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Abstract
We classify all Q-factorial Fano intrinsic quadrics of dimension three and Picard number one having at most
canonical singularities.

1. Introduction

This article contributes to the classification of Fano 3-folds, i.e. normal complex projective varieties of
dimension three with an ample anticanonical divisor. For the smooth Fano 3-folds, the work of Iskovskih
[11, 12] and Mori and Mukai [16] provides a detailed picture. The singular case, in contrast, is widely
open in general. Toric Fano 3-folds with at most canonical singularities have been completely classified
by Kasprzyk in [13, 14].

In the present article, we consider intrinsic quadrics. These are normal, projective varieties with a Cox
ring defined by a single quadratic relation q, see [5]. Intrinsic quadrics have been used i.a. by Bourqui
in [6] as a testing ground for Manin’s conjecture. Moreover, Fahrner and Hausen [8] give concrete
descriptions of all smooth intrinsic quadrics in the Picard numbers one and two. Every Fano intrinsic
quadric X is completely determined by its Cox ring

R(X) =
⊕

w∈Cl(X)

R(X)w =C[T1, . . . , Tr]/〈q〉.

In particular, if X is Q-factorial and of Picard number one, then we regain X from its Cox ring as
follows: The quasitorus H with character group X(H) ∼= Cl(X) acts diagonally on Cr via the characters
corresponding to the degrees w1, . . . , wr ∈ Cl(X) of the generators T1, . . . , Tr. Our variety X equals the
good quotient (V(q) \ {0})//H.

The description of X via its Cox ring allows us to explicitly compute certain invariants of X. In
particular, we obtain its anticanonical self intersection number −K3

X and its Fano index, i.e. the largest
integer q(X) such that −KX = q(X) · w holds for some w ∈ Cl(X).

Theorem 1.1. Every Q-factorial Fano intrinsic quadric of dimension three and Picard number one with
at most canonical singularities is isomorphic to precisely one of the varieties X in the list below, specified
by its Cox ring C[T1, . . . , Tr]/〈q〉 and the matrix Q having the Cl(X)-degrees wi of the generators Ti as
its columns.
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No. R(X) Cl(X) Q = [w1, . . . , wr] −KX q(X) −K3
X

1
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z
[
1 1 1 1 1

] [
3
]

3 54

2
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z
[
2 2 1 3 2

] [
6
]

6 36

3
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z
[
1 3 1 3 2

] [
6
]

6 48

4
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z
[
2 4 1 5 3

] [
9
]

9
729

20

5
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z
[
2 6 3 5 4

] [
12

]
12

96

5

6
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z
[
3 5 1 7 4

] [
12

]
12

1152

35

7
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z
[
3 7 2 8 5

] [
15

]
15

1125

56

8
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
4 2 3 3 2

1̄ 1̄ 0̄ 1̄ 0̄

] [
8

1̄

]
1

32

3

9
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
6 4 5 5 2

1̄ 1̄ 0̄ 1̄ 0̄

] [
12

1̄

]
3

36

5

10
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
4 2 3 3 6

1̄ 1̄ 0̄ 1̄ 0̄

] [
12

1̄

]
3 12

11
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z2

[
1 3 1 3 2

1̄ 1̄ 0̄ 0̄ 1̄

] [
6

1̄

]
3 24

12
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
1 1 1 1 1

1̄ 1̄ 1̄ 0̄ 0̄

] [
3

1̄

]
3 27

13
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z2

[
1 1 1 1 1

1̄ 1̄ 0̄ 0̄ 0̄

] [
3

0̄

]
3 54

14
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
1 1 1 1 2

0̄ 0̄ 1̄ 0̄ 1̄

] [
4

0̄

]
4 32

15
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
3 1 2 2 1

1̄ 1̄ 1̄ 0̄ 0̄

] [
5

1̄

]
5

125

6

16
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
1 3 2 2 2

0̄ 0̄ 0̄ 1̄ 1̄

] [
6

0̄

]
6 18

17
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z2

[
2 2 1 3 2

1̄ 1̄ 0̄ 0̄ 0̄

] [
6

0̄

]
6 18
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No. R(X) Cl(X) Q = [w1, . . . , wr] −KX q(X) −K3
X

18
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z2

[
1 3 1 3 2

1̄ 1̄ 0̄ 0̄ 0̄

] [
6

0̄

]
6 24

19
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
4 2 3 3 1

1̄ 1̄ 1̄ 0̄ 0̄

] [
7

1̄

]
7

343

48

20
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
4 2 3 3 2

1̄ 1̄ 1̄ 0̄ 1̄

] [
8

0̄

]
8

32

3

21
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
4 2 3 3 2

0̄ 0̄ 1̄ 0̄ 1̄

] [
8

0̄

]
8

32

3

22
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
5 1 3 3 2

0̄ 0̄ 1̄ 0̄ 1̄

] [
8

0̄

]
8

256

15

23
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
1 3 2 2 4

0̄ 0̄ 1̄ 0̄ 1̄

] [
8

0̄

]
8

64

3

24
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
5 3 4 4 1

1̄ 1̄ 1̄ 0̄ 0̄

] [
9

1̄

]
9

243

20

25
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
3 5 4 4 2

1̄ 1̄ 1̄ 0̄ 1̄

] [
10

0̄

]
10

25

3

26
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
5 1 3 3 4

1̄ 1̄ 1̄ 0̄ 1̄

] [
10

0̄

]
10

50

3

27
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
6 4 5 5 2

1̄ 1̄ 0̄ 1̄ 1̄

] [
12

0̄

]
12

36

5

28
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
6 4 5 5 2

0̄ 0̄ 0̄ 1̄ 1̄

] [
12

0̄

]
12

36

5

29
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
7 3 5 5 2

1̄ 1̄ 1̄ 0̄ 1̄

] [
12

0̄

]
12

288

35

30
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
2 4 3 3 6

0̄ 0̄ 1̄ 0̄ 1̄

] [
12

0̄

]
12 12

31
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
2 4 3 3 6

1̄ 1̄ 1̄ 0̄ 1̄

] [
12

0̄

]
12 12

32
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2

[
7 3 5 5 4

0̄ 0̄ 1̄ 0̄ 1̄

] [
14

0̄

]
14

98

15

33
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z3

[
1 1 1 1 1

1̄ 2̄ 0̄ 0̄ 0̄

] [
3

0̄

]
3 18
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X

34
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z3

[
1 1 1 1 1

1̄ 2̄ 1̄ 2̄ 0̄

] [
3

0̄

]
3 18

35
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z3

[
2 2 1 3 2

0̄ 2̄ 0̄ 2̄ 1̄

] [
6

0̄

]
6 12

36
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z3

[
2 2 1 3 2

0̄ 2̄ 2̄ 0̄ 1̄

] [
6

0̄

]
6 12

37
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z3

[
1 3 1 3 2

0̄ 2̄ 1̄ 1̄ 1̄

] [
6

0̄

]
6 16

38
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z4

[
1 1 1 1 2

1̄ 3̄ 2̄ 0̄ 3̄

] [
4

1̄

]
1 19

39
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z4

[
2 4 3 3 2

3̄ 1̄ 0̄ 2̄ 0̄

] [
8

2̄

]
2

16

3

40
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z4

[
1 1 1 1 2

2̄ 0̄ 1̄ 3̄ 2̄

] [
4

2̄

]
2 16

41
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z4

[
1 1 1 1 1

2̄ 2̄ 1̄ 3̄ 0̄

] [
3

0̄

]
3

27

2

42
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z4

[
1 1 1 1 1

2̄ 0̄ 1̄ 3̄ 3̄

] [
3

3̄

]
3

27

2

43
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z4

[
1 1 1 1 1

0̄ 2̄ 1̄ 3̄ 0̄

] [
3

0̄

]
3

27

2

44
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z4

[
1 1 1 1 2

2̄ 0̄ 1̄ 3̄ 0̄

] [
4

0̄

]
4 16

45
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z4

[
3 1 2 2 1

1̄ 1̄ 1̄ 3̄ 0̄

] [
5

0̄

]
5

49

6

46
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z4

[
1 3 2 2 2

1̄ 1̄ 3̄ 1̄ 0̄

] [
6

0̄

]
6 9

47
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z4

[
3 1 2 2 2

2̄ 0̄ 1̄ 3̄ 0̄

] [
6

0̄

]
6 9

48
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z4

[
2 4 3 3 2

1̄ 3̄ 2̄ 0̄ 2̄

] [
8

0̄

]
8

16

3
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No. R(X) Cl(X) Q = [w1, . . . , wr] −KX q(X) −K3
X

49
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z5

[
1 1 1 1 1

2̄ 3̄ 1̄ 4̄ 0̄

] [
3

0̄

]
3

54

5

50
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z6

[
1 1 1 1 1

1̄ 5̄ 2̄ 4̄ 0̄

] [
3

0̄

]
3 9

51
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z6

[
1 1 1 1 1

2̄ 4̄ 3̄ 3̄ 0̄

] [
3

0̄

]
3 9

52
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z6

[
1 1 1 1 1

4̄ 0̄ 2̄ 5̄ 5̄

] [
3

0̄

]
3 9

53
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z6

[
1 1 1 1 2

4̄ 0̄ 5̄ 2̄ 1̄

] [
4

2̄

]
4

32

3

54
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z8

[
1 1 1 1 1

2̄ 0̄ 5̄ 1̄ 3̄

] [
3

1̄

]
3

27

4

55
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z8

[
1 1 1 1 2

2̄ 0̄ 5̄ 1̄ 2̄

] [
4

0̄

]
4 8

56
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z8

[
1 1 1 1 2

2̄ 0̄ 5̄ 1̄ 6̄

] [
4

4̄

]
4 8

57
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z×Z9

[
1 1 1 1 1

4̄ 5̄ 3̄ 6̄ 0̄

] [
3

0̄

]
3 6

58
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z12

[
1 1 1 1 1

2̄ 0̄ 7̄ 1̄ 4̄

] [
3

0̄

]
3

9

2

59
C[T1, T2, T3, S1, S2]〈

T2
1 + T2

2 + T2
3

〉 Z× (Z2)2

⎡⎢⎣2 2 2 1 1

1̄ 1̄ 0̄ 0̄ 0̄

0̄ 1̄ 1̄ 1̄ 0̄

⎤⎥⎦
⎡⎢⎣4

0̄

1̄

⎤⎥⎦ 1
19

2

60
C[T1, T2, T3, S1, S2]〈

T2
1 + T2

2 + T2
3

〉 Z× (Z2)2

⎡⎢⎣1 1 1 1 2

1̄ 1̄ 0̄ 0̄ 1̄

0̄ 1̄ 1̄ 0̄ 1̄

⎤⎥⎦
⎡⎢⎣4

1̄

1̄

⎤⎥⎦ 1 16

61
C[T1, T2, T3, S1, S2]〈

T2
1 + T2

2 + T2
3

〉 Z× (Z2)2

⎡⎢⎣2 2 2 1 3

1̄ 1̄ 0̄ 0̄ 1̄

0̄ 1̄ 1̄ 0̄ 1̄

⎤⎥⎦
⎡⎢⎣6

1̄

1̄

⎤⎥⎦ 3
45

4

62
C[T1, T2, T3, S1, S2]〈

T2
1 + T2

2 + T2
3

〉 Z× (Z2)2

⎡⎢⎣1 1 1 1 1

1̄ 1̄ 0̄ 0̄ 0̄

1̄ 0̄ 0̄ 1̄ 0̄

⎤⎥⎦
⎡⎢⎣3

0̄

0̄

⎤⎥⎦ 3
27

2

https://doi.org/10.1017/S0017089522000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000301


Glasgow Mathematical Journal 293

No. R(X) Cl(X) Q = [w1, . . . , wr] −KX q(X) −K3
X

63
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z× (Z2)2

⎡⎢⎣1 1 1 1 1

0̄ 0̄ 1̄ 1̄ 0̄

1̄ 1̄ 1̄ 0̄ 0̄

⎤⎥⎦
⎡⎢⎣3

0̄

1̄

⎤⎥⎦ 3
27

2

64
C[T1, . . . , T5]〈

T1T2 + T2
3 + T2

4 + T2
5

〉 Z× (Z2)2

⎡⎢⎣1 1 1 1 1

0̄ 0̄ 1̄ 1̄ 0̄

1̄ 1̄ 0̄ 1̄ 0̄

⎤⎥⎦
⎡⎢⎣3

0̄

1̄

⎤⎥⎦ 3
27

2

65
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z× (Z2)2

⎡⎢⎣1 1 1 1 2

0̄ 0̄ 1̄ 1̄ 0̄

0̄ 0̄ 0̄ 1̄ 1̄

⎤⎥⎦
⎡⎢⎣4

0̄

0̄

⎤⎥⎦ 4 16

66
C[T1, T2, T3, S1, S2]〈

T2
1 + T2

2 + T2
3

〉 Z× (Z2)2

⎡⎢⎣3 3 3 1 2

0̄ 0̄ 1̄ 0̄ 1̄

1̄ 0̄ 0̄ 0̄ 1̄

⎤⎥⎦
⎡⎢⎣6

0̄

0̄

⎤⎥⎦ 6 6

67
C[T1, T2, T3, S1, S2]〈

T2
1 + T2

2 + T2
3

〉 Z× (Z2)2

⎡⎢⎣2 2 2 1 3

1̄ 1̄ 0̄ 0̄ 0̄

1̄ 0̄ 0̄ 0̄ 1̄

⎤⎥⎦
⎡⎢⎣6

0̄

0̄

⎤⎥⎦ 6 9

68
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z× (Z2)2

⎡⎢⎣3 1 2 2 2

0̄ 0̄ 1̄ 1̄ 0̄

0̄ 0̄ 0̄ 1̄ 1̄

⎤⎥⎦
⎡⎢⎣6

0̄

0̄

⎤⎥⎦ 6 9

69
C[T1, . . . , T5]〈

T1T2 + T2
3 + T2

4 + T2
5

〉 Z× (Z2)2

⎡⎢⎣1 3 2 2 2

1̄ 1̄ 1̄ 1̄ 0̄

0̄ 0̄ 1̄ 0̄ 1̄

⎤⎥⎦
⎡⎢⎣6

0̄

0̄

⎤⎥⎦ 6 9

70
C[T1, T2, T3, S1, S2]〈

T2
1 + T2

2 + T2
3

〉 Z× (Z2)2

⎡⎢⎣1 1 1 3 2

1̄ 1̄ 0̄ 1̄ 1̄

1̄ 0̄ 0̄ 0̄ 1̄

⎤⎥⎦
⎡⎢⎣6

0̄

0̄

⎤⎥⎦ 6 18

71
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z× (Z2)2

⎡⎢⎣2 4 3 3 2

1̄ 1̄ 0̄ 0̄ 0̄

1̄ 1̄ 1̄ 0̄ 1̄

⎤⎥⎦
⎡⎢⎣8

0̄

0̄

⎤⎥⎦ 8
16

3

72
C[T1, T2, T3, S1, S2]〈

T2
1 + T2

2 + T2
3

〉 Z×Z2 ×Z4

⎡⎢⎣2 2 2 1 1

1̄ 0̄ 1̄ 0̄ 0̄

1̄ 3̄ 3̄ 1̄ 0̄

⎤⎥⎦
⎡⎢⎣4

0̄

2̄

⎤⎥⎦ 2 4

73
C[T1, T2, T3, S1, S2]〈

T2
1 + T2

2 + T2
3

〉 Z×Z2 ×Z4

⎡⎢⎣1 1 1 2 1

0̄ 1̄ 0̄ 1̄ 0̄

1̄ 3̄ 3̄ 1̄ 0̄

⎤⎥⎦
⎡⎢⎣4

0̄

2̄

⎤⎥⎦ 2 8

https://doi.org/10.1017/S0017089522000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000301


294 Christoff Hische

No. R(X) Cl(X) Q = [w1, . . . , wr] −KX q(X) −K3
X

74
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2 ×Z4

⎡⎢⎣1 1 1 1 2

0̄ 0̄ 0̄ 1̄ 1̄

2̄ 0̄ 1̄ 3̄ 0̄

⎤⎥⎦
⎡⎢⎣4

0̄

0̄

⎤⎥⎦ 4 8

75
C[T1, T2, T3, S1, S2]〈

T2
1 + T2

2 + T2
3

〉 Z×Z2 ×Z6

⎡⎢⎣1 1 1 1 1

1̄ 0̄ 1̄ 0̄ 0̄

4̄ 1̄ 1̄ 5̄ 0̄

⎤⎥⎦
⎡⎢⎣3

0̄

3̄

⎤⎥⎦ 3
9

2

76
C[T1, T2, T3, T4, S1]〈

T1T2 + T2
3 + T2

4

〉 Z×Z2 ×Z6

⎡⎢⎣1 1 1 1 1

0̄ 0̄ 1̄ 0̄ 1̄

2̄ 0̄ 4̄ 1̄ 1̄

⎤⎥⎦
⎡⎢⎣3

0̄

0̄

⎤⎥⎦ 3
9

2

77
C[T1, . . . , T5]〈

T1T2 + T2
3 + T2

4 + T2
5

〉 Z×Z2 ×Z6

⎡⎢⎣1 1 1 1 1

1̄ 1̄ 1̄ 0̄ 0̄

2̄ 4̄ 3̄ 3̄ 0̄

⎤⎥⎦
⎡⎢⎣3

1

0

⎤⎥⎦ 3
9

2

78
C[T1, T2, T3, T4, T5]〈
T1T2 + T3T4 + T2

5

〉 Z× (Z3)2

⎡⎢⎣1 1 1 1 1

1̄ 2̄ 1̄ 2̄ 0̄

2̄ 1̄ 1̄ 2̄ 0̄

⎤⎥⎦
⎡⎢⎣3

0̄

0̄

⎤⎥⎦ 3 6

79
C[T1, . . . , T4, S1]〈

T2
1 + T2

2 + T2
3 + T2

4

〉 Z× (Z2)3

⎡⎢⎢⎢⎢⎣
1 1 1 1 2

1̄ 1̄ 1̄ 0̄ 1̄

0̄ 0̄ 1̄ 0̄ 1̄

1̄ 0̄ 0̄ 0̄ 1̄

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

4

0̄

0̄

0̄

⎤⎥⎥⎥⎥⎦ 4 8

To prove this result, we make use of the so called anticanonical complex as firstly introduced in [4] for
Fano varieties with a torus action of complexity one, i.e. the general torus orbit is of codimension one.
There, the authors have classified all Q-factorial Fano 3-folds with Picard number one having at most
terminal singularities and admitting a torus action of complexity one. Note that in our list all varieties
defined by a trinomial quadric admit a torus action of complexity one. In particular, varieties Nos. 1, 4,
19 and 49 appear in the classification list of [4]: all of them are terminal and No. 1 is even smooth. In
[10], the anticanonical complex has been made accessible for a broader class of varieties, comprising
i.a. the intrinsic quadrics. There, all Q-factorial Fano intrinsic quadrics of dimension three having at
most canonical singularities and a torus action of complexity two have been classified. These show up
as Nos. 64, 69, 77 and 79 in our classification list.

2. Background on intrinsic quadrics

In this section, we recall the basic facts about intrinsic quadrics from [8] and adapt the methods devel-
oped in [9, 10] to prove our main result in the subsequent section. Our main tool is the Cox ring R(X),
which can be assigned to any normal projective variety X with finitely generated divisor class group
Cl(X)

R(X) =
⊕

[D]∈Cl(X)

�(X, OX(D)).

We refer to [1] for a precise definition and background on Cox rings.
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An intrinsic quadric is a normal projective variety X with finitely generated divisor class group Cl(X)
and finitely generated Cox ring R(X) admitting homogeneous generators f1, . . . , fr such that the ideal
of relations is generated by a single, purely quadratic homogeneous relation q. In particular, we have a
graded isomorphism

R(X) ∼=C[f1, . . . , fr]/〈q〉.

Proposition 2.1 ([8, Proposition 2.1]). Let X be an intrinsic quadric. Then there exists a graded
isomorphism

R(X) ∼=C[T1, . . . , Tn, S1, . . . , Sm]/〈qs,t〉, (2.1)

for some s,t, where qs,t := T1T2 + . . . + Ts−1Ts + T2
s+1 + . . . + T2

s+t and the Cl(X)-grading on the ring on
the right hand side fulfills the following: The variables Ti, Sk and the polynomial qs,t are homogeneous
and we have deg(Ts+k) �= deg(Ts+l) for 1 ≤ k < l ≤ t.

The polynomial qs,t is called a standard Cl(X)-homogeneous quadric and the representation of R(X)
in (2.1) is called the homogeneous normal form.

The homogeneous normal form enables us to work in the flexible language introduced in [9]. We
adapt the basic constructions presented there to intrinsic quadrics and recall the major results.

Construction 2.2. Fix integers r, m ≥ 0 and n0, . . . , nr > 0, such that 2 ≥ n0 ≥ . . . ≥ nr ≥ 1 holds. Set
n := (n0, . . . , nr), n := n0 + . . . + nr and define an integral r × (n + m) matrix P0 built up from tuples
l0, . . . , lr as follows:

P0 :=

⎡⎢⎢⎣
−l0 l1 0 0 . . . 0
...

...
. . .

...
...

...

−l0 0 lr 0 . . . 0

⎤⎥⎥⎦ , li :=
{

(1, 1) if ni = 2 holds,

(2) else.

We will write C[Tij, Sk] for the polynomial ring in the variables Tij and Sk, where 0 ≤ i ≤ r, 1 ≤ j ≤ ni

and 1 ≤ k ≤ m holds. To the matrix P0, we associate a quadratic relation

q = Tl0
0 + . . . + Tlr

r , with Tli
i := Tli1

i1 · · · T
lini
ini

∈C[Tij, Sk].

Note that, by the choice of the ni and li, each term of q is in fact either of the form Ti1Ti2 or of the form
T2

i1 and there are m free variable S1, . . . Sm not occurring in q. Now, let eij ∈Zn and ek ∈Zm denote the
canonical basis vectors regarded as vectors in Zn+m and consider the projection

Q0 : Zn+m → K0 := Zn+m/im(P∗
0),

onto the factor group by the row lattice of P0. We define the K0-graded C-algebra

R(n, P0) := C[Tij, Sk]/〈q〉,
deg(Tij) := Q0(eij), deg(Sk) := Q0(ek).

Example 2.3. In the notation of Construction 2.2 let r = 2, m = 0, n0 = n1 = 2, n2 = 1 and n= (2, 2, 1).
Then we obtain a 2 × 5 matrix

P0 =
[−1 −1 1 1 0

−1 −1 0 0 2

]
,

and the corresponding relation is

q = T01T02 + T11T12 + T2
21 ∈C[T01, T02, T11, T12, T21],
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Concerning the grading on R(n, P0), we have K0
∼=Z3 and setting w0

ij := deg(Tij) ∈Z3 we obtain

[
w0

01, w0
02, w0

11, w0
12, w0

21

] =
⎡⎢⎣−1 1 0 0 0

0 0 −1 1 0

1 1 1 1 1

⎤⎥⎦ .

Remark 2.4. Let R := R(n, P0) be a K0-graded C-algebra as in Construction 2.2. Then R is integral
and normal if r ≥ 2 holds. Moreover, the K0-grading is the finest possible grading leaving the variables
Tij and Sk and the relation q homogeneous.

Construction 2.5. Let R(n, P0) be a K0-graded C-algebra as in Construction 2.2. Choose any integral
s × (n + m) matrix D with r + s ≤ n + m, such that the stack matrix

P :=
[

P0

D

]
,

has pairwise different and primitive columns generatingQr+s as a cone. Now, similar to Construction 2.2,
consider the factor group K := Zn+m/im(P∗) and the projection Q : Zn+m → K. Then, we define the
K-graded C-algebra

R(n, P) := C[Tij, Sk]/〈q〉,
deg(Tij) := Q(eij), deg(Sk) := Q(ek).

Example 2.6. (Example 2.3 continued). Let R(n, P0) be as in Example 2.3. We build up a stack matrix

P =
[

P0

D

]
=

⎡⎢⎢⎢⎣
−1 −1 1 1 0

−1 −1 0 0 2

−1 0 0 1 0

−1 0 0 0 1

⎤⎥⎥⎥⎦ .

We directly verify that P has indeed pairwise different, primitive columns generating Q4 as a cone. We
obtain K ∼=Z and writing wij := deg(Tij) ∈Z we obtain

[w01, w02, w11, w12, w21] = [1, 1, 1, 1, 1].

In particular R(n, P) is the Cox ring of the smooth three-dimensional projective quadric that occurs as
No.1 in the list of Theorem 1.1.

Remark 2.7. Let R(n, P) be a K-graded C-algebra as in Construction 2.5. Then the natural homomor-
phism K0 �→ K, [v] �→ [v] defines a downgrading from the K0-graded C-algebra R(n, P0) to the K-graded
C-algebra R(n, P).

Proposition 2.8 ([8, Proposition 2.1], compare also [9, Ex. 7.1]). Let X be an intrinsic quadric.
Then the Cl(X)-graded Cox ring R(X) is isomorphic to a K-graded C-algebra R(n, P) as in
Construction 2.5.

We will now use the rings R(n, P) to construct intrinsic quadrics, suitably embedded inside toric
varieties; we refer to [7] for background on toric geometry. For this, let R := R(n, P) be a K-graded
C-algebra from Construction 2.5 and denote by γ the positive orthant Qn+m

≥0 . For any face γ0  γ , we
denote by γ ∗

0 its complementary face, i.e. γ ∗
0 := cone(ei; ei �∈ γ0)  γ . Moreover, for a homomorphism
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of finitely generated abelian groups A : K → K ′ we denote its unique extension to the Q vector spaces
KQ := K ⊗Z Q, resp. K ′

Q
as well with A : KQ → K ′

Q
. Finally, we define a polyhedral cone

Mov(R) :=
⋂

γ0γ facet

Q(γ0) ⊆ KQ.

Construction 2.9. Consider an integral K-graded C-algebra R := R(n, P) as in Construction 2.5. Then
the K-grading on the polynomial ring C[Tij, Sk] defines an action of the quasitorus H := Spec C[K] on
Z := Cn+m that leaves X := V(q) ⊆ Z invariant. Now, choose any element u inside the relative interior
Mov(R)◦ and define fans

�(u) := {P(γ ∗
0 ); γ0  γ , u ∈ Q(γ0)

◦}, �̂(u) := {γ0  γ ; P(γ0) ∈ �(u)}.
This gives rise to the following commutative diagram

where Z and Ẑ are the toric varieties defined by �(u) and �̂(u) respectively, Ẑ → Z is a toric character-
istic space for the quasitorus action of H on Ẑ and X̂ := X̄ ∩ Ẑ. The resulting variety X(n, P, u) := X :=
X̂//H is projective, irreducible and normal with dimension, divisor class group and Cox ring

dim(X) = s + r − 1, Cl(X) = K, R(X) = R(n, P).

In particular, the variety X(n, P, u) is an intrinsic quadric with Cox ring R(n, P) in homogeneous nor-
mal form. Note that X̂ ⊆ X and Ẑ ⊆ Z are precisely the sets of H-semistable points with respect to the
weight u.

Example 2.10 (Example 2.6 continued) Let R(n, P) be as in Example 2.6 and choose u = 1 ∈Z= K.
Then the resulting variety X(n, P, u) is the smooth three-dimensional projective quadric that occurs as
No. 1 in the list of Theorem 1.1.

Theorem 2.11 ([8, Proposition 2.3]) Any intrinsic quadric is isomorphic to a variety X(n, P, u) from
Construction 2.9.

By construction any intrinsic quadric X = X(n, P, u) comes embedded inside a toric variety Z defined
by a fan �(u). We turn to the description of the cones σ ∈ �(u) defining torus orbits Tr+s · zσ in Z , that
intersect X non-trivially: Let us denote the columns of P by vij := P(eij) and vk := P(ek) respectively.
We call a cone σ ∈ �(u) big (elementary big), if its set of primitive ray generators contains for every
i = 0, . . . , r at least (precisely) one of the vectors vij. Moreover, we call σ a leaf cone, if there exists a set
of indices Iσ := {i1, . . . ir−1} such that, whenever vij is a primitive ray generator of σ , then i ∈ Iσ holds.
Finally, we call a face γ0  γ an X-face, if the torus orbitTn+m · zγ ∗

0
⊆Cn+m defined by the complementary

face of γ0 intersects X ⊆Cn+m non-trivially and P(γ ∗
0 ) ∈ �(u) holds.

Proposition 2.12 ([9, Proposition 7.8]) Let X = X(n, P, u) be an intrinsic quadric. Then for any cone
σ ∈ �(u), the following statements are equivalent:

(i) The torus orbit defined by σ intersects X non-trivially.
(ii) We have σ = P(γ ∗

0 ) for an X-face γ0  γ .
(iii) The cone σ is a big cone or a leaf cone.

https://doi.org/10.1017/S0017089522000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000301


298 Christoff Hische

Remark 2.13. Let X = X(n, P, u) be a Q-factorial intrinsic quadric with Picard number �(X) = 1. Then
every face 0 �= γ0  γ that defines a torus orbit Tn+m · zγ ∗

0
⊆Cn+m intersecting X non-trivially is an

X-face. In particular, if all entries of n equals one and m > 0 holds, then we have precisely one ele-
mentary big cone in �(u). Moreover, if n contains an index ni = 2, we obtain at least two elementary
big cones in �(u).

We turn to the description of the various cones of divisor classes inside the rational divisor class
group of an intrinsic quadric.

Remark 2.14. Let X = X(n, P, u) be an intrinsic quadric. Then the cones of effective, movable,
semiample and ample divisor classes inside Cl(X)Q = KQ are given as

Eff(X) = Q(γ ), Mov(X) =
⋂
γ0  γ

facet

Q(γ0)

SAmple(X) =
⋂
γ0  γ

X-face

Q(γ0), Ample(X) =
⋂
γ0  γ

X-face

Q(γ0)
◦.

Note, that due to the projectivity of X, the effective cone Eff(X) is pointed.

Remark 2.15. Let X = X(n, P, u) be an intrinsic quadric, then u ∈ Ample(X) holds. Moreover, let u �=
u′ ∈ Ample(X). Then X(n, P, u) = X(n, P, u′) holds.

We turn to the explicit description of the anticanonical divisor class of an intrinsic quadric
and connected with it, its Fano property. For this, let R := R(n, P) be a K-graded C-algebra as in
Construction 2.5. We set

−κ(R) :=
∑

deg(Tij) +
∑

deg(Sk) − deg(q) ∈ K.

Proposition 2.16 ([1, Proposition 3.3.3.2]) Let X := X(n, P, u) be an intrinsic quadric with Cox ring
R := R(n, P). Then its anticanonical divisor class is given by −KX = −κ(R). In particular, if R :=
R(n, P) is a K-gradedC-algebra as in Construction 2.5 with −κ(R) ∈ Mov(R)◦, then the intrinsic quadric
X(n, P, −κ(R)) is Fano.

We turn to singularity types of Fano varieties. For this, let X be an arbitrary Fano variety and
π : X′ → X a resolution of singularities, i.e. π is proper and birational and X ′ is smooth and let KX

denote any canonical divisor on X. Then, due to the ramification formula, we have

KX′ = π ∗KX +
∑

aiEi,

where KX′ is a canonical divisor on X ′, the Ei are prime divisors located in the exceptional locus Exc(π )
and the ai are rational numbers, the so called discrepancies. Note that the discrepancies of a Fano variety
are independent of the chosen resolution of singularities. We call X terminal (canonical, log-terminal)
if all discrepancies ai are strictly positive (non-negative, strictly greater then −1).

Our central tool to characterize and control these singularity types is the anticanonical complex as
introduced in [4] and developed further in [10]. We recall the necessary definitions and results from [10].
For this, let X = X(n, P, u) be a Fano intrinsic quadric. Then, by construction, X is embedded inside a
toric variety Z . Intersecting X with the open torus Tr+s ⊆ Z, we obtain its tropical variety as the support
of the quasifan

trop(X ∩Tr+s) = |�≤r−1
Pr

×Qs|,
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where the first factor is the (r − 1)-skeleton of the standard fan of the r-dimensional projective space
with primitive ray generators e1, . . . , er ∈Cr and e0 := − ∑

ei. We denote the tropical variety of X with
trop(X) and call its maximal linear subspace the lineality space trop(X)lin := {0} ×Qs.

Construction 2.17. Let X = X(n, P, u) be a Fano intrinsic quadric. For every elementary big cone σ =
cone(v0j0 , . . . , vrjr ) ∈ �(u) define numbers

	σ ,i := l0j0 · · · lrjr

liji

for i = 0, . . . , r and 	σ :=
r∑

i=0

	σ ,i − (l0j0 · · · lrjr ).

Theorem 2.18 ([10, Cor. 6.5]) Let X = X(n, P, u) be a Fano intrinsic quadric. Then X is log-terminal if
and only if lσ > 0 holds for all elementary big cones σ ∈ �(u).

Construction 2.19. Let X = X(n, P, u) be a log-terminal Fano intrinsic quadric. For every elementary
big cone σ = cone(v0j0 , . . . , vrjr ) ∈ �(u) define points inside the lineality space trop(X)lin:

vσ := 	σ ,0v0j0 + . . . + 	σ ,rvrjr ∈Zr+s and v′
σ

:= vσ

	σ

∈Qr+s.

Then, v′
σ
∈ σ holds. Now, the anticanonical complex A of X is defined as the polytopal complex obtained

as the intersection of the convex hull over the primitive ray generators of �(u) and the v′
σ
, where σ ∈ �(u)

is elementary big, with the tropical variety trop(X).

Example 2.20. Let X(n, P, u) be as in Example 2.10. Then �(u) contains the following four elementary
big cones:

σ1 = cone(v01, v11, v21), σ2 = cone(v01, v12, v21),

σ3 = cone(v02, v11, v21), σ4 = cone(v02, v12, v21).

A direct calculation gives v′
σ1

= (0, 0, −2/3, −1/3), v′
σ2

= (0, 0, 0, −1/3), v′
σ3

= (0, 0, 0, 1/3) and v′
σ4

=
(0, 0, 2/3, 1/3). In particular, the anticanonical complex is the union of the following three three-
dimensional polytopes.

conv
(
v01, v02, v′

σ1
, . . . , v′

σ4

)
, conv

(
v11, v12, v′

σ1
, . . . , v′

σ4

)
, conv

(
v21, v′

σ1
, . . . , v′

σ4

)

These polytopes are glued along their common face conv(v′
σ1

, . . . , v′
σ4

).

Remark 2.21. Let X = X(n, P, u) be a log-terminal Fano intrinsic quadric. Then 0 ∈A◦ holds.

Theorem 2.22 ([10, Thm. 1.1]) Let X(n, P, u) be a log-terminal Fano intrinsic quadric. Then the
following holds:

(i) X is terminal if and only if the only lattice points of the anticanonical complex are the primitive
ray generators of �(u) and the origin.

(ii) X is canonical if and only if the only interior lattice point of the anticanonical complex is the
origin.
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3. Proof of Theorem 1.1

This section is dedicated to the proof of Theorem 1.1. In a first step, we show that in our situation any
intrinsic quadric X(n, P, u) is defined via a trinomial or a quadrinomial relation q in its Cox ring R(n, P).
Note that the quadrinomial case is part of [10], where torus actions of higher complexity on singular
varieties are investigated, see Remark 3.2. Therefore, we turn to the trinomial case and go through any
possible configuration for the defining data n and P to create the classification list. Finally, we prove that
all of the varieties stated in Theorem 1.1 are pairwise non-isomorphic.

Lemma 3.1. Let X = X(n, P, u) be a Q-factorial Fano intrinsic quadric of dimension three and Picard
number one. Then q is either a trinomial or a quadrinomial.

Proof. We consider the Cox ring R(n, P) of X. By assumption we have n + m = 5 for the number of
variables in R(n, P). Thus, by renaming the variables, we may assume that R(n, P) =C[T1, . . . , T5]/〈q〉
holds, where q is a quadratic polynomial contained in the following list:

(i) T2
1 , T1T2 or T2

1 + T2
2 ,

(ii) T1T2 + T2
3 or T1T2 + T3T4,

(iii) any square polynomial with three or four terms,
(iv) T2

1 + T2
2 + T2

3 + T2
4 + T2

5 .

If q is one of the polynomials in (i), then R(n, P) is not integral; a contradiction. Now assume q is one
of the polynomials in (ii). Then the K0-grading on R(n, P0) turns the total coordinate space X into a toric
variety and thus X is toric. This implies, that the Cox ring of X is isomorphic to a polynomial ring; a
contradiction to the fact that X has a singularity at the origin. Finally, assume q = T2

1 + T2
2 + T2

3 + T2
4 +

T2
5 holds. Then we obtain

P0 =

⎡⎢⎢⎣
−2 2 0 0 0
−2 0 2 0 0
−2 0 0 2 0
−2 0 0 0 2

⎤⎥⎥⎦ .

Therefore in order to produce a matrix P with primitive columns as in Construction 2.5, the matrix
P has to be quadratic; a contradiction to �(X) = 1. Now, the only case left is (iii) which proves the
assertion.

For the sake of completeness, we extract the quadrinomial case from [10].

Remark 3.2 (Compare [10, Thm. 1.5]) EveryQ-factorial Fano intrinsic quadric of dimension three and
Picard number one that has at most canonical singularities and a Cox ring R(n, P), where the defining
relation q is a quadrinomial, is isomorphic to precisely one of the varieties X, specified by its Cl(X)-
graded Cox ring R(X), its matrix of generator degrees Q = [w1, . . . , wr] and its anticanonical divisor
class −KX ∈ Ample(X) as follows:

No. R(X) Cl(X) Q = [w1, . . . , wr] −KX

1
C[T1, . . . , T4, S1]

〈T2
1 + T2

2 + T2
3 + T2

4 〉
Z× (Z2)3

⎡⎢⎢⎢⎢⎣
1 1 1 1 2

1̄ 1̄ 1̄ 0̄ 1̄

0̄ 0̄ 1̄ 0̄ 1̄

1̄ 0̄ 0̄ 0̄ 1̄

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

4

0̄

0̄

0̄

⎤⎥⎥⎥⎥⎦
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No. R(X) Cl(X) Q = [w1, . . . , wr] −KX

2
C[T1, . . . , T5]

〈T1T2 + T2
3 + T2

4 + T2
5 〉

Z× (Z2)2

⎡⎢⎣1 1 1 1 1

0̄ 0̄ 1̄ 1̄ 0̄

1̄ 1̄ 0̄ 1̄ 0̄

⎤⎥⎦
⎡⎢⎣3

0̄

1̄

⎤⎥⎦

3
C[T1, . . . , T5]

〈T1T2 + T2
3 + T2

4 + T2
5 〉

Z× (Z2)2

⎡⎢⎣1 3 2 2 2

1̄ 1̄ 1̄ 1̄ 0̄

0̄ 0̄ 1̄ 0̄ 1̄

⎤⎥⎦
⎡⎢⎣6

0̄

0̄

⎤⎥⎦

4
C[T1, . . . , T5]

〈T1T2 + T2
3 + T2

4 + T2
5 〉

Z×Z2 ×Z6

⎡⎢⎣1 1 1 1 1

1̄ 1̄ 1̄ 0̄ 0̄

2̄ 4̄ 3̄ 3̄ 0̄

⎤⎥⎦
⎡⎢⎣3

1

0

⎤⎥⎦

Note, that these varieties appear as Nos. 64, 69, 77 and 79 in Theorem 1.1.

Let us turn to the trinomial case. In a first step, we list the possible choices of the data n and m. Then,
in Propositions 3.5, 3.7 and 3.8, we show that in all cases there are only finitely many possible choices
for the matrix P.

Remark 3.3. Let X := X(n, P, u) be a Q-factorial intrinsic quadric of dimension three and Picard num-
ber one with trinomial Cox ring R(n, P). Then we have n + m = 5 for the defining data n and m. Moreover,
as the defining relation qs,t is a trinomial, we obtain r = 2 and as the Picard number of X is one, we
conclude s = 2. We end up in one of the following situations.

(i) n= (1, 1, 1) and m = 2.
(ii) n= (2, 1, 1) and m = 1.
(iii) n= (2, 2, 1) and m = 0.

Remark 3.4. Let R(n, P) be a K-graded C-algebra as in Construction 2.5. We call the following
admissible operations on P:

(i) Add a multiple of one of the first r-rows to one of the last s-rows.
(ii) Any elementary row operation between the last s-rows.
(iii) Swap two columns vi1 and vi2.
(iv) Swap two columns of the last m columns.

The operations of type (i) and (ii) does not effect the ring R(n, P). Types iii) and iv) leaves the graded
isomorphy type of R(n, P) invariant.

Proposition 3.5. Let X := X(n, P, u) be a Q-factorial Fano intrinsic quadric of dimension three and
Picard number one, having at most canonical singularities and Cox ring R(n, P) with n= (1, 1, 1)
and m = 2. Then X is isomorphic to a variety X(n, P′, u), where P′ is an integral (4 × 5)-matrix of the
following form

P′ =

⎡⎢⎢⎢⎢⎣
−2 2 0 0 0

−2 0 2 0 0

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

⎤⎥⎥⎥⎥⎦ ,

fulfilling the following constraints:

https://doi.org/10.1017/S0017089522000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000301


302 Christoff Hische

The set {[x4, y4], [x5, y5], [z1, z2]}, where [z1, z2] := [x1 + x2 + x3, y1 + y2 + y3] equals one of the
following sets

{[1, 0], [0, 1], [−1, −1]} , {[1, 1], [−1, 1], [0, −1]} , {[1, 1], [−1, 1], [−1, −2]} ,
{[1, 1], [−1, 1], [−1, −3]} , {[2, 1], [1, 1], [−1, −2]} ,

and we have x2, x3, y2, y3 ∈ {0, 1}. In particular, we are left with finitely many possibilities for P′.

Proof. As X has Picard number one and by definition of �(u), we obtain the following big cone and
its associated vertex of the anticanonical complex of X:

σ = cone(v01, v11, v21) ∈ �, v′
σ
= [0, 0, x1 + x2 + x3, y1 + y2 + y3].

In particular, forgetting about the first two coordinates, the anticanonical complex of X intersected with
the lineality space trop(X)lin is the two-dimensional lattice polytope


 := conv([x4, y4], [x5, y5], [z1, z2]), [z1, z2] := [x1 + x2 + x3, y1 + y2 + y3].

As X has at most canonical singularities, the origin is the only interior lattice point of 
. Thus, by
applying admissible operations on the last two rows of P, we may assume that 
 is one of the 16 two-
dimensional reflexive polytopes [3, 15, 17]. In particular, as 
 has three vertices, we may assume that
it is one of the following:

conv([1, 0], [0, 1], [−1, −1]), conv([1, 1], [−1, 1], [0, −1]), conv([1, 1], [−1, 1], [−1, −2]),

conv([1, 1], [−1, 1], [−1, −3]), conv([2, 1], [−1, 1], [−1, −2]).

By definition, the vertices of 
 are invariant under adding a multiple of the first two rows of P to one
of the last two rows. Thus, applying suitable admissible operations, we can achieve in addition, that we
have x2, x3, y2, y3 ∈ {0, 1}.

Remark 3.6. Let X = X(n, P, u) be a Q-factorial intrinsic quadric of Picard number one and consider
the rational degree-vector

d := ( degQ(T01), . . . , degQ(Trnr ), degQ(T1), . . . , degQ(Tm)) ∈Zn+m.

By construction, we have LinQ(d) = kerQ(P) and as the effective cone of X is pointed, we may assume
d ∈Qn+m

>0 . Now, denote with Pij resp. Pk the submatrices of P arising by deleting the ij-th resp. k-th column
and set wij := (−1)cij det(Pij), wk := (−1)ck det(Pk), where cij resp. ck denotes the number of the column
P∗,ij resp. P∗,k. Then we obtain a non-zero vector

(w01, . . . , wrnr , w1, . . . wm) ∈ kerQ(P).

This vector is a scalar multiple of d. In particular, the wij and wk are either all positive or negative. We
call them the rational weights.

Proposition 3.7. Let X := X(n, P, u) be a Q-factorial Fano intrinsic quadric of dimension three and
Picard number one, having at most canonical singularities and Cox ring R(n, P) with n= (2, 1, 1)
and m = 1. Then X is isomorphic to a variety X(n, P′, u), where P′ is an integral (4 × 5)-matrix of the
following form

P′ =

⎡⎢⎢⎢⎢⎣
−1 −1 2 0 0

−1 −1 0 2 0

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

⎤⎥⎥⎥⎥⎦ ,
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fulfilling the following constraints: We have x1 = y1 = y2 = 0 and

0 < x2 ≤ 2 − (y3 + y4), 0 ≤ x4 ≤ 1, 0 < x5 ≤ |y5|,

−18 − y4 ≤ y3 < −y4, −1 ≤ y4 ≤ 1

2x5y3 + 2x5y4 − 2x4y5 − 4x2y5

2y5
< x3 < −x4, 0 < y5 ≤

⎧⎪⎨⎪⎩
9 x2 = 1

x2 − 1
2
(y3 + y4)

x2 − 1
else.

In particular, we are left with finitely many possibilities for P′.

Proof. By applying suitable admissible operations on P we may assume x1 = y1 = y2 = 0 and

x2 > 0, 0 < x5 ≤ |y5|, x4, y4 ∈ {0, 1} .

Moreover, by multiplying the last row with (−1), if necessary, we may assume that we have positive
weights:

w01 = 4x2y5 + 2x3y5 − 2x5y3 + 2x4y5 − 2x5y4,

w02 = −2x3y5 + 2x5y3 − 2x4y5 + 2x5y4,

w11 = 2x2y5,

w21 = 2x2y5,

w1 = −2x2y3 − 2x2y4.

Note that the last row operation possibly changes the sign of y4. Thus, we may only assume that y4 ∈
{−1, 0, 1} holds. Now, positivity of the weights w01, w11 and w1 imply

2x5y3 + 2x5y4 − 2x4y5 − 4x2y5

2y5
< x3, 0 < y5 and y3 < −y4.

We investigate the anticanonical complex of X. As X has Picard number one, we obtain the following
two big cones with their respective associated vertices of the anticanonical complex of X:

σ1 = cone(v01, v11, v21) , v′
σ1

=
[

0, 0,
1

2
(x3 + x4),

1

2
(y3 + y4)

]
,

σ2 = cone(v02, v11, v21) , v′
σ2

=
[

0, 0,
1

2
(x3 + x4) + x2,

1

2
(y3 + y4)

]
.

In particular, forgetting about the first coordinates, the anticanonical complex of X intersected with the
lineality space trop(X)lin is a triangle 
 = conv(p1, p2, p3) with

p1 =
[

1

2
(x3 + x4),

1

2
(y3 + y4)

]
, p2 =

[
1

2
(x3 + x4) + x2,

1

2
(y3 + y4)

]
, p3 = [x5, y5].

We proceed by investigating the polytope 
. As x5 > 0 and x2 and w11 = 2x2y5 are positive, we obtain
y5 > 0. In particular, the vertex p3 is contained in the positive orthant. Moreover, as w1 is positive, we
conclude y3 + y4 < 0 and thus the points p1 and p2 are contained in the lower half plane. Note that the
line segment p1p2 is parallel to the x-axis. As X is Fano, we have 0 ∈ 
◦ and conclude x3 + x4 < 0, as x2

is positive. We sketch the situation:
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Note, that in this situation we cannot determine the position of p2 with respect to the y-axis. We now
investigate slices of the polytope 
: Due to the singularity type of X, we have

|
 ∩ {y = 0}| = x2y5

y5 − 1

2
(y3 + y4)

≤ 2.

Thus, reordering suitably and using y5 > 0 yields

x2 ≤ 2 − (y3 + y4)

y5

≤ 2 − (y3 + y4).

Similarly, we have

|
 ∩ {y = 1}| = x2(y5 − 1)

y5 − 1

2
(y3 + y4)

≤ 1.

In particular, if x2 �= 1 holds, this implies

y5 ≤
x2 − 1

2
(y3 + y4)

x2 − 1
.

We proceed by investigating the tetrahedron 
′ defined by the following vertices:

[0, 0, x5, y5], [−1, −1, x2, 0],[
0, 0,

1

2
(x3 + x4),

1

2
(y3 + y4)

]
,

[
0, 0,

1

2
(x3 + x4) + x2,

1

2
(y3 + y4)

]
.

Note that by construction 
′ is contained in the anticanonical complex of X and thus has the origin as
its unique interior lattice point. The polytope 
′ is living inside the linear space spanned by [1, 1, 0, 0],
[0, 0, 1, 0] and [0, 0, 0, 1]. In particular, we may regard 
′ as a polytope in Q3 by forgetting about the
first coordinate. Now, 
′ is contained in the lattice polytope 
′′ defined by the following vertices:

[−1, x2, 0] ,
[
1, x3 + x4 − x2, y3 + y4

]
,

[
1, x3 + x4 + x2, y3 + y4

]
,

[
1, 2x5 − x2, 2y5

]
.

Note that by construction 
′′ is a lattice polytope having the origin as its unique interior lattice point.
Thus, due to [2, Thm 2.2], its standard Q3-volume is bounded by 12 which gives

4

3
x2y5 − 2

3
x2(y3 + y4) ≤ 12. (3.1)

Now, reordering and using x2 > 0 we obtain

−18

x2

+ 2y5 − y4 ≤ y3,
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and as x2 > 0 and y5 > 0 hold, we obtain −18 − y4 ≤ y3. Moreover, reordering Equation 3.1 once more,
we arrive at

4

3
x2y5 ≤ 12 + 2

3
x2(y3 + y4).

Using negativity of x2(y3 + y4) and x2 > 0, we conclude y5 ≤ 9.

Proposition 3.8. Let X := X(n, P, u) be a Q-factorial Fano intrinsic quadric of dimension three and
Picard number one, having at most canonical singularities and Cox ring R(n, P) with n= (2, 2, 1)
and m = 0. Then X is isomorphic to a variety X(n, P′, u), where P′ is an integral (4 × 5)-matrix of the
following form

P′ =

⎡⎢⎢⎣
−1 −1 1 1 0
−1 −1 0 0 2
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

⎤⎥⎥⎦ ,

fulfilling the following constraints: We have x1 = y1 = y2 = x4 = y4 = 0 and

0 < x2 ≤ 3,
2x2y3 + x5y3

y5

< x3 <
x5y3

y5

, 0 < x5 ≤ |y5|,

0 < y3 ≤ 12

x2

, −2y3 < y5 < 0.

In particular, we are left with finitely many possibilities for P′.

Proof. By applying suitable admissible operations on P, we may assume x1 = y1 = y2 = x4 = y4 = 0,
x2 > 0, and 0 < x5 ≤ |y5|. Moreover, by multiplying the last row with (−1), if necessary, we may assume,
that we have positive weights:

w01 = 2x2y3 − x3y5 + x5y3,

w02 = x3y5 − x5y3,

w11 = −x2y5,

w12 = 2x2y3 + x2y5,

w21 = x2y3.

Now, positivity of the weights w21, w11 and w12 imply

y3 > 0, y5 < 0 and − 2y3 < y5.

Thus, using positivity of w01 and w02, we conclude

x3 >
2x2y3 + x5y3

y5

and x3 <
x5y3

y5

.

We investigate the anticanonical complex of X. As X has Picard number one, we obtain the following
four big cones with their respective associated vertices of the anticanonical complex

σ1 = cone(v01, v11, v21) , v′
σ1

=
[

0, 0,
1

3
x5 + 2

3
x3,

1

3
y5 + 2

3
y3

]
,

σ2 = cone(v01, v12, v21) , v′
σ2

=
[

0, 0,
1

3
x5,

1

3
y5

]
,

σ3 = cone(v02, v11, v21) , v′
σ3

=
[

0, 0,
1

3
x5 + 2

3
x3 + 2

3
x2,

1

3
y5 + 2

3
y3

]
,

σ4 = cone(v02, v12, v21) , v′
σ4

=
[

0, 0,
1

3
x5 + 2

3
x2,

1

3
y5

]
.
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In particular, forgetting about the first coordinates, the anticanonical complex of X intersected with the
lineality space trop(X)lin is a trapezoid 
 = conv(p1, p2, p3, p4), with

p1 =
[

1

3
x5 + 2

3
x3,

1

3
y5 + 2

3
y3

]
, p2 =

[
1

3
x5,

1

3
y5

]
,

p3 =
[

1

3
x5 + 2

3
x3 + 2

3
x2,

1

3
y5 + 2

3
y3

]
, p4 =

[
1

3
x5 + 2

3
x2,

1

3
y5

]
.

We proceed by investigating the polytope 
. In a first step, we determine the position of its vertices rela-
tive to the x- and y-axis. First note that by assumption x2 and x5 are positive and by positivity of the weight
w11 = −x2y5 we obtain y5 < 0. In particular, we have (p2)1, (p4)1 > 0 and (p2)2, (p4)2 < 0. Moreover, as
X is Fano, we obtain 0 ∈ 
◦ and thus (p1)1 < 0 and (p1)2 > 0 due to the positivity of x2. We sketch the
situation:

p1

p2

p3

p4

2
3y3

2
3x2

Note that we cannot determine the position of p3 with respect to the y-axis. Now, due to the singularity
type of X, the y = 0 slice of 
 implies

|
 ∩ {y = 0}| = 2

3
x2 ≤ 2,

and thus x2 ≤ 3 holds. We proceed by investigating the pyramid


′ := conv
(
[0, 2, x5, y5], v′

σ1
, . . . , v′

σ4

)
,

By construction 
′ is contained in the anticanonical complex of X and by deleting the first coordinate,
we may regard 
′ as a polytope inside Q3 having the origin as its unique interior lattice point, due to the
singularity type of X. We proceed by modifying 
′ ⊆Q3. By extending the edges starting in [2, x5, y5],
we enlarge 
′ to the lattice polytope 
′′ having the following vertices:

[2, x5, y5], [−1, x3, y3], [−1, 0, 0], [−1, x2 + x3, y3], [−1, x2, 0].

Note that by construction 
′′ still has the origin as its unique interior lattice point. Thus, due to [2, Thm.
2.2], its standard Q3-volume is bounded by 12 and we conclude

y3 ≤ 12

x2

.

Proof of Theorem 1.1 (the classification list). Due to Lemma 3.1 and Remark 3.2, we only need
to consider the trinomial case. Then, due to Propositions 3.5, 3.7 and 3.8 we only have finitely many
possible Fano varieties X(n, P, u) to check. Computing the anticanonical complex for all possible con-
figurations, the resulting canonical Fano varieties are listed in Theorem 1.1 with Nos. 1 - 63, 65 -
68, 70 - 76 and 78. The missing varieties are directly imported from [10, Thm. 1.5] as Nos. 64, 69,
77 and 79.
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Remark 3.9. In order to calculate the anticanonical self-intersection numbers −K3
X for the varieties

listed in Theorem 1.1, we proceed as follows (compare [1, Proposition 5.4.2.1]). By construction, any
Q-factorial intrinsic quadric X = X(n, P, u) is a hypersurface in its ambient toric variety Z, which we
may assume to be projective and Q-factorial as X is so. In particular, the defining fan of Z is simplicial.
Thus, in our three-dimensional case, we can calculate the intersection numbers of divisors CX = (DZ)|X ,
C′

X = (D′
Z)|X and C′′

X = (D′′
Z)|X obtained by restricting toric divisors as

CX · C′
X · C′′

X = DZ · D′
Z · D′′

Z · E1,

where E1 is any toric representative of the degree of the defining relation q of R(n, P). This means in
particular that the anticanonical self-intersection number −K3

X can be computed using the following
fact: Let Z be an n-dimensional complete toric variety with simplicial defining fan �Z . For toric prime
divisors D�1 , . . . , D�n set σ := cone(�1, . . . , �n) and let vi denote the primitive ray generator of �i. Then
we have

D�1 · . . . · D�n =
{

[N ∩ linQ(σ ) : linZ(v1, . . . , vn)]−1, if σ ∈ �Z

0, else.

We exemplarily calculate the anticanonical self-intersection number for No. 9 in our list:

Example 3.10. We have

R(X) =C[T1, T2, T3, T4, S1]/
〈
T1T2 + T2

3 + T2
4

〉
, Cl(X) =Z×Z2, Q =

[
6 4 5 5 2
1̄ 1̄ 0̄ 1̄ 0̄

]
,

−KX = (12, 1̄) and deg(q) = (10, 0̄). Let D1, . . . , D5 denote the toric prime divisors on Z with [Di] =
wi ∈ Cl(Z) = Cl(X). We have (3D2)|X ∈ −KX . Thus, using [3D2] = [D1 + 3D5] ∈ Cl(Z), we obtain

−K3
X = 3D2 · (D1 + 3D5) · 3D2 · 2D3 = 18D1 · D2 · D2 · D3 + 54D2 · D2 · D3 · D5

= 36D1 · D2 · D3 · D5 + 36D1 · D2 · D3 · D5 = 36

5
,

where, for the second equality, we use [2D2] = [4D5] and [3D2] = [2D1].

Now we turn to the irredundancy of the classification list.

Remark 3.11. Let X = X(n, P, u) be an n-dimensional intrinsic quadric. Then the following numbers
are invariants of X:

(i) The anticanonical self-intersection number −Kn
X , which can be directly computed as indicated

in Remark 3.9.
(ii) The Fano index q(X), which is defined as the largest integer q(X), such that −KX = q(X) · w

holds with some w ∈ Cl(X).
(iii) The Picard index p(X), which is defined as the index of the Picard group inside the divisor class

group. Note that, in our situation, the Picard group is given as

Pic(X) =
⋂
γ0  γ

X-face

Q(γ0 ∩Zn+m) ⊆ Cl(X).

(iv) The dimension of the automorphism group dim(Aut(X)).

Moreover, if X is isomorphic to another intrinsic quadric X′ = X(n′, P′, u′), then R(X) and R(X′) are
isomorphic as graded rings. In this case, the following holds:

(i) We have dim
(

X
sing

)
= dim

(
X′ sing

)
.

(ii) There is a bijection between the set of generator degrees �X and �X′ .
(iii) The sets �dim

X := {dim(R(X)w); w ∈ �X} and �dim
X′ coincide.
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Proposition 3.12. The varieties defined by the data in Theorem 1.1 are pairwise non-isomorphic.

Proof. We denote by Xi the Fano variety defined by the i-th datum in Theorem 1.1, by Ri its Cox ring,
by Xi its total coordinate space and by �i = {w1, . . . , wr} its set of generator degrees. As the divisor
class group, the Fano index and the anticanonical self-intersection number presented in Theorem 1.1
are invariants, we only need to compare those varieties Xi and Xj, where all these data coincide. The
next table presents invariants of these varieties, where the cases to compare are divided via horizontal
lines:

i p(Xi) dim(Aut(Xi)) dim
(

Xi
sing

)
16 24 2 1
17 24 2 0

20 48 2 1
21 24 2 1

27 240 2 1
28 120 2 1

30 24 2 1
31 48 2 1

33 9 2 0
34 9 2 0

35 54 2 0
36 18 2 0

41 16 2 0
42 16 2 1
43 8 2 1

46 48 2 1
47 48 2 1

50 36 2 0
51 36 2 0
52 36 2 1

55 64 2 1
56 64 2 1

62 8 2 2
63 8 2 1
64 8 1 0

67 48 2 2
68 48 2 1
69 48 1 0

75 72 2 2
76 72 2 1
77 72 1 0

There are only four cases left, that cannot be distinguished via the table above. We treat them in the
following paragraphs:
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X33 and X34. In this case, the homogeneous component of R33 of degree (1, 0̄) ∈ �33 has dimension
three. This is in contrast to R34, where the maximal dimension of the homogeneous components with
respect to the generator degrees in �34 is two.

X46 and X47. In this situation, all homogeneous components of R46 with respect to the weights in �46

are one-dimensional which is in contrast to the two-dimensional homogeneous component of R47 of
degree (2, 0̄) ∈ �47.

X50 and X51. Note, that due to Remark 3.11, we have a bijection �50 → �51. Now |�50| = 5 which is
in contrast to |�51| = 4.

X55 and X56. Assume there is a graded isomorphism R55 →R56. Then we have an isomorphism
Cl(X55) → Cl(X56) mapping �55 onto �56. We go through the possible images of (1, 1̄) ∈ �55: Assume
that (1, 1̄) is mapped on either (1, 1̄) or (1, 5̄). Then (2, 2̄) ∈ �55 is mapped on (2, 2̄) which is not contained
in �56; a contradiction. Now assume (1, 1̄) is mapped on (1, 0̄) or (1, 2̄) then (2, 2̄) is mapped on either
(2, 0̄) or (2, 4̄) which are not contained in �56; a contradiction; Finally assume that (1, 1̄) is mapped on
(2, 6̄). Then (2, 2̄) is mapped on (4, 4̄) which is again not contained in �56; a contradiction. This implies
that there is no graded isomorphism R55 →R56 and thus X55 and X56 cannot be isomorphic.
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