)−1
[−εγxt − (γ − γxx)u] + (γ − γxx)u.

By integration by parts and Hölder’s inequality, we get

(1 − ε)
d
dt

(∫
�

|γx|2n+2dx
) 1

2n+2

≤ ε

(∫
�

|γxxxt|2n+2dx
) 1

2n+2

+
(∫

�

|u|4n+4dx
) 1

4n+4
(∫

�

|γ |4n+4dx
) 1

4n+4

+
(∫

�

|uxγx|2n+2dx
) 1

2n+2

+
(∫

�

|h|2n+2dx
) 1

2n+2

,
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where h = �−2(−εγtx − uγ − uxγx). Thus,

(1 − ε)‖γx‖L∞

≤ (1 − ε)‖γ0x‖L∞ +
∫ t

0
[ε‖γxxxt‖L∞

+ c(‖u‖L∞‖γ ‖L∞ + ‖g‖L∞ ) + ‖γx‖L∞‖ux‖L∞ ] dτ. (4.3)

Like the situation with the function g, we get ‖h‖L∞ ≤ c2 and

‖γxxxt‖L∞ ≤ c‖γ ‖Hr+4 . (4.4)

Applying Gronwall’s inequality to (3.3) with q = r + 3 and u = uε, we obtain

‖u‖2
Hr+4 + ‖γ ‖2

Hr+4

≤
(∫

�

((�r+4u0)2 + ε(�r+3u0xx)2 + (�r+4γ0)2 + (�r+3γ0xx)2) dx
)

exp
(

c
∫ t

0
(‖ux‖L∞ + ‖γx‖L∞ + c) dτ

)
.

Then it follows from (3.9), (4.2) and (4.4) that

‖uxxxt‖L∞ + ‖γxxxt‖L∞ (4.5)

≤ cε
s−r−4

4 exp
(

c
∫ t

0
(‖ux‖L∞ + ‖γx‖L∞ + c3) dτ

)
.

Since 0 < ε < 1
4 , combining (3.2), (4.1), (4.3) and (4.5) to obtain

‖ux‖L∞ + ‖γx‖L∞

≤ (‖u0x‖L∞ + ‖γ0x‖L∞) + 4c
3

∫ t

0
≤

[
ε

s−r
4 exp(c

∫ τ

0
(‖ux‖L∞ + ‖γx‖L∞ ) ds)

+ 1
2

(‖ux‖L∞ + ‖γx‖L∞ )2 + 1
]

dτ.

Applying the contraction mapping principle yields that there exists a T > 0 such that
the integral equation

ψ(t) = (‖u0x‖L∞ + ‖γ0x‖L∞ ) + 4c
3

∫ t

0

[
exp(c

∫ τ

0
ψ(s) ds) + 1

2
ψ2(τ ) + 1

]
dτ

has a unique solution ψ(t) ∈ C[0, T ]. The comparison principle leads to the estimate
‖ux‖L∞ + ‖γx‖L∞ ≤ ψ(t) for any t ∈ [0, T ], which implies the conclusion of the
theorem. This completes the proof of the theorem. �

As a direct result of Theorem 4.1, one can estimate norms of u = uε and γ = γε.

Using (3.3), (3.4), (3.5), (3.8) and (3.9) and Gronwall’s inequality, we deduce that there
is a constant c > 0 such that the inequalities

‖uε‖Hq + ‖γε‖Hq = ‖u‖Hq + ‖γ ‖Hq

≤ c exp c
∫ t

0
(‖ux‖L∞ + ‖γx‖L∞ ) dτ ≤ c exp c

∫ t

0
f (τ ) dτ,
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and

‖uεt‖Hr + ‖γεt‖Hr = ‖ut‖Hr + ‖γt‖Hr ≤ c exp c
∫ t

0
f (τ ) dτ,

hold for any q ∈ (0, s], r ∈ (0, s − 1] and any t ∈ [0, T ]. Then it follows from Eberlein-
Shmulyan theorem, that there are subsequences of {uε} and {γε}, denoted by {uεn} and
{γεn} respectively, such that {uεn} and {γεn} are weakly convergent to the function u(x, t)
and γ (x, t) in L2([0, T ], Hs), respectively. Their temporal derivatives {uεnt} and {γεnt}
weakly converge to the temporal derivatives ut and γt in L2([0, T ], Hs−1), respectively.
Moreover, for any real number R > 0, it follows from Lions-Aubin’s compactness
theorem [27], {uεn} and {γεn} are convergent to the function u and γ strongly in
the space L2([0, T ], Hq(−R, R)) for any q ∈ [0, s), respectively. And {uεnt} and {γεnt}
converge to ut and γt strongly in the space L2([0, T ], Hr(−R, R)) for any r ∈ [0, s − 1),
respectively.

Therefore, one can obtain the existence of a weak solution to the Cauchy problem
(2.3) as follows:

THEOREM 4.2. Suppose that z0 = (u0
γ0

) is a pair of functions of Sobolev space Hs × Hs

for s ∈ (1, 3/2] satisfying ‖u0x‖L∞ < ∞ and ‖γ0x‖L∞ < ∞. Then there is a T > 0 such
that the Cauchy problem (2.3) with the initial data z0 = (u0

γ0
) has a solution z = (u

γ
) such

that z(x, t) ∈ L2([0, T ]; Hs × Hs) in the sense of distributions, and ux ∈ L∞([0, T ] ×
�), γx ∈ L∞([0, T ] × �).

Proof. It follows from Theorem 4.1 that {uεnx} and {γεnx} are bounded in the
space L∞, respectively. Hence, the sequences {u2

εn
}, {u2

εnx}, {γ 2
εn
}, {γ 2

εnx}, {uεnγεn} and
{uεnxγεnx} weakly converge to u2, u2

x, γ 2, γ 2
x , uγ and uxγx in L2([0, T ], Hr(−R, R)) for

any r ∈ [0, s − 1), respectively. Therefore, u and γ satisfy the equation as follows:∫ T

0

∫
�

u(ϕt − ϕxxt) dx dt

=
∫ T

0

∫
�

[(
−3

2
u2 − 1

2
u2

x − 1
2
γ 2 + 1

2
γ 2

x

)
ϕx + 1

2
u2ϕxxx

]
dx dt,

and ∫ T

0

∫
�

γ (ϕt − ϕxxt) dx dt =
∫ T

0

∫
�

(−γ u − γxux)ϕx dx dt.

for any ϕ ∈ C∞
c .

Moreover, {uεnx} is a bounded sequence in the space X∗ = L∞([0, T ] × �) of X =
L1([0, T ] × �), so there is a subsequence of {uεnx}, still denoted by {uεnx}, weakly ∗
converging to a function v in L∞([0, T ] × �). Since {uεnx} is also weakly convergent to ux

in L2([0, T ] × �), it follows that ux = v almost everywhere. Hence, ux ∈ L∞([0, T] × �).
Similarly, we can also obtain γx ∈ L∞([0, T] × �). This completes the proof of the
theorem. �
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